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Preface

This volume examines modern techniques and research problems in the analysis of lifetime
data analysis. This area of statistics deals with time-to-event data which is complicated not
only by the dynamic nature of events occurring in time but also by censoring where some
events are not observed directly, but rather they are known to fall in some interval or range.

Historically survival analysis is one of the oldest areas of statistics dating its origin to
classic life table construction begun in the 1600s. Much of the early work in this area involved
constructing better life tables and long tedious extensions of non-censored nonparametric
estimators. Modern survival analysis began in the late 1980s with pioneering work by Odd
Aalen on adapting classical Martingale theory to these more applied problems. Theory based
on these counting process martingales made the development of techniques for censored and
truncated data in most cases easier and opened the door to both Bayesian and classical
statistics for a wide range of problems and applications.

In this volume we present a series of chapters which provide an introduction to the ad-
vances in survival analysis techniques in the past thirty years. These chapters can serve four
complementary purposes. First, they provide an introduction to various areas in survival
analysis for graduates students and other new researchers to this field. Second, they provide
a reference to more-established investigators in this area of modern investigations into sur-
vival analysis. Third, with a bit of supplementation on counting process theory this volume
is useful as a text for a second or advanced course in survival analysis. We have found
that the instructor of such a course can pick and choose chapters in areas he/she deems
most useful to the students or areas of interest to the instructor. Lastly, these chapters can
help practicing statisticians pick the best statistical method to analyze their survival data
experiment.

To help with reading the volume we have grouped chapters into six parts, each with a
brief introduction by the editor. These parts are:

I Regression Models for Right Censoring

II Competing Risks

III Model Selection and Validation

IV Other Censoring Schemes

V Multivariate/Multistate Models

VI Clinical Trials

We believe that the chapters and topics presented here provide a good overview of the
current status of survival analysis and will further inspire research into this area.

We would like to express our thanks to all the authors who contributed their time and
effort to this volume. Without these contributions the volume would not be possible. A
special thank you goes to Professor van Houwelingen who took upon himself much of the
work of putting the authors’ LaTeX and pdf files into a book format.

ix
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2 Part I

In Part 1 we present statistical methods for right-censored and left-truncated survival
data. For this type of data it is assumed that there is a single event which causes death
or failure of an individual sampling unit. These sample units could be humans or animals
subjected to some type of treatment or they could be mechanical or electronic units. Here
if the time-to-failure is T then we are interested in making an inference about the survival
function S(t) = Pr[T > t]. In engineering applications this function is called the “reliability
function.” In the sequel we focus on the biological applications of methods.

For many applications the time-to-failure is not observable for all individuals in the study
but partial information that the event time is longer than some censoring time is all that
is available. Such observations are called right-censored observations and the information
they give us is simply that the failure time for an individual is beyond their censoring time.

There are many types of right censoring. There is type I censoring where each subject
has assigned to it a fixed censoring time after which observation on the subject stops.
This censoring scheme is used in reliability applications to shorten the on-study time or in
biological studies when the observational window is fixed. For type II censoring the number
of failures is fixed and the censoring time is random. This scheme is used most often in
engineering applications to reduce the on-study time. Finally there is progressive censoring
where what is observed is the smaller of the event time T and a random censoring time C.
The censoring time C, commonly the lost-to-follow-up time, reflects when the individual
drops out of the study or stops being followed. Most analysis assumes that this censoring
time is non-informative or independent of the survival time. Censoring is non-informative
if there is no information on the survival time, T , available from the magnitude of the
censoring time.

In some cases in addition to being right-censored the data is left-truncated. Data is said
to be left-truncated if only those potential subjects that have had some truncating event
occur at a time τ are at risk at any point in time beyond τ . The classic example is the
Channing house study which examined the survival probabilities for senior citizens in a
nursing home. In that study at a given time, t0, only subjects who enter the home at an
age prior to t0, are considered at risk for death at this age, and any patient with an entry
age greater than t0 is not included in the risk set. Since left truncation simply modifies the
risk set, the methods developed for right-censored data are usually the same as those for
left-truncated right-censored data.

Inference techniques for survival data can trace their roots to three key publications. The
first is the paper by Kaplan and Meier (1958) which developed a non-parametric estimator
of the survival function (see Section 1.1.2). This “Kaplan-Meier” estimator was a modern
version of the classical life tables used in actuary science and developed by Edmond Halley
in 1693 (yes the famous comet discoverer). The second work is the paper by David Cox
(1972) which is the centerpiece of this first set of chapters and discussed briefly below.

The third and perhaps most important work is the development of the theory of counting
processes and their use in survival analysis by Odd Aalen. His pioneering work on counting
processes and martingales, starting with his 1975 Ph.D. thesis, has had profound influence
on survival analysis techniques. Inferences for fundamental quantities associated with cu-
mulative hazard rates in survival analysis and models for analysis of event histories are
typically based on Aalen’s work.

The Cox model or the proportional hazards model is perhaps the most common method
in survival analysis. This model is based on modeling the hazard rate λ(t|Z). Here the
hazard rate is the rate at which individuals are experiencing the event, namely

λ(t|Z) = −d ln(S(t|Z))
dt

=
f(t|Z)
S(t|Z)) .

Here S(T |Z) (f(T |Z)) is the survival probability (density) given a vector Z of covariates.



Part I 3

The Cox model in its most widely used formulation assumes that we can write λ(t|Z) as

λ(t|Z) = λ0(t) exp{βtZ}

where β is a vector of parameters and λ0(t) is a baseline hazard. Note that for this model
if we have two individuals with two sets of covariates that

λ(t|Z1)

λ(t|Z2)
=

λ0(t) exp{βtZ1}
λ0(t) exp{βtZ2}

= exp{βt(Z1 − Z2)}

which is independent of t. Hence this is called the “proportional hazards model.”
The Cox model is the most popular regression model for survival data. Its properties

can be derived using the counting process techniques of Aalen. There are inference packages
for it in almost every statistical package. It can be extended quite easily to time-dependent
covariates and models for multistate models or models with random effects.

In Chapter 1 we present a paper by van Houwelingen and Stijnen on the classical es-
timation of the Cox model and in Chapter 2 a paper by Ibrahim et al. on the Bayesian
approach to estimation for this model. In Chapter 5 we present a paper by Sinnott and Cai
on how to make inference about model parameters in the Cox model when the number of
parameters is very large.

Chapters 3 and 4 examine alternatives to the Cox model for right-censored data. In
Chapter 3 we present a paper by Martinussen and Peng which surveys non-proportional
hazards models including Aalen’s additive hazards model, the accelerated failure time model
and Quartile regression models. In Chapter 4 Lin surveys a class of transformation models
for right-censored data. For such models we assume that the model is given by H(T ) =
βtZ + ε where H() is an unspecified increasing function, β a set of regression coefficients
and ε a random error with a parametric distribution such as the extreme-value distribution
or the standard logistic error distribution. Special cases include the proportional hazards
and proportional odds model. Lin examines this class of models in a variety of sampling
and modeling situations.

Chapters 6 and 7 show how the basic ideas of the Cox model can be extended to more
complicated models. In Chapter 6 Peng and Taylor look at cure models. In such models an
unknown fraction of the population cannot fail and as such is cured of the disease under
study. Finally, Chapter 7 by Lange and Rod looks at the use of the Cox model as a causal
model.
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1.1 Basic statistical concepts

1.1.1 Survival time and censoring time

To set up the framework for survival data with right censoring, two random variables need
to be defined

Tsurv : the survival time, Tcens : the censoring time.

The censoring time Tcens is often denoted by C. Different censoring mechanisms can be
distinguished. A common one for clinical data is administrative censoring, where the cen-
soring time is determined by the termination of the study. For most purposes it suffices to
consider the censoring to be random. The crucial condition for statistical analysis is that
survival time Tsurv and censoring time Tcens are independent. In the presence of explanatory

5
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variables this condition can be weakened to independence of Tsurv and Tcens conditional on
the explanatory variables.

For both random variables the cumulative distribution functions Fsurv(t) = P (Tsurv ≤ t)
and Fcens(t) = P (Tcens ≤ t) can be defined. The distribution function of the survival time
is called the “failure function.” In survival analysis it is often more convenient to use the
complimentary functions, the survival (or survivor) function S(t), and the censoring function
G(t) defined by

S(t) = 1− Fsurv(t) = P (Tsurv > t),
G(t) = 1− Fcens(t) = P (Tcens > t).

It is assumed that Tsurv has a continuous distribution, implying that the survival function
S(t) is continuous and differentiable.

In summarizing a survival dataset the most important information is given by (an esti-
mate of) the survival function, but it is also relevant to show (an estimate of) the censoring
function. The censoring function describes the distribution of the follow-up times if no
individual would have died.

In practice it is mostly impossible to observe both Tsurv and Tcens. The observed “survival
time” T is the smallest of the two,

T = min(Tsurv, Tcens) .

Moreover, it is known whether Tsurv or Tcens has been observed. This is indicated by the
event indicator D. The usual definition is

D =

{
0, if T = Tcens ;
1, if T = Tsurv .

So, the information on the survival status is summarized in the pair (T,D).

1.1.2 The Kaplan-Meier estimator

The starting point for the statistical analysis is a sample of n independent observations

(t1, d1), (t2, d2), ..., (tn, dn)

from (T,D). Of the observed survival times t1, ..., tn, those with di = 1 are called the event
times. The observed survival times with di = 0 are called the censoring times.

It is convenient to use the notation from the field of counting processes

Yi(t) = 1{ti ≥ t}, Y (t) =
∑n

i=1 Yi(t),

Ni(t) = 1{ti ≤ t, di = 1}, N(t) =
∑n

i=1 Ni(t).

The risk set R(t) is defined as R(t) = {i; ti ≥ t}. Its size is given by Y (t). Assuming that
Tsurv and Tcens are independent, both S(t) and G(t) can be estimated by versions of the
Kaplan-Meier estimator (Kaplan and Meier, 1958). The estimator of the survival function
is given

ŜKM (t)) =
∏
s≤t

(1− ΔN(s)

Y (s)
),

where ΔN(t) is the number of events at time t. The estimator ĜKM (t) is defined similarly.
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The formula also covers the case of tied event times. The standard error of the estimate is
given by Greenwood’s formula (Greenwood, 1926)

se2(ŜKM (t)) = Ŝ2
KM (t) ·

∑
s≤t

ΔN(s)

Y (s)(Y (s)−ΔN(s))

The estimate ŜKM (t) together with its standard error se(ŜKM (t)) can be used to construct
(1 − α) · 100% pointwise confidence intervals for the survival function S(t). The simplest
confidence interval is ŜKM (t) ± z1−α/2 se(ŜKM (t)), with z1−α/2 the 1 − α/2 percentile of
the standard normal distribution. It might however fall outside the interval [0, 1]. This can
be remedied by using transformations such as ln(S(t)) or ln(− ln(St)). Such transformed
confidence intervals are needed for smaller sample sizes. For more detail see Borgan and
Liestol (1990).

1.1.3 The hazard function

Under the assumption of a continuous distribution with differentiable survival function the
hazard function, also known as the “force of mortality” is defined by

λ(t)dt = P (T < t+ dt|T ≥ t) .

From P (T > t + dt|T ≥ t) = S(t + dt)/S(t) the following alternative definition can be
obtained

λ(t) = −S′(t)/S(t) = −d ln(S(t))

dt
.

A related concept is the cumulative hazard function denoted by Λ(t) and defined by

Λ(t) =

∫ t

0

λ(s)ds ,

Obviously, Λ(t) and S(t) are closely related: Λ(t) = − ln(S(t)) , S(t) = exp(−Λ(t))
Since the hazard function λ(t) is only well defined if the survival function S(t) is dif-

ferentiable, it is hard to estimate the hazard function properly because the Kaplan-Meier
estimate of the survival function is a non-differentiable step function and some smoothing
is needed before a proper estimate of the hazard function can be obtained.

It is much easier to estimate the cumulative hazard function Λ(t). One way to do that
is to use the link between Λ(t) and S(t) and to define

Λ̂KM (t) = − ln(ŜKM (t)) =
∑
s≤t

ln(1− ΔN(s)

Y (s)
)

An alternative is the Nelson-Aalen estimator (Nelson, 1969; Aalen, 1975). The estimator
and its standard error are given by

Λ̂NA(t) =

∫ t

0

dN(s)

Y (s)
, se2(Λ̂NA(t)) =

∫ t

0

dN(s)

Y (s)2

If the sample size is large, there is very little difference between Λ̂KM (t) and Λ̂NA(t) or,
similarly, between ŜKM (t) and ŜNA(t) = exp(−Λ̂NA(t)). The jumps in Λ̂NA(t) define a

discrete estimate of the hazard concentrated in the event times: λ̂NA(t) = ΔN(t)/Y (t).
This definition also applies in the presence of ties.
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FIGURE 1.1
Nelson-Aalen estimates of the cumulative hazard for ALL patients (left) and CML patients
(right).

Although the hazard function is hard to estimate, it plays an essential conceptual role in
thinking about the process of survival. In the clinical setting, the shape of the hazard func-
tion determines the long-term prospect for a patient. A decreasing hazard function implies
that prognosis gets better as you live longer (“old better than new”). An increasing hazard
function implies that prognosis gets worse as you live longer. Plotting the (estimated) cu-
mulative hazard function for a dataset can be a convenient way of detecting an increasing
or decreasing hazard function. A convex cumulative hazard function points towards an in-
creasing hazard, while a concave cumulative hazard function goes with a decreasing hazard.
An example borrowed from van Houwelingen and Putter (2012) is given in Figure 1.1 show-
ing plots of the Nelson-Aalen estimates for death or relapse in ALL patients (left) and for
death in CML patients (right). In case of a cure, the cumulative hazard will reach a ceiling.
For a further discussion of the interpretation of hazard curves see Klein and Moeschberger
(2003).

1.2 The proportional hazards (Cox) model

To develop models for survival data in a population of individuals, one needs a simple way
of describing the variation in survival among individuals. A popular model is to consider the
individual specific hazard function λi(t) and to make the proportional hazards assumption
that

λi(t) = ciλ0(t)

where ci is a constant and λ0(t) is a hazard function which is left unspecified.
The effect of covariates on the hazard can conveniently be modeled by taking ci =

exp(X�
i β) leading to the proportional hazards regression model, better known as the Cox
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regression model, introduced in Cox (1972),

λ(t|X) = λ0(t) exp(X
�β) .

Here, λ0(t) is the baseline hazard that determines the shape of the survival function, X is
the column vector of the covariates of an individual and β is a column vector of regression
coefficients. It is common practice not to define a parametric model for the baseline hazard.
This is in line with the practice to show the Kaplan-Meier estimate of the survival function
as a summary of the data. As in regression models for other types of data, the covariate
vector X can contain transformations and interactions of the risk factors. It should be noted
that there is no constant term in the regression vector. The constant is absorbed in the
baseline hazard : ln(λ0(t)) can be seen as a time-dependent intercept in the linear model for
ln(λ(t|X)). The implication is that centering the covariates, replacing X by X−E[X], would
change the baseline, but not the regression coefficients. In some software such centering is
applied and it is not always easy to figure out what a reported baseline hazard stands for.
The survival function implied by the model is given by

S(t|X) = exp(− exp(X�β)Λ0(t)) = S0(t)
exp(X�β) .

Here, Λ0(t) =
∫ t

0
λ0(s)ds is the cumulative baseline hazard, and S0(t) = exp(−Λ0(t)) the

baseline survival function. The linear predictor X�β is known as the prognostic index and
denoted by PI.

The marginal survival function is obtained by taking the expected survival function
E[S(t|X)] in the population. Since X appears in the exponent, E[S(t|X)] is not the same
as the estimated survival for the average person: S(t) = E[S(t|X)] �= S(t|E[X]). The differ-
ence between E[S(t|X)] and S(t|E[X]) can be expected to be small if the variance of the
prognostic index PI = X�β is small and S(t|X) is not too far from 1.

1.3 Fitting the Cox model

It is most interesting to read the original paper by Cox (1972) and the written discussion
following it. The focus of Cox is on the estimation of the regression coefficients using what
is called the “partial likelihood.” The estimation of the baseline hazard has long been
neglected. However, the effect of the hazard ratio can only be fully understood if the baseline
hazard is known as well. (The best way of understanding the model is by visualizing the
estimated survival curves for representative values of the covariate vector X).

To emphasize the importance of both components (baseline hazard and regression co-
efficients), the full likelihood of the data will be taken as the starting point for fitting the
model.

The available data is a sample of n independent observations from the triple (T,D,X),
that is

(t1, d1, x1), (t2, d2, x2)..., (tn, dn, xn) .

The log-likelihood of the data given the covariates is given by

l(λ0, β) =

n∑
i=1

(−Λ0(ti) exp(x
�
i β) + di(ln(λ0(ti)) + x�i β) .

This expression will be maximized by concentrating all the risk in the event times. This leads
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to a discrete version of the hazard as discussed in Section 1.1.3 for which the cumulative
hazard is defined as

Λ0(t) =
∑
s≤t

λ0(s) .

Plugging this into the expression for the log-likelihood and rearranging some terms gives

l(λ0, β) =
∑
t

(
−λ0(t)

∑
i

Yi(t) exp(x
�
i β) + ln(λ0(t))ΔN(t) +

∑
i

ΔNi(t)x
�
i β

)
.

This formula allows for ties. For fixed value of β this expression is maximal for what is
called the “Breslow estimator” (Breslow, 1974) given by

λ̂0(t|β) =
ΔN(t)∑

i Yi(t) exp(x�j β)
.

the resulting maximized (or profile) log-likelihood is

l(λ̂0(β), β) = pl(β) +
∑
t

(−ΔN(t) + ln(ΔN(t)) .

Here, pl(β) is Cox’s partial log-likelihood defined as

pl(β) =
n∑

i=1

∫ ∞

0

ln

(
exp(x�i β)∑

j Yj(t) exp(x�j β)

)
dNi(t) . (1.1)

Cox did not obtain this expression as a profile likelihood, but used a conditioning argument.
The term exp(x�i β)/

∑
j Yj(t) exp(x

�
j β) for t = ti can be interpreted as the probability that

individual i is the one that died at event time ti given the risk set R(ti) of people still alive
and in follow-up just prior to ti. The conditional argument gets complicated in the presence
of ties. The definition above allows for the presence of ties and was suggested by Breslow
in the discussion of Cox’s paper (Breslow, 1972). It is perfectly valid if ties are incidental
and only due to rounding of the observed times.

So, the computational procedure is to estimate β by maximizing the partial log-likelihood
and estimating the baseline-hazard by the Breslow estimator with β = β̂.

The survival function given the covariate x can be estimated either by the analogue of
the Nelson-Aalen estimator

ŜNA(t|x, β̂) = exp
(
−Λ̂0(t) exp(x

�β̂)
)

,

or the analogue of the Kaplan-Meier estimator, the product-limit estimator

ŜPL(t|x, β̂) =
∏
s≤t

(
1− exp(x�β̂)λ̂0(s)

)
.

Most software packages provide ŜNA. In R, both ŜNA and ŜPL can be calculated, through
the type argument of the function survfit in the survival package. Note that ŜNA always
yields a proper survival function, while ŜPL will yield weird results if exp(x�β̂)λ̂0(ti) > 1
for some ti. In practice, however, there is very little difference between the two methods if
the sample size is rather large. The small sample behavior of these estimators and additional
variants is discussed in Andersen et al. (1996).

It has been shown in Tsiatis (1981) and Andersen and Gill (1982) that the partial

likelihood can be treated as a regular likelihood, in the sense that the estimate β̂ has an
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asymptotic normal distribution with mean β and covariance matrix given by the inverse
observed Fisher information matrix. The first derivative, known as the score function or the
estimation equation for β, is given by

∂pl(β)

∂β
=
∑
i

∫ ∞

0

Yi(t)(xi − x̄(β, t)dNi(t) ,

with x̄(β, t) the weighted average of the xj ’s in the risk set R(t), that is

x̄(β, t) =

∑
j Yj(t)xj exp(x

�
j β)∑

j Yj(t) exp(x�j β)
.

The Fisher information of the partial likelihood is given by

Ipl(β) = −∂2pl(β)

∂β2
=

∫ ∞

0

var(x|β, t)dN(t),

with

var(x|β, t) =
∑

j Yj(t)(xj − x̄(β, s)(xj − x̄(β, t))� exp(x�j β)∑
j Yj(t) exp(x�j β)

the weighted covariance matrix in R(t).
Similarly, it is shown in the same papers (Andersen and Gill, 1982; Tsiatis, 1981) that

estimates of individual survival probabilities Ŝ(t|x) are asymptotically normal with mean
S(t|x) and a covariance matrix that can be obtained from the observed Fisher informa-
tion of the full likelihood l(λ0, β). It is immaterial which method (NA or PL) is used
to estimate the probabilities, because they are asymptotically equivalent. The asymptotic
variance of Ŝ(t|x) = Ŝ(t|x, β̂) is complicated by the fact that it depends on β̂ both di-

rectly and indirectly through the dependence of Λ̂0(t) on β̂. The asymptotic variance of

− ln(Ŝ(t|x)) = Λ̂0(t) exp(x
�β̂) may be estimated consistently by

∫ t

0

(
exp(x�β̂)∑

j Yj(s) exp(x�j β̂)

)2

dN(s) + q̂(t|x)�I−1
pl (β̂) q̂(t|x) ,

with

q̂(t|x) =
∫ t

0

(x− x̄(β̂, s))
exp(x�β̂)∑

j Yj(s) exp(x�j β̂)
dN(s) ,

The formula is based on the finding that β̂ and Λ̂0(t) are asymptotically independent

if X is dynamically centered at x̄(β̂, t) and Λ̂0(t) is replaced by Λ̂0(t) exp(x̄(β̂, t)
�β̂). The

formula can be used to construct confidence intervals for Ŝ(t|x) on the ln-scale, or on the
probability scale. However, not all software packages have the option for computing such
confidence interval.

1.4 Example: NKI breast cancer data

The example used throughout this chapter is the Dutch breast cancer dataset that contains
data on the overall survival of breast cancer patients as collected in the Dutch Cancer
Institute (NKI) in Amsterdam. This dataset became very well-known because it was used in
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FIGURE 1.2
Survival and censoring functions for the breast cancer dataset.

one of the first successful studies that related the survival of breast cancer to gene expression.
The findings of this study were reported in two highly cited and highly influential papers:
van’t Veer et al. (2002) van de Vijver et al. (2002).

This dataset contains the clinical and genomic data on 295 patients with 79 events
as reported in van de Vijver et al. (2002). The data was reanalyzed by van Houwelingen
in cooperation with the statisticians of the NKI and published in van Houwelingen et al.
(2006). The survival and censoring functions of this dataset are shown in Figure 1.2. The
survival curve appears to stabilize at a long-term survival rate of about 60%. The censoring
curve shows that the median follow-up in the dataset is about 9 years. The data are avail-
able through www.msbi.nl/DynamicPrediction, the website of van Houwelingen and Putter
(2012).

The dataset contains clinical and genomic information on the patients. In this chapter
only the clinical information is used. Using high-dimensional genomic information is dis-
cussed in Chapter 5 and Chapter 15. The information about the clinical risk factors available
after surgery is given in Table 1.1.

Of the categorical covariates, Histological Grade and Vascular Invasion appear to have
a significant univariate effect. For the continuous covariates, the univariate Cox regression
coefficients are given in Table 1.1 as well. No attempt is made at this stage to optimize the
functional form of these covariates. A simple model is applied with a linear effect of each
continuous covariate. Apparently Tumor Diameter, Age of the Patient and Estrogen Level
have a significant univariate effect. Table 1.1 also gives the regression coefficients for the
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TABLE 1.1
The clinical risk factors and their effects on survival in the breast cancer dataset. Shown
are the estimated regression coefficients (B) and their standard errors (SE) in separate
Cox models for each risk factor (“univariate”) and in a Cox model including all covariates
(“multivariate”).

univariate multivariate

Covariate Category Freq. B SE B SE

Chemotherapy No 185 0 0 0 0
Yes 110 -0.235 0.240 -0.423 0.298

Hormonal surgery No 255 0 0 0 0
Yes 40 -0.502 0.426 -0.172 0.442

Type of surgery Excision 161 0 0 0 0
Mastectomy 134 0.185 0.225 0.154 0.249

Histological grade Intermediate 101 0 0 0 0
Poorly differentiated 119 0.789 0.248 0.266 0.281
Well differentiated 75 -1.536 0.540 -1.308 0.547

Vascular invasion - 185 0 0 0 0
+ 80 0.682 0.234 0.603 0.253
+/- 30 -0.398 0.474 -0.146 0.491

Covariate Min Max Mean SD B SE B SE

Diameter (mm) 2 50 22.54 8.86 0.037 0.011 0.020 0.013
# positive nodes 0 13 1.38 2.19 0.064 0.046 0.074 0.052
Age at diagnosis 26 53 43.98 5.48 -0.058 0.020 -0.039 0.020
Estrogen level -1.591 0.596 -0.260 0.567 -1.000 0.183 -0.750 0.211

Note: SD stands for standard deviation.

Cox model including all covariates. Estrogen level and histological grade seem to be the
most important predictors.

For categorical covariates, the effect is often expressed as the hazard ratio with respect
to the baseline category HR = exp(B) and the corresponding 95%-confidence interval
(exp(B − 1.96 · SE), exp(B + 1.96 · SE)). For example, the univariate hazard ratio Mas-
tectomy:Excision equals 1.203 with 95%-confidence interval (0.774,1.870). For continuous
covariates, the exp(B) will give the hazard ratio per unit increase. It depends on the scaling
of the covariate. For example Age at Diagnosis in Table 1.1 is measured in years. The hazard
ratio per year is very close to one (0.944). It makes more sense to look at the hazard ratio per
10 years. The univariate effect hazard ratio per 10 years is given by exp(10·(−0.058)) = 0.560
with 95%-confidence interval (0.378,0.829).

The variation in survival is directly related to the standard deviation of the prognostic
index PI = X�β̂. In this data it equals 1.125. The variation in survival is shown in the
left panel of Figure 1.3 using percentiles of the prognostic index and the uncertainty of
the estimated survival curves is shown in the right-hand panel of Figure 1.3 contrasting
two patients. Patient 1 has negative vascular invasion and well-differentiated histology and
Patient 2 has positive vascular invasion and poorly differentiated histology. Both have the
continuous covariates at the mean value and the other categorical covariates at the baseline
value.
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FIGURE 1.3
Predicted survival curves for percentiles (10 (top), 25, 50, 75, 90 (bottom)) of the prognostic
index (left) and predicted survival curves with 95% pointwise confidence intervals for two
patients (right).

1.5 Martingale residuals, model fit

The process Ni(t) defined in Section 1.1.2 can be seen as a Poisson process with intensity
λi(t) that is stopped when an event or censoring occurs. The process Yi(t) indicates whether
an individual is still under observation. When the individual is still under observation at t
(Yi(t) = 1), the probability of an event between t and t + dt is given by λi(t)dt, or more
general dΛi(t). This is summarized in the definition of the martingale process

Mi(t) =

∫ t

0

Yi(s)d(Ni(s)− Λi(s))

Roughly speaking a martingale is a stochastic process with increments that have mean zero
given the past of the process. For a formal definition of a martingale and its relevance for the
Cox model, see the following books: Andersen et al. (1993), Therneau and Grambsch (2000),
Fleming and Harrington (1991) and O’Quigley (2008). The two important properties of the
martingale process are

E[Mi(t)] = 0 , var(Mi(t)) = E[

∫ t

0

Yi(s)dΛi(s)] .

A special case is Mi = Mi(∞) = Di − Λi(Ti) with var(Mi) = E[Λi(Ti)] . The empirical
counterpart of the martingale process

M̂i(t) =

∫ t

0

Yi(s)d(Ni(s)− Λ̂i(s))

is known as the “martingale residual process” and M̂i = M̂i(∞) = di − Λ̂i(ti) as the
martingale residual. The estimating equations of the Cox model can be described in terms
of the martingale residual process and the martingale residual:∑

i

M̂i(t) = 0 ∀t ,
∑
i

xiM̂i = 0 .
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The proof is left as an exercise. The right-hand side gives the estimating equations of
the partial likelihood described in Section 2.1, while the left-hand side yields the Breslow
estimator of the baseline hazard λ̂0(t).

The martingale residuals can be used to identify outlying observations or groups of ob-
servations and to check the correctness of the functional form of continuous covariate and in-

teractions between covariates. Detection of individual outliers can be based on M̂i/

√
Λ̂i(ti).

However, this residual is very skewed and there is no reference distribution for it. Outlying

groups could be identified by considering
∑

i∈G M̂i/
√∑

i∈G Λ̂i(ti), where G is a subgroup of

observations defined by their covariate values. (See also Verweij et al. (1998)). Correctness

of the functional form of a covariate in the model may be checked by plotting M̂ against
X. The estimating equation forces the linear trend to be zero. Local smoothers like LOESS
may help to detect nonlinear relations.

Continued example

An example for the data of Section 5.5 is given in Figure 1.4 and Figure 1.5. (The martingale
residuals are obtained by Proc PHREG from SAS). Figure 1.5 shows how interactions
can be detected by martingale residuals. Figure 1.4 shows the martingale residuals for the
prognostic index and estrogen level. The LOESS smoother shows that there is no indication
of a nonlinear effect. Figure 1.5 shows how interactions can be detected by martingale
residuals. The figure shows scatter plots of martingale residual versus estrogen level in the
three histological grade categories together with a simple linear fit. The different slopes in
the three groups might be an indication of interaction between estrogen level and histological
grade.

Influential data points

Residuals can also be used to detect influential data points. The influence function is well-
defined in ordinary linear regression, but less straightforward in Cox regression. Some soft-
ware produce dfbeta residual’s that show the change in regression coefficients if an ob-
servation is left out. For more detail see Chapter 7 of Therneau and Grambsch (2000).

FIGURE 1.4
Martingale residuals for the prognostic index (left) and estrogen level (right) with LOESS
smoothing.
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FIGURE 1.5
Martingale residuals for estrogen level by histological grade categories with linear fits.

1.6 Extensions of the data structure

The data structure of the Cox model considered so far is rather rigid. All individuals have
to be followed from t = 0 onwards and the covariates are not allowed to change over
time. However, the estimation procedure described in Section 2.1 allows relaxation of both
conditions.

1.6.1 Delayed entry, left truncation

Delayed entry (or left truncation) can occur if individuals are included in the data later in
the follow-up. To formalize this notion, the left truncation time Ttrunc has to be introduced.
Individuals will only be observed if

Ttrunc < T = min(Tsurv, Tcens) .

In that case individuals will be followed from Tentry = min(Ttrunc, T ) to T . As for right-
censoring the analysis is only valid if Tsurv is independent of the pair (Ttrunc, Tcens). De-
pendence of Ttrunc on covariates that are included in the Cox model does not invalidate the
analysis. Delayed entry implies that tentry has to be added as an extra piece of information.
The data format is (tentry, t, d, x).

The main consequence of delayed entry is a change in Yi(t) which is now defined as

Yi(t) = 1{tentry,i < t ≤ ti}
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The risk set R(t) consists of all individuals with tentry,i < t ≤ ti. Consequently, the number
at risk Y (t) is no longer a monotonically decreasing function of t. Formally, the estimating
procedures are exactly the same as in Sections 1.1 and 2.1. This is one of the advantages
of modeling the hazard. Due to the left-truncation, there is a danger that the early risk sets
are very empty and the early hazards cannot be estimated with enough precision, which has
consequences for the precision of the whole survival curve. A minimal number is required of
individuals with follow-up from t = 0 onwards. The formal requirement is P (Ttrunc = 0) > 0.
Under that condition the distribution of Ttrunc can be estimated from the data as well, but
that is hardly ever done in practice.

The programming is getting slightly more complicated because one needs to take into
account when the individuals enter the follow-up. To analyze such data, software is needed
that allows delayed entry. Examples of such software are SAS, Stata, and R.

The interpretation of the analysis is getting complicated if the truncation time is not
independent of the survival time. See the continued example of Section 1.6.3.

1.6.2 Time-dependent covariates

The second extension is to allow for time-dependent covariates, the value of which may
change over time. These covariates are denoted by X(t). In principal, the formal definitions
and estimation procedures remain valid if the covariates are allowed to be time-dependent.
The model modifies into

h(t|X(t)) = λ0(t) exp(X(t)�β) .

Such data are easy to analyze if X(t) is piecewise constant (and does not change too often),
by creating separate records for each period of constant X(t) and using software that allows
delayed entry. Suppose that an individual enters at t0 with covariate vector X(t0) = x0.
That value changes consecutively into xi at time ti for i = 1, 2, .... At the observed survival
time tobs the current value is xlast that started at tlast . To cover that individual, the
following records for (tentry, t, d, x) have to be entered:

Begin interval End interval Status Covariate

t0 t1 0 x0

t1 t2 0 x1

...
...

...
...

tlast tobs d xlast

It is not hard to check that this will give the correct contribution to the log-likelihood for
this individual. If X(t) changes very often, or indeed if it is a continuous function of t,
one should realize that in an actual dataset only the values of X(t) at the event times are
needed. This means that for an individual with survival time t one record is needed for each
event time ≤ t. The survival package in R contains the function survSplit to create such
expanded datasets. In Stata this is achieved by using stsplit.

Although models with time-dependent covariates can be fitted rather easily, it should be
stressed that a Cox model with time-dependent covariates is of no prognostic use, unless the
distribution of future values of X(t) is known. Ways to obtain prognostic models involving
time-dependent covariates will be discussed in Chapters 20, 21 and 26 of this handbook.

1.6.3 Continued example

In the example of Section 5.5 the time scale as in most clinical studies is time since diagnosis
(or start of treatment) and age at diagnosis is an important risk factor. For older patient



18 Handbook of Survival Analysis

FIGURE 1.6
Number at risk (left) and smoothed estimate of the hazard (right) versus age.

TABLE 1.2
Cox models using different time scales.

time since diagnosis age

Covariate B SE B SE
Chemotherapy: Yes -0.423 0.298 -0.370 0.300
Hormonal therapy: Yes -0.172 0.442 -0.106 0.443
Type of surgery: Mastectomy 0.154 0.249 0.143 0.248
Histological grade: Poorly differentiated 0.266 0.281 0.262 0.279
Histological grade: Well differentiated -1.308 0.547 -1.281 0.550
Vascular invasion: + 0.603 0.253 0.624 0.259
Vascular invasion: +/- -0.146 0.491 -0.187 0.495
Diameter (mm) 0.020 0.013 0.016 0.013
Number of positive nodes 0.074 0.052 0.074 0.057
Age at diagnosis (years) -0.039 0.020 -0.051 0.042
Estrogen level (mlratio) -0.750 0.211 -0.771 0.215

populations it can be relevant to take age as time scale. Age at diagnosis, or more generally
age at entering the study, will then act as left-truncation time. This is demonstrated for the
breast cancer data of Section 5.5 although it might be less relevant there. Figure 1.6 shows
the number at risk over the age range (left) and the Nelson-Aalen estimate of the hazard.
Table 1.2 compares the Cox model of Section 5.5 with the Cox model on the age scale.
The coefficients are very similar. It should be noted, however, that in this model age at
diagnosis is completely confounded with the time-dependent covariate time since diagnosis.
The similarity of the coefficients for age at diagnosis in the two approaches is coincidental.
Figure 1.7 shows predicted survival curves for different values of age at diagnosis (35, 45,
55) with all categorical covariates at the reference value and all continuous covariates at
their mean value. The left panel is based on the analysis of this section, while the right
panel uses the analysis from Section 5.5. The striking difference is that the analysis of this
section enables predictions for all patients up to the age of 65, while the analysis from
Section 5.5 allows predictions up to 15 years after diagnosis. Predicting up to the age of
65 for all patients does not make. If the graphs show only the predictions for the first 15
years since diagnosis, there is little difference between the two graphs. A minor difference
is the presence of larger jumps for the age=35 patient in the left panel. This shows that,
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FIGURE 1.7
Predictions for different values of age at diagnosis (35, 45 ,55), with age as time scale (left)
and time since diagnosis as time scale (right).

compared with analysis of Section 5.5, the analysis of this section has more uncertainty
for the younger patients at the start of follow-up and for the elder patients at the end of
follow-up.

1.7 Beyond proportional hazards assumption

The proportional hazards (PH) assumption is crucial in the Cox model. However, as for all
models, there is no a priori reason why the model should hold true. It might be a plausible
model on data with short follow-up, but it becomes questionable in the case of long-term
follow-up. There are two ways to extend the model beyond PH: stratification and allowing
time-varying effects.

1.7.1 Stratified models

The Cox model can be extended into a stratified Cox model by considering a categorical
stratification variable, G say, with values 1, ...,K. The stratified model allows the baseline
hazard to depend on the stratum, that is

h(t|X,G) = hG0(t) exp(X
�β) .

This model assumes that the effect of the covariates in X is the same in each stratum, but
allows the baseline hazard to depend on the stratum. The model can be fitted in the same
way as the Cox model. The technical difference is that now the risk sets are stratum specific.
The main application of the stratified model is to include categorical covariates for which
it can be expected a priori that the PH assumption will not hold. In that situation the
stratum-specific baseline hazard is an essential part of the model and the model can only be
reliable if each stratum has enough events to obtain a stable estimate of the baseline hazard.
A simple check is to draw stratum-specific Kaplan-Meiers. There is little hope to obtain
good models for the strata in which the Kaplan-Meiers are too “jumpy.” It is possible to
allow the effect of a covariate to be different across strata by adding the interaction of the
covariate with the stratification variable.
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An application in epidemiological setting is correction for confounding. If, for example,
age is a confounding factor, adjustment for age can be obtained by using age as a stratifi-
cation variable after proper categorization. This is very similar to conditioning (matching)
on age categories in logistic regression for binary data. The advantage is an unbiased view
on the effect of the covariates other than age. The disadvantage is that it does not produce
a reliable prediction model if the age strata are too small.

1.7.2 Time-varying coefficients, Schoenfeld residuals

The standard extension of the Cox model that allows non-proportional hazards, but keeps
the linear effects of the predictors, is the following model

λ(t|x) = λ0(t) exp(x
�β(t)) .

As pointed out in Schoenfeld (1982), the contributions of each risk set to the score
function of Section 2.1 can be used to get an impression of the variability of β(t) and the
validity of the model with βj(t) ≡ βj for each covariate Xj . For risk set R(t), the Schoenfeld
residual is defined as

score(t) = xev(t)− x̄(β̂, t)

Here xev(t) is the (mean) x-value of the individual(s) with an event at time t, that is
xev(t) =

∑
i xi ·ΔNi(t)/ΔN(t). If the proportional hazards model holds true, the expected

value of score(t) equals zero. The validity of the model for the jth covariate can be checked
by plotting the jth component of score(t) versus t. The mean value of the residual equals
zero by construction. Time trends in the residuals are an indication of violation of the
proportional hazards assumption. Visual inspection of the plots can be followed by a formal
test of the proportional hazards assumption.

This approach has been refined in Grambsch and Therneau (1994, 1995) and is described
in Section 6.2 of their book (Therneau and Grambsch, 2000). Their proposal is to plot the
components of the so-called “scaled Schoenfeld residual”

score∗(t) = β̂ + V (t)−1score(t) ,

where
V (t) = var(x|β̂, t))

is the weighted covariance in R(t) as defined in Section 2.1. They point out that score∗(t) is
an estimate of the local value of the regression coefficient at t in the time-varying coefficients
model.

For the sake of robustness, it is wiser to use a parametric model for the time-
varying regression coefficients. This can be done by considering a set of m basis functions
f1(t), ..., fm(t) and taking

β(t) =
m∑
j=1

γjfj(t) .

Here, each γj is a vector of the same length as β, namely the number of covariates. It is
helpful for the interpretation of the parameters if the basis functions are defined in such a
way that

f1(t) ≡ 1 , fj(0) = 0, for j = 2, . . . ,m .

The interpretation is then that the effect of the covariates at t = 0 is given by γ1 (β(0) =
γ1), while the other γ’s describe the violation of the PH-model for each of the covariates.
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A popular choice for the second basis function is f2(t) = ln(1 + t), which starts with
f2(0) = 0, has derivative f ′2(0) = 1 and slows down later in the follow-up. If the interest
is only in testing the PH-assumption for each covariate, it suffices to take m = 2 and
f2(t) = ln(1 + t). This is very close to the suggestion in Cox’s original paper (Cox, 1972),
who takes f2(t) = ln(t) itself. If very early events can occur, Cox’s proposal could put too
much emphasis on early events, because ln(t) “explodes” for t close to zero.

Models with time-varying coefficients can be handled in the same way as time-dependent
covariates. They are in fact equivalent because the set of time-dependent covariates
Xf1(t), . . . , Xfm(t) yields exactly the same model. Some packages allow one to do this
internally, SPSS and SAS, while others, such as R and Stata, require restructuring the
database as discussed in Section 26.3. For most packages, it is not easy to get predicted
survival curves with confidence bounds.

The problem with the time-varying effects model is the danger of overfitting. The num-
ber of parameters has doubled while the partial likelihood has not improved much. The
model could be pruned by significance testing. The danger of starting from a time-constant
model and checking the significance of the extension to a time-varying model, is that co-
variates showing a time-varying effect that changes from positive to negative (or the other
way around) might be missed. Inspired by a clinical example, a strategy for model building
that would detect such switching effects is presented in Putter et al. (2005). The strategy
proposed there consists of a forward selection procedure in which each of the covariates,
together with their interaction with time, is considered. The covariate is included in the
model together with the covariate-by-time interaction if the likelihood-ratio test for the
model with both covariate and covariate-by-time indicates a significantly better fit com-
pared to the model without. In a subsequent pruning step, each of the covariate by time
interactions is considered and removed from the model in case the interaction was not
significant. Similar strategies are developed in Sauerbrei et al. (2007).

1.7.3 Continued example

Stratification can be a useful tool in exploratory data analysis. To get more insight in
possible time-varying effects of age at diagnosis, it was categorized into < 42, 42− 48, > 48.
An analysis with stratification on those age at diagnosis groups and inclusion of all covariates
in the same way as before yields the baseline survival curves of Figure 1.8.

There is some indication of non-proportionality. This confirmed by the scaled Schoenfeld
residual plot for age shown in Figure 1.9.

A systematic check for non-proportionality was carried out by starting from the model
of Section 5.5 and allowing an interaction with ln(1+t) in a stepwise extension of the model.
That retained only the interaction of estrogen level with χ2

[1] = 4.96, P − value = 0.026.
The effect of estrogen level in a model with all other covariates included is given by
β̂Estrogen(t) = −2.28 + 0.95 ln(1 + t). The scaled Schoenfeld residual plot of Figure 1.10
suggests a quadratic interaction with time. Fitting this gives a marginal improvement of
the model (χ2

[2] = 6.25, P − value = 0.044) and β̂Estrogen(t) = −2.36 + 0.58 ∗ t− 0.036 ∗ t2
which is very close to the model based on ln(1 + t).

1.7.4 Final remarks

The number of parameters in the time-varying coefficients model can be greatly reduced by
exploiting the fact that most covariates show very similar patterns over time.
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FIGURE 1.8
Baseline survival curves for different strata of age at diagnosis: < 42 (solid), 42−48 (dashed),
> 48 (dots and dashes).

FIGURE 1.9
Scaled Schoenfeld residuals for age. The horizontal reference line corresponds with the
estimated regression for age.
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FIGURE 1.10
Scaled Schoenfeld residuals for estrogen level. The horizontal reference line corresponds with
the estimated regression coefficient of estrogen level.

A starting point that gives an impression how such a model is obtained by the following
very simple two-stage procedure:

1. Fit a simple Cox yielding PIfixed = x�β̂fixed;

2. Fit a time-varying model with PIfixed as single covariate.

Application to the breast cancer data with ln(1+t) as interaction term gives an improvement

of the model by χ2
[1] = 7.21, P − value = 0.007 with estimated effect β̂PI = 2.27 − 0.72 ∗

ln(1 + t), which declines from 2.27 at t = 0 to 0.44 at t = 10.
The slightly heuristic two-stage approach can be formalized by the model

λ(t|x) = λ0(t) exp

(
x�β ·

( m∑
i=1

γifi(t)
))

.

Here, the same restriction applies to the time-functions as above, namely f1(t) ≡ 1 and
fj(0) = 0, for j = 2, . . . ,m. This model is known as a reduced rank model of rank =
1. Reduced rank is an established methodology for parsimonious interaction models in
analysis of variance and linear regression. It has been introduced in the present context in
Perperoglou et al. (2006a,b), who also developed the software to fit such models.

The time-varying coefficients models make it possible to explore the effect of violation
of the PH assumption when fitting a simple Cox model. This is amply discussed in Xu and
O’Quigley (2000). For further details see Chapter 16 of this handbook.
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Great strides in the analysis of survival data using Bayesian methods have been made in the
past ten years due to advances in Bayesian computation and the feasibility of such methods.
In this chapter, we review Bayesian advances in survival analysis and discuss the various
semiparametric modeling techniques that are now commonly used. We review parametric
and semiparametric approaches to Bayesian survival analysis, with a focus on proportional
hazards models. References to other types of models are also given.

2.1 Introduction

Nonparametric and semiparametric Bayesian methods for survival analysis have witnessed
extensive development since 1980s. Many of these methods are now easily implementable

27
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using standard-free software (e.g., OpenBUGS) as well as popular commercial statistical
software (e.g., MCMC and PHREG Procedures in SAS). The literature on semiparametric
Bayesian methods is too enormous to list all the important references here. In this chapter,
we discuss several types of Bayesian survival models, including parametric models as well as
models involving nonparametric prior processes for the baseline functions, typically either
the cumulative baseline hazard or the baseline survival function. Instead of providing the
comprehensive review of all the available methods, we will focus on various versions of Cox’s
(Cox, 1972, 1975) semiparametric relative risk model

h(t|x(t)) = h0(t) exp{x(t)′β} , (2.1)

where h0(t) is the baseline hazard and h(t|x(t)) is the hazard at time t for a subject with
possibly time-dependent covariates x(t) and β is the corresponding vector of regression
coefficients. Unless mentioned otherwise, we will present our methods for the special case of
time-constant (fixed) covariates x(t) = x. However, these methods can be easily extended to
accommodate time-dependent covariates x(t) and in some places we will explicitly specify
the extensions.

We consider the piecewise constant hazards, the gamma process, the beta process, the
correlated prior processes, and the Dirichlet process for the baseline functions. In each case,
we give a development of the prior process, construct the likelihood function, derive the
posterior distributions, and discuss MCMC sampling techniques for inference. We also give
references to other types of Bayesian models, including frailty models, joint models for
longitudinal and survival data, flexible classes of hierarchical models, accelerated failure
time models, multivariate survival models, spatial survival models, and Bayesian model
diagnostics.

The semiparametric Bayesian survival analysis of right-censored survival data based
on any model of survival function S(t|x;θ) can use two fundamental approaches for the
likelihood function, where θ represents the set of all model parameters and x is a vector
of covariates. Let f(t|x;θ) denote the density under the survival model S(t|x;θ). The
continuous data likelihood based on the observed right-censored data D = (n,y,ν, X) is

L(θ|D) =

n∏
i=1

f(yi|xi;θ)
νiS(yi|xi;θ)

1−νi , (2.2)

where y = (y1, y2, . . . , yn)
′, ν = (ν1, ν2, . . . , νn)

′, νi is the indicator of censoring, yi is the
observed survival time subject to right-censoring, and X is the n × p matrix of covariates
with the ith row x′i.

When the survival model follows the Cox model of (2.1) with fixed covariates x, after
some algebra, the likelihood of (2.2) can be expressed as

L(θ|D) =

n∏
i=1

exp
{
−H0(i)

∑
j∈R(i)

exp(x′jβ)
}
{dH0(y(i)) exp(x

′
(i)β)}ν(i) , (2.3)

where θ = (β, H0(·)), H0(t) =
∫ t

0
h0(u)du is the cumulative baseline hazard, 0 = y(0) <

y(1) < · · · < y(n) are the ordered observed survival times, x(i) is the covariates associated
with y(i), H0(i) = H0(y(i)) − H0(y(i−1)) is the increment in cumulative hazard between
consecutive observed survival times y(i−1) and y(i), and R(i) = {j : y(j) ≥ y(i)}. Some key
references for semiparametric Bayesian survival analysis using the continuous-time likeli-
hood include Susarla and Van Ryzin (1976), Kalbfleisch (1978), Dykstra and Laud (1981),
and Hjort (1990). References discussing computational implementation of Bayesian infer-
ence using continuous time likelihood include Damien et al. (1996), Laud et al. (1996), Laud
et al. (1998), Walker et al. (1999) and the references therein.
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In practice, survival data is often either observed or recorded via a design with monitor-
ing grid, that is, intervals of time recording the approximate time of an event or censoring.
Hence, the observed survival time yi of any subject is only known up to an interval (how-
ever small the interval may be) where the length of the interval Δi depends either on the
coarseness of the data-recording grid or on the design of monitoring the survival times. Let
DG denote the observed data, where we only know that the subject i has failed within an
interval (yi, yi + Δi) when νi = 1 and (yi,∞) when νi = 0. To construct the likelihood
corresponding to this observed discrete-time (or grouped) data DG, we first use a partition
of the time axis, 0 < a1 < a2 < . . . < aJ < ∞, where aJ ≥ maximum monitoring time, each
yi = ak and yi + Δi = ak+1 for some k. The assumption about monitoring of subjects is
that the grid interval is equal to the monitoring interval of each subject. For this situation,
the likelihood is

L(θ|DG) =
n∏

i=1

{S(yi|θ)− S(yi +Δi|θ)}νiS(yi|θ)(1−νi) =
J∏

j=1

Gj , (2.4)

where Gj = exp[−hj

∑
k∈Rj−Dj

exp(x′kβ)] {1−exp[−hj

∑
k∈Dj

exp(x′kβ)]}, the risk-set Rk

at time ak is the set of people “at risk” in the interval Ik = (ak−1, ak] , Dk is the set of
people failing at that interval Ik, and hj = H0(aj)−H0(aj−1). This likelihood of (2.4) has
more fidelity to the actual observed data. In spite of the ability of semiparametric Bayesian
method to handle the likelihood of (2.4), the continuous data likelihood of (2.2) is often used
as an approximation to (2.4) provided that the monitoring grid is not too coarse compared
to the scale of the survival time. The continuous time likelihood can be viewed as a limiting
case of the discrete time likelihood of (2.4).

There is the general perception that not much is gained in using a strictly nonparametric
h0(t) along with the discrete-time likelihood of (2.4). In practice, the implementation of the
Bayesian inference with nonparametric h0(t) is much more complicated than that of using
a discretized parametric h0(t). We will later discuss how a discrete approximation of non-
parametric h0(t) can be made arbitrarily accurate to approximate the nonparametric h0(t).
Thus, in practice, a discrete approximation of h0(t) used with the discrete-time likelihood
can give a very justifiable Bayesian inference.

The rest of this chapter is organized as follows. In Section 2.2, we review Bayesian
parametric survival models. In Section 2.3, we discuss semiparametric Bayesian methods for
survival analysis and focus on the proportional hazards model of Cox (1972). We examine
the piecewise constant, gamma, beta, and Dirichlet process models. In Section 2.4, we
discuss the prior elicitation process by incorporating historical data from a previous study.
In Section 2.5, we give several references on other types of models and applications in
Bayesian survival analysis. Section 2.6 presents a detailed analysis of the melanoma data.
We conclude this chapter with a brief discussion in Section 2.7.

2.2 Fully parametric models

Bayesian approaches to fully parametric survival analysis have been considered by many
in the literature. The statistical literature in Bayesian parametric survival analysis and
life-testing is too enormous to list here, but some references dealing with applications to
medicine or public health include Grieve (1987), Achcar et al. (1987), Achcar et al. (1985),
Chen et al. (1985), Dellaportas and Smith (1993), and Kim and Ibrahim (2001). The most
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common types of parametric models used are the exponential, Weibull, and log-normal
models.

The exponential model with survival function S(t|λ) = P [T > t|λ] = exp(−λt) and
density f(t|λ) = λ exp(−λt) is the most basic parametric model in survival analysis. For
observed survival data D = (n,y,ν), subject to right-censoring, we can write the likelihood
function of λ as

L(λ|D) =
n∏

i=1

f(yi|λ)νiS(yi|λ)(1−νi) = λd exp

(
−λ

n∑
i=1

yi

)
, (2.5)

where d =
∑n

i=1 νi. The conjugate prior for λ with hyperparameters (α0, λ0) is the gamma
prior G(α0, λ0), with density

π(λ|α0, λ0) ∝ λα0−1 exp(−λ0λ).

The resulting posterior distribution of λ is given by

π(λ|D) ∝ λα0+d−1 exp

{
−λ(λ0 +

n∑
i=1

yi)

}
. (2.6)

Recognizing the kernel of the posterior distribution in (2.6) as a G(α0 + d, λ0 +
∑n

i=1 yi)
distribution, the posterior mean and variance of λ are obtained as

E(λ|D) =
α0 + d

λ0 +
∑n

i=1 yi
and Var(λ|D) =

α0 + d

(λ0 +
∑n

i=1 yi)
2
.

The posterior predictive distribution of a future failure time ynew is given by

π(ynew|D) =

∫ ∞

0

f(ynew|λ)π(λ|D) dλ

∝
∫ ∞

0

λα0+d+1−1 exp

{
−λ(ynew + λ0 +

n∑
i=1

yi)

}
dλ

∝
(
λ0 +

n∑
i=1

yi + ynew

)−(d+α0+1)

. (2.7)

The normalized posterior predictive distribution is thus given by

π(ynew|D) =

{
(d+α0)(λ0+

∑n
i=1 yi)

(α0+d)

(λ0+
∑n

i=1 yi+ynew)(α0+d+1) if ynew > 0,

0 otherwise.
(2.8)

The derivation of (2.7) above needs the use of a gamma integral. The predictive distribution
in (2.8) is known as an inverse beta distribution (Aitchison and Dunsmore, 1975).

To build a regression model, we introduce covariates through λ, and write λi = ϕ(z′iβ),
where zi is a (p + 1) × 1 vector of covariates including an intercept, β is a (p + 1) × 1
vector of regression coefficients, and ϕ(.) is a known function. A common form of ϕ is to
take ϕ(z′iβ) = exp(z′iβ). Another form of ϕ is ϕ(z′iβ) = (z′iβ)

−1 (Feigl and Zelen, 1965).
Using ϕ(z′iβ) = exp(z′iβ), we are led to the likelihood function

L(β|D) = exp

{
n∑

i=1

νiz
′
iβ

}
exp

{
−

n∑
i=1

yi exp(z
′
iβ)

}
, (2.9)
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where D = ((n,y,ν, Z) and Z is a n × (p + 1) matrix with the ith row zi. Common prior
distributions for β include an improper uniform prior, i.e., π(β) ∝ 1, and a normal prior.
Suppose we specify a p-dimensional normal prior for β, denoted by Np(μ0,Σ0), where μ0

denotes the prior mean and Σ0 denotes the prior covariance matrix. Then the posterior
distribution of β is given by

π(β|D) ∝ L(β|D)π(β|μ0,Σ0), (2.10)

where π(β|μ0,Σ0) is the multivariate normal density with mean μ0 and covariance matrix
Σ0. The closed forms for the posterior distribution of β are generally not available. However,
due to the availability of statistical packages such as OpenBUGS, or LIFEREG and MCMC
Procedures in SAS, the regression model in (2.9) can easily be fitted using Markov chain
Monte Carlo (MCMC) sampling methods to sample from the posterior in (2.10). Before the
advent of MCMC, numerical integration techniques were employed by Grieve (1987).

The Weibull model with density

f(y|α, µ) = αyα−1 exp(µ− exp(µ)yα). (2.11)

and survival function S(y|α, µ) = exp{− exp(µ)yα} is perhaps the most widely used para-
metric survival model. We can write the likelihood function of (α, µ) based on right-censored
data D as

L(α, µ|D) = αd exp

{
dµ+

n∑
i=1

(νi(α− 1) log(yi)− exp(µ)yαi )

}
.

When α is assumed known, the conjugate prior for exp(µ) is the gamma prior. No joint
conjugate prior is available when (α, µ) are both assumed unknown. In this case, a typical
joint prior specification is to take α and µ to be independent, with a gamma G(α0, κ0) prior
for α and a normal N(µ0, σ

2
0) prior for µ. The joint posterior distribution of (α, λ) is given

by

π(α, µ|D) ∝ L(α, µ|D)π(α|α0, κ0)π(µ|µ0, σ
2
0)

∝ αα0+d−1 exp
{
dµ+

n∑
i=1

(νi(α− 1) log(yi)− exp(µ)yαi )− κ0α− (µ− µ0)
2

2σ2
0

}
.

The joint posterior distribution of (α, µ) does not have a closed form, but it can be shown
that the conditional posterior distributions [α|µ,D] and [µ|α,D] are log-concave, and thus
Gibbs sampling is straightforward for this model.

To build the Weibull regression model, we introduce covariates through µ, and write µi =
z′iβ. Common prior distributions for β include the uniform improper prior, i.e., π(β) ∝ 1,
and a normal prior. Assuming a Np(μ0,Σ0) prior for β and a gamma prior for α, we are
led to the joint posterior

π(β, α|D) ∝ αα0+d−1 exp

{
n∑

i=1

(νiz
′
iβ + νi(α− 1) log(yi)− yαi exp(z′iβ))

− κ0α− 1

2
(β − μ0)Σ

−1
0 (β − μ0)

}
.

Closed forms for the posterior distribution of β are generally not available, and therefore one
needs to use numerical integration or MCMC methods. Due to the availability of statistical
packages such as OpenBUGS and LIFEREG and MCMC Procedures in SAS, the Weibull
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regression model can easily be fitted using MCMC sampling techniques. The development for
the log-normal model, gamma models, extreme value model, and other parametric models is
similar to that of the Weibull model. A multivariate extension of the Weibull model includes
the Poly-Weibull model of Berger and Sun (1993).

2.3 Semiparametric models

2.3.1 Piecewise constant hazard model

One of the most convenient and popular discrete time models for semiparametric survival
analysis is the piecewise constant hazard model. To construct this model, we first construct
a finite partition of the time axis, 0 < s1 < s2 < . . . < sJ , with sJ > yi for all i = 1, 2, . . . , n.
Thus, we have the J intervals (0, s1], (s1, s2], . . ., (sJ−1, sJ ]. In the jth interval, we assume
a constant baseline hazard h0(y) = λj for y ∈ Ij = (sj−1, sj ]. Letting λ = (λ1, λ2, . . . , λJ)

′,
we can write the likelihood function of (β,λ) for the n subjects as

L(β,λ|D) =

n∏
i=1

J∏
j=1

(
λj exp(x

′
iβ)
)δijνi

exp
{
− δij

[
λj(yi − sj−1)

+

j−1∑
g=1

λg(sg − sg−1)
]
exp(x′iβ)

}
, (2.12)

where δij = 1 if the ith subject failed or was censored in the jth interval, and 0 otherwise.
The indicator δij is needed to properly define the likelihood over the J intervals. The
semiparametric model in (2.12), sometimes referred to as a “piecewise exponential model,” is
quite general and can accommodate various shapes of the baseline hazard over the intervals.
Moreover, we note that if J = 1, the model reduces to a parametric exponential model with
failure rate parameter λ ≡ λ1. The piecewise constant hazard model is a useful and simple
model for modeling survival data. It serves as the benchmark for comparisons with other
semiparametric or fully parametric models for survival data.

A common prior of the baseline hazard λ is the independent gamma prior λj ∼
G(α0j , λ0j) for j = 1, 2, . . . , J . Here α0j and λ0j are prior parameters which can be elicited
through the prior mean and variance of λj . Another approach is to build a prior correlation
among the λj ’s (Leonard, 1978; Sinha, 1993) using a correlated prior ψ ∼ N(ψ0,Σψ), where
ψj = log(λj) for j = 1, 2, . . . , J .

The likelihood in (2.12) is based on continuous survival data. The likelihood function
based on grouped/discretized survival data DG of (2.4) for the piecewise constant hazard

model is given by L(β,λ|DG) ∝
∏J

j=1 Gj , where

Gj = exp
{
− λjΔj

∑
k∈Rj−Dj

exp(x′kβ)
}
×
∏
l∈Dj

[1− exp{−λjΔj exp(x
′
lβ)}] , (2.13)

Δj = aj−aj−1, Rj is the set of patients at risk, and Dj is the set of patients having failures
in the interval Ij . Using a Np(μ0,Σ0) prior for β, the marginal posterior of β given the
data DG and the hyperparameters τ0 = (μ0,Σ0, α0, c0) is given as

π(β|DG; τ0) ∝
J∏

j=1

[
G∗j
]
exp

{
−1

2
(β − μ0)Σ

−1
0 (β − μ0)

}
, (2.14)
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where G∗J = E[Gj |c0j , α0j ] is the expectation taken with respect to the independent Gamma
prior density of each hj .

2.3.2 Models using a gamma process

The gamma process is perhaps the most commonly used nonparametric prior process for
the Cox model. The seminal paper by Kalbfleisch (1978) describes the gamma process prior
for the baseline cumulative hazard function H0(·) (see also Burridge (1981)). The gamma
process can be described as follows. Let G(α, λ) denote the gamma distribution with shape
parameter α > 0 and scale parameter λ > 0. Let α(t), t ≥ 0, be an increasing left continuous
function such that α(0) = 0, and let Z(t), t ≥ 0, be a stochastic process with the properties:
(i) Z(0) = 0; (ii) Z(t) has independent increments in disjoint intervals; and (iii) for t > s,
Z(t)−Z(s) ∼ G(c(α(t)−α(s)), c). Then the process {Z(t) : t ≥ 0} is called a gamma process
and is denoted by Z(t) ∼ GP(cα(t), c). We note here that α(t) is the mean of the process
and c is a weight or confidence parameter about the mean. The sample paths of the gamma
process are almost surely increasing functions. It is a special case of a Levy process whose
characteristic function is given by

E[exp{iy(Z(t)− Z(s)}] = (φ(y))
c(α(t)−α(s))

,

where φ is the characteristic function of an infinitely divisible distribution function with
unit mean. The gamma process is the special case φ(u) = {c/(c− iu)}c.

2.3.3 Gamma process prior with continuous-data likelihood

For the semiparametric Bayesian analysis of the Cox model of (2.1), a gamma process prior

H0 ∼ GP(c0H
∗, c0), (2.15)

is often used as a prior for the cumulative baseline hazard function H0(t). The prior mean
“prior guess” H∗(t) of the unknown function H0(t) is an increasing function, and H∗ is often
assumed to be a known parametric function with hyperparameter vector γ0. For example,
if H∗(t) = γ0t corresponds to the constant γ0 as a prior guess for baseline hazard. Similarly,
H∗(t) = η0t

κ0 corresponds to a Weibull as a prior guess, where γ0 = (η0, κ0)
′ is a vector of

hyperparameters. The joint survival function of T = (T1, · · · , Tn) after marginalizing the
prior process is given by

P (T > y|β, X,γ0, c0) =

n∏
j=1

[φ(iVj)]
c0(H

∗(y(j))−H∗(y(j−1))), (2.16)

where Vj =
∑

l∈Rj
exp(x′lβ), Rj is the risk set at time y(j) and y(1) < y(2) < . . . , < y(n) are

distinct ordered times. For continuous data, when the ordered survival times are all distinct,
the marginal likelihood of (β, γ0, c0) can be obtained by differentiating (2.16). Note that
this likelihood, used by Kalbfleisch (1978), Clayton (1991), and among others, is defined
only when the observed survival times y = (y1, · · · , yn) are distinct. In the next subsection,
we present the likelihood and prior associated with grouped survival data using a gamma
process prior for the baseline hazard.

2.3.4 Relationship to partial likelihood

Kalbfleisch (1978) and more recently, Sinha et al. (2003) show that the partial likelihood
of Cox (1975) can be obtained as a limiting case of the marginal posterior of β in the
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Cox model under a gamma process prior for the cumulative baseline hazard H0. As it is
mentioned earlier, the marginal joint survival function of T given (β, H∗, c0) for Gamma
process prior of (2.15) is given in (2.16) with φ(u) = {c0/(c0 − iu)}.

Now let θ = (β′, h∗0, c0)
′, where h∗0(y) =

d
dyH

∗(y). Via differentiating the joint survival

function of (2.16) at yi when νi = 1, we can obtain the continuous-time data likelihood
function of θ as

L(θ|D) =

n∏
j=1

[
exp
{
H∗(y(j)) log

(
1−

exp(x′jβ)
c0 +Aj

)c0}
×
{
− c0h

∗
0(y(j)) log

(
1−

exp(x′jβ)
c0 +Aj

)}νi
]
,

where Aj =
∑

l∈Rj
exp(x′lβ), d =

∑n
i=1 νi and h∗ =

∏n
j=1[h0(y(j))]

νi . Now we have

lim
c0→0

exp

{
H0(y(j)) log

(
1−

exp(x′jβ)
c0 +Aj

)c0
}

= 0

for j = 1, 2, . . . , n, and

lim
c0→0

log

(
1−

exp(x′jβ)
c0 +Aj

)
= log

(
1−

exp(x′jβ)
Aj

)
≈ −

exp(x′jβ)
Aj

for j = 1, 2, . . . , n− 1. Thus, we have

lim
c0→0

L(θ|D)

cd0 log(c0)h
∗ ≈

n∏
j=1

[
exp(x′jβ)

Aj

]νi

. (2.17)

We see that the right-hand side of (2.17) is precisely Cox’s partial likelihood.
Now if we let c0 → ∞, we get the likelihood function based on (β, h0). We can show

that

lim
c0→∞

L(β, c0, h0|D)

=

n∏
j=1

(
exp
{
−H∗(y(j)) exp(x′jβ)

}) {
h0(y(j)) exp(x

′
jβ)
}νj

. (2.18)

Thus, we see that (2.18) is the likelihood function of (β, h0) based on the proportional
hazards model.

2.3.5 Gamma process on baseline hazard

An alternative specification of the semiparametric Cox model is to specify a gamma process
prior on the hazard rate itself. Such a formulation is considered by Dykstra and Laud
(1981) in their development of the extended gamma process. Here, we consider a discrete
approximation of the extended gamma process with the piecewise constant baseline hazard
h0(t) within the partition 0 = a0 < a1 < . . . < aJ of the time axis. Let

δj = h0(aj)− h0(aj−1)

denote the increment in the baseline hazard in the interval Ij = (aj−1, aj ], j = 1, 2, . . . , J ,
and δ = (δ1, δ2, . . . , δJ)

′. We follow Ibrahim et al. (1999) for constructing the approximate
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likelihood function of (β, δ). For an arbitrary individual in the population, the survival
function for the Cox model at time y is given by

S(y|x) = exp
{
− η

∫ y

0

h0(u) du
}
≈ exp

{
− η
( J∑

i=1

δi(y − ai−1)
+
)}

, (2.19)

where h0(0) = 0, (u)+ = u if u > 0, 0 otherwise, and η = exp(x′β). This first approximation
arises since the specification of δ does not specify the entire hazard rate, but only the δj .
For purposes of approximation, we take the increment in the hazard rate, δj , to occur
immediately after aj−1. Let pj denote the probability of a failure in the interval Ij , j =
1, 2, . . . , J . Using (2.19), we have

pj = S(aj−1)− S(aj)

≈ exp
{
− η

j−1∑
l=1

δl(aj−1 − al−1)
}[

1− exp
{
− η(aj − aj−1)

j∑
l=1

δl

}]
.

Thus, in the jth interval Ij , the contribution to the likelihood function for a failure is pj ,
and S(aj) for a right-censored observation. For j = 1, 2, . . . , J , let dj be the number of
failures, Dj be the set of subjects failing, cj be the number of right-censored observations,
and Cj is the set of subjects that are censored. The grouped data likelihood function is thus
given by

L(β, δ|D) =

J∏
j=1

{
exp {−δj(Aj +Bj)}

∏
k∈Dj

[1− exp{−ηkTj}]
}
, (2.20)

where ηk = exp(x′kβ), Tj = (sj − sj−1)
∑j

l=1 δl, and

Aj =
J∑

l=j+1

∑
k∈Dl

ηk(al−1 − aj−1), Bj =
J∑

l=j

∑
k∈Cl

ηk(al − aj−1),

We note that this likelihood involves a second approximation. Instead of conditioning on
exact event times, we condition on the set of failures and set of right-censored events in each
interval, and thus we approximate continuous right-censored data by grouped data. Prior
elicitation and Gibbs sampling for this model has been discussed in Ibrahim et al. (2001)
in detail.

2.3.6 Beta process models

We first discuss time-continuous right-censored survival data without covariates. Kalbfleisch
(1978) and Ferguson and Phadia (1979) used the definition of the cumulative hazard H(t)
as

H(t) = − log(S(t)), (2.21)

where S(t) is the survival function. The gamma process can be defined on H(t) when this
definition of the cumulative hazard is appropriate. A more general way of defining the
hazard function, which is valid even when the survival time distribution is not continuous,
is to use the definition of Hjort (1990). General formulae for the cumulative hazard function
H(t) are

H(t) =

∫
[0,t]

dF (u)

S(u)
, (2.22)
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where
F (t) = 1− S(t) = 1−

∏
[0,t]

{1− dH(t)}. (2.23)

The cumulative hazard function H(t) defined here is equal to (2.21) when the survival
distribution is absolutely continuous. Hjort (1990) presented what he called a beta process
with independent increments as a prior for H(.). A beta process generates a proper cdf
F (t), as defined in (2.22), and has independent increments of the form

dH(s) ∼ B(c(s)dH∗(s), c(s)(1− dH∗(s))), (2.24)

where B(a, b) denotes the beta distribution with parameters (a, b). Due to the complicated
convolution property of independent beta distributions, the exact distribution of the incre-
ment H(s) is only approximately beta over any finite interval, regardless of how small the
length of the interval might be. See Hjort (1990) for formal definitions of the beta process
prior and for properties of the posterior with right-censored time-continuous data. It is pos-
sible to deal with the beta process for the baseline cumulative hazard appropriately defined
under a Cox model with time continuous data, but survival data in practice is commonly
grouped within some grid intervals, where the grid size is determined by the data and trial
design. So for practical purposes, it is more convenient and often sufficient to use a dis-
cretized version of the beta process (Hjort, 1990; Sinha, 1997) along with grouped survival
data. The beta process prior for the cumulative baseline hazard in (2.24) has been discussed
by many authors, including Hjort (1990), Damien et al. (1996), Laud et al. (1996), Sinha
(1997), and Florens et al. (1999). Here we focus only on the discretized beta process prior
with a grouped data likelihood.

Within the spirit of the definition of the cumulative hazard function H(t) defined in
(2.22), a discretized version of the Cox model can be defined as

S(sj |x) = P (T > sj |x) =
j∏

k=1

(1− hk)
exp(x′β),

where hk is the discretized baseline hazard rate in the interval Ik = (sk−1, sk]. The likelihood
can thus be written as

L(β,h) =
J∏

j=1

(
(1− hj)

∑
i∈Rj−Dj

exp(x′
iβ)
) ∏

l∈Dj

(
1− (1− hj)

exp(x′
lβ)
)
,

where h = (h1, h2, . . . , hJ)
′. To complete the discretized beta process model, we specify

independent beta priors for the hk’s. Specifically, we take hk ∼ B(c0kα0k, c0k(1 − α0k)),
and independent for k = 1, 2, . . . , J . Though it is reasonable to assume that the hk’s are
independent from each other a priori, the assumption of an exact beta distribution of the hk’s
is only due to an approximation to the true time-continuous beta process. Thus, according
to the time-continuous beta process, the distribution of the hk’s is not exactly beta, but it
can be well approximated by a beta distribution only when the width of Ik is small.

Under the discretized beta process defined here, the joint prior density of h is thus given
by

π(h) ∝
J∏

j=1

h
c0jα0j−1
j (1− hj)

c0j(1−α0j)−1.

A typical prior for β is a Np(μ0,Σ0) prior, which is independent of h. Assuming an arbitrary
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prior for β, the joint posterior of (β, h) can be written as

π(β,h|D) ∝
J∏

j=1

(
(1− hj)

∑
i∈Rj−Dj

exp(x′iβ)
) ∏

l∈Dj

(
1− (1− hj)

exp(x′
lβ)
)

×
J∏

j=1

h
c0jα0j−1
j (1− hj)

c0j(1−α0j)−1π(β).

Now define hj = P [sj−1 < Y ≤ sj |Y > sj−1)]. Therefore, the survival curve is given by

S(sj) =
∏j

k=1(1− hk). The prior distribution of hj is given by

hj ∼ B
(
c0jα0j , c0j(1− α0j)

)
for j = 1, 2, . . . , J, (2.25)

where the hj ’s are independent, and each with mean α0j and variance α0j(1−α0j)/(c0j+1).
Therefore, c0j is the measure of confidence around the prior mean α0j of the hazard rate
hj in Ij . Given the prior structure of (2.25), the posterior distribution of the hj ’s given
grouped survival data is also independent beta with

hj |D ∼ B
(
c0jα0j + dj , c0j(1− α0j) + rj − dj

)
, (2.26)

where D = {(dj , rj), j = 1, 2, . . . , J} denotes the complete grouped data. The joint posterior
of the hj ’s given interval-censored data is not as straightforward as (2.26), and is discussed
in Ibrahim et al. (2001).

2.3.7 Correlated prior processes

The gamma process prior of Kalbfleisch (1978) assumes independent cumulative hazard
increments. This is unrealistic in most applied settings, and does not allow for borrowing of
strength between adjacent intervals. A correlated gamma process for the cumulative hazard
yields a natural smoothing of the survival curve. Although the idea of smoothing is not new
(Arjas and Gasbarra, 1994; Aslanidou et al., 1998; Sinha, 1998; Gamerman, 1991; Berzuini
and Clayton, 1994), its potential has not been totally explored in the presence of covariates.
Modeling dependence between hazard increments has been discussed by Gamerman (1991)
and Arjas and Gasbarra (1994). Gamerman (1991) proposed a Markov prior process for the
{log(λk)}, by modeling

log(λk) = log(λk−1) + εk, E(εk) = 0, and Var(εk) = σ2
k.

Arjas and Gasbarra (1994) introduced a first-order autoregressive structure on the increment
of the hazards by taking

λk|λk−1 ∼ G(αk, α/λk−1)

for k > 1. Nieto-Barajas and Walker (2002) proposed dependent hazard rates with a Marko-
vian relation, given by

λ1 ∼ G(α1, γ1), uk|λk, vk ∼ P(vkλk), vk|ξk ∼ E (1/ξk) , (2.27)

λk+1|uk, vk ∼ G(αk+1 + uk, γk+1 + vk), (2.28)

and
β ∼ π(β),

for k ≥ 1, where π(β) denotes the prior for β, which can be taken to be a normal distribution,
for example.
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2.3.8 Dirichlet process models

The Dirichlet process (Ferguson, 1974) is an important nonparametric prior. There is a rich
literature on the Dirichlet process in various applications; see Ibrahim et al. (2001) for a list
of references and a nice section in Klein and Moeschberger (2003). The Dirichlet process
specifies a nonparametric prior over a class of possible distribution functions F (y) for a
random variable Y , where F (y) = P (Y ≤ y). To define the Dirichlet process, let Ω be the
sample space, and suppose Ω = B1 ∪ B2 ∪ . . . ∪ Bk, where the Bj ’s are disjoint. Then a
stochastic process P indexed by elements of a particular partition B = {B1, B2, . . . , Bk} is
said to be a Dirichlet process on (Ω, B) with parameter vector α, if for any partition of Ω,
the random vector (P (B1), P (B2), . . . , P (Bk)) has a Dirichlet distribution with parameter
(α(B1), α(B2), . . . , α(Bk)).

The parameter vector α is a probability measure so that α = F0(·), where F0(·) is the
prior hyperparameter for F (·), and thus α(Bj) = F0(b2j) − F0(b1j). The hyperparameter
F0(.) is called the base measure of the Dirichlet process prior. We define a weight param-
eter c0 (c0 > 0) that gives prior weight to F0(·), so that (F (B1), F (B2), . . . , F (Bk)) has
a Dirichlet distribution with parameters (c0F0(B1), c0F0(B2), . . . , c0F0(Bk)). We say that
F has a Dirichlet process prior with parameter c0F0 if (F (B1), F (B2), . . . , F (Bk)) has a
Dirichlet distribution with parameters (c0F0(B1), c0F0(B2), . . . , c0F0(Bk)) for every possi-
ble partition of the sample space Ω = B1 ∪ B2 ∪ . . . ∪ Bk. The earliest work on Dirichlet
processes in the context of survival analysis is based on Ferguson and Phadia (1979) and
Susarla and Van Ryzin (1976). Susarla and Van Ryzin derived the Bayes estimator of the
survival function under the Dirichlet process prior and also derived the posterior distribu-
tion of the cumulative distribution function with right-censored data. In this section, we
briefly summarize the fundamental results of Ferguson and Phadia (1979) and Susarla and
Van Ryzin (1976). Letting S(t) denote the survival function, Susarla and Van Ryzin (1976)
derived the Bayes estimator of S(t) under the squared error loss

L(Ŝ, S) =

∫ ∞

0

(Ŝ(t)− S(t))2dw(t),

where w is a nonnegative decreasing weight function on (0,∞) and Ŝ(t) is an estimator of
S(t). Then, the Bayes estimator Ŝ(u) under squared error loss is given by

Ŝ(u) =
c0(1− F0(u)) +N+(u)

c0 + n

l∏
j=k+1

(
(c0(1− F0(y(j)) +N(y(j))

c0(1− F0(y(j)) +N(y(j))− λj

)
in the interval y(j) ≤ u ≤ y(l+1), l = k, k + 1, . . . ,m, with y(k) = 0, y(m+1) = ∞. The

Kaplan-Meier estimator of S(u) (Kaplan and Meier, 1958) is a limiting case of Ŝ(u) when
F0 → 1. Other work on the Dirichlet process in survival data includes Kuo and Smith
(1992), where they used the Dirichlet process in problems in doubly censored survival data.
Generalization of the Dirichlet process have also been used in survival analysis. Mixture of
Dirichlet Process (MDP) models have been considered by the MDP model (Escobar, 1994;
MacEachern, 1994) removes the assumption of a parametric prior at the second stage,
and replaces it with a general distribution G. The distribution G has a Dirichlet process

prior, leading to Stage 1: [yi|θi] ∼ Πni
(h1(θi)), Stage 2: θi|G i.i.d.∼ G; and Stage 3:

[G|c0,ψ0] ∼ DP(c0 · G0(h2(ψ0))), where G0 is a w-dimensional parametric distribution,
often called the base measure, and c0 is a positive scalar.

There are two special cases in which the MDP model leads to the fully parametric
case. As c0 → ∞, G → G0(·), so that the base measure is the prior distribution for θi.
Also, if θi ≡ θ for all i, the same is true. For a more hierarchical modeling approach, it
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is possible to place prior distributions on (c0,ψ0). The specification in Stage 2 results in a
semiparametric specification in that a fully parametric distribution is given in Stage 1 and
a nonparametric distribution is also given in Stages 2 and 3. Doss (1994), Doss and Huffer
(1998), and Doss and Narasimhan (1998) discussed the implementation of MDP priors for
F (t) = 1−S(t) in the presence of right-censored data using the Gibbs sampling algorithm. A
Bayesian nonparametric approach based on mixtures of Dirichlet priors offers a reasonable
compromise between purely parametric and purely nonparametric models.

Other generalizations of the Cox model have been examined by Sinha et al. (1999), and
problems investigating interval censored data have been investigated by Sinha (1997). A
nice review paper in Bayesian survival analysis is given in Sinha and Dey (1997). Further
details on Bayesian semiparametric methods can be found in Ibrahim et al. (2001).

2.4 Prior elicitation

To ease the presentation, we discuss how to use the power prior of Ibrahim and Chen (2000)
to incorporate historical data from a previous study only for the piecewise constant hazard
model since the development of the power prior for other models presented in Sections
2.2 and 2.3 is similar. Let D0 = (n0,y0, X0,ν0) denote the data from the previous study
(i.e., historical data), where n0 denotes the sample size of the previous study, y0 denotes
a right-censored vector of survival times with censoring indicators ν0, and X0 denotes the
n× p matrix of covariates. For most problems, there are no firm guidelines on the method
of prior elicitation. The use of D0 for the current study in survival analysis largely depends
on the similarity of the two studies. In most clinical trials, for example, no two studies are
ever identical. In clinical trials, the patient populations typically differ from study to study
and other factors may also make the two studies heterogeneous. Due to these differences,
an analysis which simply pools the data from both studies may not be desirable. In this
case, it may be more appropriate to “weight” the data from the previous study so as to
control its impact on the current study. Thus, it is desirable for the investigators to have a
prior distribution that allows them to tune or weight D0 in order to control its impact on
the current study.

Let π0(β,λ) denote the initial prior for (β,λ). The power prior of Ibrahim and Chen
(2000) for (β,λ) is given by

π(β,λ|D0, a0) ∝ {L(β,λ|D0)}a0 π0(β,λ), (2.29)

where L(β,λ|D0) is the likelihood function of (β,λ) based on the historical data D0 and
thus, L(β,λ|D0) is (2.12) with D and δij ’s replaced by D0 = (n0,y0, X0,ν0) and δ0ij ’s,
where δ0ij = 1 if y0i ∈ Ij and 0 otherwise for i = 1, 2, . . . , n0 and j = 1, 2 . . . , J . In (2.29),
the parameter a0 can be interpreted as a relative precision parameter for the historical
data. It is reasonable to restrict the range of a0 to be between 0 and 1, and thus we take
0 ≤ a0 ≤ 1. One of the main roles of a0 is that it controls the heaviness of the tails of the
prior for (β,λ). As a0 becomes smaller, the tails of (2.29) become heavier. When a0 = 1,
(2.29) corresponds to the update of π0(β,λ) using Bayes theorem. That is, with a0 = 1,
(2.29) corresponds to the “posterior distribution” of (β,λ) based on the historical data
D0. If a0 = 0, then the prior does not depend on the historical data. That is, a0 = 0
is equivalent to a prior specification with no incorporation of historical data. Thus, the
parameter a0 controls the influence of the historical data on the current study. Such control
is important in cases where there is heterogeneity between the historical data and the data
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from the current study, or when the sample sizes of the historical data and the current data
are quite different.

In this chapter, we consider a0 to be fixed. Following Ibrahim et al. (2012), we use
the Deviance Information Criterion (DIC) of Spiegelhalter et al. (2002) to determine the
optimal choices of (J, a0). We carry out a detailed analysis of melanoma data in Section 2.6
to demonstrate the use of the power prior (2.29).

2.5 Other topics

Fully parametric Bayesian approaches to frailty models are examined in Sahu et al. (1997),
where they considered a frailty model with a Weibull baseline hazard. Semiparametric ap-
proaches have also been examined. Clayton (1991) and Sinha (1993) considered a gamma
process prior on the cumulative baseline hazard in the proportional hazards frailty model.
Qiou et al. (1999) examined a positive stable frailty distribution, and Sargent (1998) ex-
amined frailty models using Cox’s partial likelihood. Gustafson (1997) discussed Bayesian
hierarchical frailty models for multivariate survival data. For detailed summaries of these
models and additional references, see the book by Ibrahim et al. (2001).

Bayesian approaches to joint models for longitudinal and survival data have been con-
sidered by Faucett and Thomas (1996), Wang and Taylor (2001), Law et al. (2002), Brown
and Ibrahim (2003a), Brown and Ibrahim (2003b), Ibrahim et al. (2004), and Brown et al.
(2005). Other topics in Bayesian methods in survival analysis include proportional haz-
ards models built from monotone functions (Gelfand and Mallick, 1995), accelerated failure
time models (Kuo and Mallick, 1997; Walker and Mallick, 1999; Johnson and Christensen,
1989). Survival models using Multivariate Adaptive Regression Splines (MARS) has been
considered by Mallick et al. (1999). Changepoint models have been considered by Sinha
et al. (2002). Bayesian methods for model diagnostics in survival analysis were considered
in Shih and Louis (1995), Gelfand and Mallick (1995), and Sahu et al. (1997). Bayesian
latent residual methods were given in Aslanidou et al. (1998), and the prequential methods
were discussed in Arjas and Gasbarra (1997). Bayesian spatial survival models were con-
sidered by Carlin and S. (2003). Bayesian methods for missing covariate data in survival
analysis include Chen et al. (2002, 2006, 2009). Other work on Bayesian survival analysis
with specific applications in epidemiology and related areas include Chen, Dey and Sinha
(2000), Dunson (2001), Dunson et al. (2003), and the references therein. Books discussing
Bayesian survival analysis include Ibrahim et al. (2001), Chen, Shao and Ibrahim (2000),
Carlin and Louis (2000), and Congdon (2003, 2006). Bayesian methods for frailty models
and Bayesian methods for model selection are considered by the authors in Chapter 23 and
Chapter 14, respectively.

2.6 A case study: an analysis of melanoma data

In this section, we consider two Eastern Cooperative Oncology Group (ECOG) phase III
melanoma clinical trials, E1684 and E1690. The first trial, E1684, was a two-arm clinical trial
comparing high-dose interferon (IFN) to Observation (OBS). E1690 was a subsequent phase
III clinical trial involving identical treatments and patient populations as E1684. E1690 was
intended as a confirmatory trial to E1684. There were a total of n0 = 285 and n = 427
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patients in the E1684 and E1690 trials, respectively. Results of the E1684 and E1690 trials
have been published in Kirkwood et al. (1996, 2000). E1690 serves as the current study
while E1684 serves as the historical study for our example here. The response variable
is the relapse-free survival (RFS), which is defined as the time from randomization until
progression of tumor or death, whichever comes first. The covariates we consider include
treatment (x1 = 0 if OBS and 1 if IFN), age (x2 in years), and gender (x3 = 0 if male and
1 if female). We standardized x2 by subtracting the sample mean and then dividing the
sample standard deviation from the pooled E1690 and E1684 data for numerical stability
in the posterior computation.

We carry out a Bayesian analysis of E1690 under the piecewise constant hazard model
in (2.12). We use the E1684 historical data to construct our prior as in (2.29). The model
fit is assessed via the DIC measure. Let θ = (β,λ). For our example, β = (β1, β2, β3)

′. We
first define the deviance function as Dev(θ) = −2 logL(β,λ|D), where L(β,λ|D) is given
by (2.12). Then, according to Spiegelhalter et al. (2002), the DIC measure can be calculated
as follows:

DIC = Dev(θ̄) + 2pD,

where pD = Dev − Dev(θ̄) is the effective number of model parameters, and θ̄ =
E[θ|D,D0, a0] and Dev = E[Dev(θ)|D,D0, a0] denote the posterior means of θ and
Dev(θ) with respect to the posterior distribution corresponding to the likelihood given
in (2.12) and the power prior in (2.29). The initial prior in (2.29) is specified as fol-

lows: π0(β,λ) = π0(β)π0(λ), where π0(β) ∝ exp
{
− 1

2σ2
0
β′β
}

with σ2
0 = 10, 000, and

π0(λ) ∝
∏J

j=1 λ
b01−1
j exp(−b02λj) with b01 = 0.001 and b02 = 0.001.

One of the critical issues is the choice of J and a0 in the Bayesian analysis under the
piecewise constant hazard model in (2.12) using the power prior, that is, what value of
(J, a0) should the investigator use in the analysis? To address this issue, we use the value
(J, a0) that yields the best model fit according to the DIC. Figure 2.1 shows that the DIC
is optimized when J = 5 and a0 = 0.5. From Figure 2.1, it is interesting to see that (i) the

FIGURE 2.1
DIC plots for J = 1, 5, 10 for E1690 using E1684 as the historical data.
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TABLE 2.1
The maximum likelihood estimates for E1690.

Variable Parameter EST SE 95% CI

Treatment β1 -0.213 0.130 (-0.468, 0.042)
Age β2 0.116 0.065 (-0.013, 0.244)
Gender β3 -0.145 0.136 (-0.411, 0.122)

model with J = 5 fits the data much better than the ones with J = 1 or J = 10 for all
a0 values according to the DIC; (ii) the DIC decreases in a0 when J = 1; and (iii) both
DIC curves are convex in a0 with the minimum values attained at a0 = 0.5 when J = 5
and J = 10. These results indicate that (i) when a simple baseline hazard function is used,
which does not fit the data well, the more borrowing from the historical data, the better fit
the model, and (ii) when a more complex baseline hazard function is used, which fits the
data much better, the best model fit is achieved with a moderate amount of borrowing from
the historical data according to the DIC. Note that when J = 5, the values of DIC were
1042.68, 1040.42, and 1041.39 for a0 = 0, 0.5, 1, respectively. Based on Figure 2.1, a0 = 0.5
appears to be a reasonable choice for the Bayesian analysis, along with other a0 values used
as a sensitivity analysis such as a0 = 0 and a0 = 1.

Table 2.1 shows the maximum likelihood (ML) estimates (ESTs), the standard errors
(SEs), and 95% confidence intervals (CIs) of β for the E1690 data alone based on the
partial likelihood approach. From Table 2.1, all three covariates were not significant at the
significance level of 0.05 since all 95% CIs contain 0. This result indicates that the treatment
IFN does not have a significant impact on relapse-free survival (RFS) based on the E1690
data alone. Table 2.2 shows the posterior means (EST), the posterior standard deviations
(SD), and 95% highest posterior density (HPD) intervals of β and λ for a0 = 0, 0.5, 1
under J = 5. When a0 = 0 (no incorporation of historical data), the posterior estimates
of β were very similar to those ML estimates. From Table 2.2, we see that the posterior
standard deviations decrease when a0 increases. We further see from this table that the HPD
intervals of β1 (treatment) were (−0.479,−0.063) when a0 = 0.5 and (−0.478,−0.108) when
a0 = 1. Both of these HPD intervals do not include 0. These results indicate that when
a0 = 0.5 or a0 = 1, the treatment covariate is an important predictor of RFS, and IFN
may in fact be superior to OBS. This conclusion was not possible based on the ML analysis
shown in Table 2.1 or the Bayesian analysis with a0 = 0 using the current data alone.

2.7 Discussion

In this chapter, we have provided an overview of various commonly used parametric and
semiparametric modeling techniques in Bayesian survival analysis and discussed the prior
elicitation based on historical data. In Section 2.6, we carried out a detailed analysis of
the melanoma data with historical data. Although we used the DIC measure to choose the
optimal value of (J, a0) in the Bayesian data analysis, the other Bayesian criteria such as
the Logarithm of the Pseudo Marginal Likelihood (LPML)(see, e.g., Ibrahim et al. (2001))
can also be used. Based on the empirical results shown in Ibrahim et al. (2012), we expect
that similar results for the optimal value of (J, a0) will be yielded according to the LPML.

We wrote the FORTRAN 95 code with double precision and IMSL subroutines as well
as the SAS macro using the MCMC and IML Procedures to carry out all of the posterior
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TABLE 2.2
The posterior estimates for E1690 using E1684 as the historical data under J = 5.

a0 Parameter EST SD 95% HPD Interval
0 β1 -0.218 0.128 (-0.465, 0.029)

β2 0.119 0.065 (-0.008, 0.247)
β3 -0.150 0.134 (-0.412, 0.112)
λ1 0.509 0.087 ( 0.343, 0.680)
λ2 0.641 0.108 ( 0.441, 0.860)
λ3 0.562 0.084 ( 0.406, 0.732)
λ4 0.314 0.050 ( 0.219, 0.412)
λ5 0.112 0.019 ( 0.077, 0.149)

0.5 β1 -0.269 0.107 (-0.479, -0.063)
β2 0.101 0.055 (-0.013, 0.206)
β3 -0.104 0.111 (-0.411, 0.112)
λ1 0.607 0.083 ( 0.447, 0.774)
λ2 0.729 0.102 ( 0.532, 0.930)
λ3 0.546 0.072 ( 0.407, 0.690)
λ4 0.331 0.044 ( 0.245, 0.419)
λ5 0.111 0.015 ( 0.082, 0.141)

1.0 β1 -0.294 0.095 (-0.478, -0.108)
β2 0.093 0.048 (-0.001, 0.187)
β3 -0.080 0.099 (-0.272, 0.119)
λ1 0.667 0.079 ( 0.516, 0.824)
λ2 0.783 0.097 ( 0.604, 0.979)
λ3 0.534 0.064 ( 0.409, 0.658)
λ4 0.340 0.041 ( 0.262, 0.423)
λ5 0.110 0.013 ( 0.085, 0.137)

computations in Section 2.6. Both the FORTRAN 95 code and the SAS macro gave very
similar results. We generated 20,000 Gibbs iterations after 2,000 “burn-in” iterations to
compute the DIC and posterior estimates for each combination of (J, a0) shown in Table
2.2. The HPD intervals were computed using the Monte Carlo method proposed by Chen
and Shao (1999). For each combination of (J, a0), the computing time was less than 30
seconds for the FORTRAN 95 code on an Intel i7 processor machine with 8 GB of RAM
memory using a GNU/Linux operating system while the computing time was about 30
minutes for the SAS code using STAT 12.1 with slice option in the MCMC Procedure on
an Intel Core(TM)2 Duo CPU machine with 1.96 GB of RAM memory. We further note
that the PHREG Procedure in SAS does fit the Bayesian piecewise constant hazard model,
but it does not have an option to incorporate historical data using the power prior. Both
the FORTRAN 95 code and the SAS macro are available from the authors upon request.

Acknowledgments

Drs. Ibrahim and Chen’s research was partially supported by U.S. National Institutes of
Health (NIH) grants #GM 70335 and #CA 74015.



44 Handbook of Survival Analysis

Bibliography

Achcar, J. A., Bolfarine, H. and Pericchi, L. R. (1987), ‘Transformation of survival data to
an extreme value distribution’, The Statistician 36, 229–234.

Achcar, J. A., Brookmeyer, R. and Hunter, W. G. (1985), ‘An application of Bayesian
analysis to medical follow-up data’, Statistics in Medicine 4, 509–520.

Aitchison, J. and Dunsmore, I. R. (1975), Statistical Prediction Analysis, New York: Cam-
bridge University Press.

Arjas, E. and Gasbarra, D. (1994), ‘Nonparametric Bayesian inference from right censored
survival data, using the gibbs sampler’, Statistica Sinica 4, 505–524.

Arjas, E. and Gasbarra, D. (1997), ‘On prequential model assessment in life history analysis’,
Biometrika 84, 505–522.

Aslanidou, H., Dey, D. K. and Sinha, D. (1998), ‘Bayesian analysis of multivariate survival
data using Monte Carlo methods’, Canadian Journal of Statistics 26, 33–48.

Berger, J. O. and Sun, D. (1993), ‘Bayesian analysis for the Poly-Weibull distribution’,
Journal of the American Statistical Association 88, 1412–1418.

Berzuini, C. and Clayton, D. G. (1994), ‘Bayesian analysis of survival on multiple time
scales’, Statistics in Medicine 13, 823–838.

Brown, E. R. and Ibrahim, J. G. (2003a), ‘A Bayesian semiparametric joint hierarchical
model for longitudinal and survival data’, Biometrics 59, 221–228.

Brown, E. R. and Ibrahim, J. G. (2003b), ‘Bayesian approaches to joint cure rate and
longitudinal models with applications to cancer vaccine trials’, Biometrics 59, 686–693.

Brown, E. R., Ibrahim, J. G. and DeGruttola, V. (2005), ‘A flexible b-spline model for
multiple longitudinal biomarkers and survival’, Biometrics 61, 64–73.

Burridge, J. (1981), ‘Empirical Bayes analysis for survival time data’, Journal of the Royal
Statistical Society, Series B 43, 65–75.

Carlin, B. P. and Louis, T. A. (2000), Bayes and Empirical Bayes Methods for Data Analysis,
Second Edition. Boca Raton, FL: Chapman & Hall.

Carlin, B. P. and Banerjee, S. (2003), Hierarchical multivariate CAR models for spatio-
temporally correlated survival data (with discussion), in J. M. Bernardo, M. J. Bayarri,
J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds., ‘Bayesian
Statistics, 7’, Oxford: Clarendon Press, pp. 45–63.

Chen, M.-H., Dey, D. K. and Sinha, D. (2000), ‘Bayesian analysis of multivariate mortality
data with large families’, Applied Statistics 49, 129–144.

Chen, M.-H., Ibrahim, J. G. and Lipsitz, S. R. (2002), ‘Bayesian methods for missing co-
variates in cure rate models’, Lifetime Data Analysis 8, 117–146.

Chen, M.-H., Ibrahim, J. G. and Shao, Q.-M. (2006), ‘Posterior propriety and computation
for the Cox regression model with applications to missing covariates’, Biometrika 93, 791–
807.



Bayesian Analysis of the Cox Model 45

Chen, M.-H., Ibrahim, J. G. and Shao, Q.-M. (2009), ‘Maximum likelihood inference for
the cox regression model with applications to missing covariates’, Journal of Multivariate
Analysis 100, 2018–2030.

Chen, M.-H. and Shao, Q.-M. (1999), ‘Monte Carlo estimation of Bayesian credible and
HPD intervals’, Journal of Computational and Graphical Statistics 8, 69–92.

Chen, M.-H., Shao, Q.-M. and Ibrahim, J. G. (2000), Monte Carlo Methods in Bayesian
Computation, New York: Springer-Verlag.

Chen, W. C., Hill, B. M., Greenhouse, J. B. and Fayos, J. V. (1985), Bayesian analysis
of survival curves for cancer patients following treatment, in ‘Bayesian Statistics, 2’,
Amsterdam: North-Holland, pp. 299–328.

Clayton, D. G. (1991), ‘A Monte Carlo method for Bayesian inference in frailty models’,
Biometrics 47, 467–485.

Congdon, P. (2003), Applied Bayesian Modeling, Second Edition. New York: John Wiley &
Sons.

Congdon, P. (2006), Bayesian Statistical Modeling, New York: John Wiley & Sons.

Cox, D. R. (1972), ‘Regression models and life tables (with discussion)’, Journal of the
Royal Statistical Society, Series B 34, 187–220.

Cox, D. R. (1975), ‘Partial likelihood’, Biometrika 62, 269–276.

Damien, P., Laud, P. W. and Smith, A. F. M. (1996), ‘Implementation of Bayesian non-
parametric inference based on beta processes’, Scandinavian Journal of Statistics 23, 27–
36.

Dellaportas, P. and Smith, A. F. M. (1993), ‘Bayesian inference for generalized linear and
proportional hazards models via gibbs sampling’, Applied Statistics 42, 443–459.

Doss, H. (1994), ‘Bayesian nonparametric estimation for incomplete data via successive
substitution sampling’, Annals of Statistics 22, 1763–1786.

Doss, H. and Huffer, F. (1998), ‘Monte Carlo methods for Bayesian analysis of survival data
using mixtures of dirichlet priors’, Technical Report 22, 1763–1786.

Doss, H. and Narasimhan, B. (1998), Dynamic display of changing posterior in Bayesian
survival analysis, in D. Dey, P. Müller and D. Sinha, eds., ‘Practical Nonparametric and
Semiparametric Bayesian Statistics’, New York: Springer-Verlag, pp. 63–84.

Dunson, D. B. (2001), ‘Bayesian modeling of the level and duration of fertility in the men-
strual cycle’, Biometrics 57, 1067–1073.

Dunson, D. B., Chulada, P. and Arbes, S. J. (2003), ‘Bayesian modeling of time-varying
and waning exposure effects’, Biometrics 59, 83–91.

Dykstra, R. L. and Laud, P. W. (1981), ‘A Bayesian nonparametric approach to reliability’,
The Annals of Statistics 9, 356–367.

Escobar, M. D. (1994), ‘Estimating normal means with a dirichlet process prior’, Journal
of the American Statistical Association 89, 268–277.



46 Handbook of Survival Analysis

Faucett, C. J. and Thomas, D. C. (1996), ‘Simultaneously modeling censored survival data
and repeatedly measured covariates: A gibbs sampling approach’, Statistics in Medicine
15, 1663–1685.

Feigl, P. and Zelen, M. (1965), ‘Estimation of exponential survival probabilities with con-
comitant information’, Biometrics 21, 826–838.

Ferguson, T. S. (1974), ‘Prior distributions on spaces of probability measures’, Annals of
Statistics 2, 615–629.

Ferguson, T. S. and Phadia, E. G. (1979), ‘Bayesian nonparametric estimation based on
censored data’, Annals of Statistics 7, 163–186.

Florens, J. P., Mouchart, M. and Rolin, J. M. (1999), ‘Semi- and non-parametric Bayesian
analysis of duration models with dirichlet priors: A survey’, International Statistical Re-
view 67, 187–210.

Gamerman, D. (1991), ‘Dynamic Bayesian models for survival data’, Applied Statistics
40, 63–79.

Gelfand, A. E. and Mallick, B. K. (1995), ‘Bayesian analysis of proportional hazards models
built from monotone functions’, Biometrics 51, 843–852.

Grieve, A. P. (1987), ‘Applications of Bayesian software: Two examples’, The Statistician
36, 283–288.

Gustafson, P. (1997), ‘Large hierarchical Bayesian analysis of multivariate survival data’,
Biometrics 53, 230–242.

Hjort, N. L. (1990), ‘Nonparametric Bayes estimators based on beta processes in models of
life history data’, Annals of Statistics 18, 1259–1294.

Ibrahim, J. G. and Chen, M.-H. (2000), ‘Power prior distributions for regression models’,
Statistical Sciences 15, 46–60.

Ibrahim, J. G., Chen, M.-H. and Chu, H. (2012), ‘Bayesian methods in clinical trials: a
bayesian analysis of ecog trials e1684 and e1690’, BMC Medical Research Methodology
12, DOI: 10.1186/1471–2288–12–183.

Ibrahim, J. G., Chen, M.-H. and MacEachern, S. N. (1999), ‘Bayesian variable selection for
proportional hazards models’, Canadian Journal of Statistics 27, 701–717.

Ibrahim, J. G., Chen, M.-H. and Sinha, D. (2001), Bayesian Survival Analysis, New York:
Springer-Verlag.

Ibrahim, J. G., Chen, M.-H. and Sinha, D. (2004), ‘Bayesian methods for joint modeling
of longitudinal and survival data with applications to cancer vaccine studies’, Statistica
Sinica 14, 863–883.

Johnson, W. and Christensen, R. (1989), ‘Nonparametric Bayesian analysis of the acceler-
ated failure time model’, Statistics and Probability Letters 7, 179–184.

Kalbfleisch, J. D. (1978), ‘Nonparametric Bayesian analysis of survival time data’, Journal
of the Royal Statistical Society, Series B 40, 214–221.

Kaplan, E. L. and Meier, P. (1958), ‘Nonparametric estimation from incomplete observa-
tions’, Journal of the American Statistical Association 53, 457–481.



Bayesian Analysis of the Cox Model 47

Kim, S. W. and Ibrahim, J. G. (2001), ‘On Bayesian inference for parametric proportional
hazards models using noninformative priors’, Lifetime Data Analysis 6, 331–341.

Kirkwood, J. M., Ibrahim, J. G., Sondak, V. K., Richards, J., Flaherty, L. E., Ernstoff,
M. S., Smith, T. J., Rao, U., Steele, M. and Blum, R. (2000), ‘The role of high- and
low-dose interferon alfa-2b in high-risk melanoma: First analysis of intergroup trial
e1690/s9111/c9190’, Journal of Clinical Oncology 18, 2444–2458.

Kirkwood, J. M., Strawderman, M. H., Ernstoff, M. S., Smith, T. J., Borden, E. C. and
Blum, R. H. (1996), ‘Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous
melanoma: The eastern cooperative oncology group trial est 1684’, Journal of Clinical
Oncology 14, 7–17.

Klein, J. P. and Moeschberger, M. L. (2003), Survival Analysis: Techniques for Censored
and Truncated Data, New York: Springer-Verlag.

Kuo, L. and Mallick, B. K. (1997), ‘Bayesian semiparametric inference for the accelerated
failure-time model’, Canadian Journal of Statistics 25, 457–472.

Kuo, L. and Smith, A. F. M. (1992), Bayesian computations in survival models via the
Gibbs sampler, in J. P. Klein and G. P. K., eds., ‘Survival Analysis: State of the Art’,
Boston: Kluwer Academic, pp. 11–24.

Laud, P. W., Damien, P. and Smith, A. F. M. (1998), Bayesian nonparametric and covariate
analysis of failure time data, in ‘Practical Nonparametric and Semiparametric Bayesian
Statistics’, New York: Springer, pp. 213–225.

Laud, P. W., Smith, A. F. M. and Damien, P. (1996), ‘Monte Carlo methods for approxi-
mating a posterior hazard rate process’, Statistics and Computing 6, 77–83.

Law, N. J., Taylor, J. M. G. and Sandler, H. (2002), ‘The joint modeling of a longitu-
dinal disease progression marker and the failure time process in the presence of cure’,
Biostatistics 3, 547–563.

Leonard, T. (1978), ‘Density estimation, stochastic processes and prior information’, Journal
of the Royal Statistical Society, Series B 40, 113–146.

MacEachern, S. N. (1994), ‘Estimating normal means with a conjugate style dirichlet process
prior’, Communications in Statistics – Theory and Methods 23, 727–741.

Mallick, B. K., Denison, D. G. T. and Smith, A. F. M. (1999), ‘Bayesian survival analysis
using a MARS model’, Biometrics 55, 1071–1077.

Nieto-Barajas, L. E. and Walker, S. G. (2002), ‘Markov beta and gamma processes for
modeling hazard rates’, Scandinavian Journal of Statistics 29, 413–424.

Qiou, Z., Ravishanker, N. and Dey, D. K. (1999), ‘Multivariate survival analysis with posi-
tive frailties’, Biometrics 55, 637–644.

Sahu, S. K., Dey, D. K., Aslanidou, H. and Sinha, D. (1997), ‘A Weibull regression model
with gamma frailties for multivariate survival data’, Lifetime Data Analysis 3, 123–137.

Sargent, D. J. (1998), ‘A general framework for random effects survival analysis in the Cox
proportional hazards setting’, Biometrics 54, 1486–1497.

Shih, J. A. and Louis, T. A. (1995), ‘Assessing gamma frailty models for clustered failure
time data’, Lifetime Data Analysis 1, 205–220.



48 Handbook of Survival Analysis

Sinha, D. (1993), ‘Semiparametric Bayesian analysis of multiple event time data’, Journal
of the American Statistical Association 88, 979–983.

Sinha, D. (1997), ‘Time-discrete beta process model for interval-censored survival data’,
Canadian Journal of Statistics 25, 445–456.

Sinha, D. (1998), ‘Posterior likelihood methods for multivariate survival data’, Biometrics
54, 1463–1474.

Sinha, D., Chen, M.-H. and Ghosh, S. K. (1999), ‘Bayesian analysis and model selection for
interval-censored survival data’, Biometrics 55, 585–590.

Sinha, D. and Dey, D. K. (1997), ‘Semiparametric Bayesian analysis of survival data’, Jour-
nal of the American Statistical Association 92, 1195–1212.

Sinha, D., Ibrahim, J. G. and Chen, M.-H. (2002), ‘Bayesian models for survival data from
cancer prevention studies’, Journal of the Royal Statistical Society, Series B 63, 467–477.

Sinha, D., Ibrahim, J. G. and Chen, M.-H. (2003), ‘A Bayesian justification of Cox’s partial
likelihood’, Biometrika 90, 629–641.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002), ‘Bayesian
measures of model complexity and fit (with discussion)’, Journal of the Royal Statistical
Society, Series B 64, 583–639.

Susarla, V. and Van Ryzin, J. (1976), ‘Nonparametric Bayesian estimation of survival curves
from incomplete observations’, Journal of the American Statistical Association 71, 897–
902.

Walker, S. G., Damien, P., Laud, P. W. and Smith, A. F. M. (1999), ‘Bayesian nonparametric
inference for random distributions and related functions (with discussion)’, Journal of the
Royal Statistical Society, Series B 61, 485–528.

Walker, S. G. and Mallick, B. K. (1999), ‘A Bayesian semiparametric accelerated failure
time model’, Biometrics 55, 477–483.

Wang, Y. and Taylor, J. M. G. (2001), ‘Jointly modeling longitudinal and event time
data, with applications to AIDS studies’, Journal of the American Statistical Associa-
tion 96, 895–905.



3

Alternatives to the Cox Model

Torben Martinussen

Department of Biostatistics, University of Copenhagen

Limin Peng

Department of Biostatistics and Bioinformatics, Emory University

CONTENTS

3.1 Additive hazards regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.1 Model specification and inferential procedures . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Goodness-of-fit procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.3 Further results on additive hazard models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.3.1 Structural properties of the additive hazard model . . . . . . . . 54
3.1.3.2 Clustered survival data and additive hazard model . . . . . . . 55
3.1.3.3 Additive hazard change point model . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.3.4 Additive hazard and high-dimensional regressors . . . . . . . . . . 56
3.1.3.5 Combining the Cox model and the additive model . . . . . . . . 56
3.1.3.6 Gastrointestinal tumour data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 The accelerated failure time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.1 Parametric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.2 Semiparametric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.2.1 Inference based on hazard specification . . . . . . . . . . . . . . . . . . . . 59
3.2.2.2 Inference using the additive mean specification . . . . . . . . . . . . 61

3.3 Quantile regression for survival analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.2 Estimation under random right censoring with C always known . . . . . 63
3.3.3 Estimation under covariate-independent random right censoring . . . . 63
3.3.4 Estimation under standard random right censoring . . . . . . . . . . . . . . . . . . 64

3.3.4.1 Self-consistent approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.4.2 Martingale-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.5 Variance estimation and other inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.6 Extensions to other survival settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.7 An illustration of quantile regression for survival analysis . . . . . . . . . . . . 68
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1 Additive hazards regression

The Cox regression model is clearly the most used hazards model when analyzing survival
data as it provides a convenient way of summarizing covariate effects in terms of relative
risks. The proportional hazards assumption may not always hold, however. A typical vi-
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olation of the assumption is time-changing covariate effects which is often encountered in
bio-medical applications. A typical example is a treatment effect that varies with time such
as treatment efficacy fading away over time due to, for example, tolerance developed by
the patient. Under such circumstances, the Aalen additive hazard model (Aalen, 1980) may
provide a useful alternative to the Cox model as it easily incorporates time-varying covari-
ate effects. For Aalen’s model, the hazard function for an individual with a p-dimensional
covariate X vector takes the form

α(t|X) = XTβ(t). (3.1)

The time-varying regression function β(t) is a vector of locally integrable functions, and
usually the X will have 1 as its first component allowing for an intercept in the model.
Model (3.1) is very flexible and can be seen as a first order Taylor series expansion of a
general hazard function α(t|X) around the zero covariate:

α(t|X) = α(t, 0) +XTα
′
(t,X∗)

with X∗ on the line segment between 0 and X. As we shall see below, it is the cumulative
regression function

B(t) =

∫ t

0

β(s) ds

that is easy to estimate and its corresponding estimator converges at the usual n1/2-rate.
Estimation and asymptotical properties were derived by Aalen (Aalen, 1980), and further
results for this model were given in Aalen (1989), Aalen (1993), and Huffer and McKeague
(1991) derived efficient estimators.

The full flexibility of the model (3.1) may not always be needed and it is usually also of
interest to try to simplify the model investigating whether or not a specific covariate effect
really varies with time. A very useful model in this respect is the semiparametric additive
hazards model of McKeague and Sasieni (1994). It assumes that the hazard function has
the form

α(t|X,Z) = XTβ(t) + ZT γ, (3.2)

where X and Z are p-dimensional and q-dimensional covariate vectors, respectively. Apart
from its use for testing time-varying effects, this model is useful in its own right because
it is then possible to make a sensible bias-variance trade-off, where effects that are almost
constant can be summarized as such and effects that are strongly time-varying can be
described as such. Note also that model (3.2) covers model (3.1) simply by leaving out
the last part of model (3.2) by leaving Z empty. On the other hand, in practice, one may
start out with model (3.1) and then test for a specific covariate whether its effect varies
significantly with time. If this is not the case one may then simplify to model (3.2) with
Z being that specific covariate, and one can then proceed in that way with some or all of
the remaining covariates; the starting point, though, will now be model (3.2). Below we
show how to do such inference in model (3.2). Lin and Ying (1994) considered a special case
of (3.2), where only the intercept term is allowed to depend on time; this model is often
referred to as the Lin and Ying model. A nice discussion of pros and cons of the additive
hazards model can be found in Aalen et al. (2008).

3.1.1 Model specification and inferential procedures

We present estimation and inferential procedures based on model (3.2) since, as mentioned
above, model (3.1) is covered by model (3.2) simply by leaving Z empty and therefore the
below results also cover model (3.1).



Alternatives to the Cox Model 51

Let T be the survival time of interest with conditional hazard function α(t|X,Z) given
the covariate vectors X and Z. In practice T may be right-censored by U so that we observe
(T̃ = T ∧ U,Δ = I(T ≤ U), X, Z). We assume that T and U are conditionally independent
given (X,Z). Let (T̃i,Δi, Xi, Zi) be n iid replicates from this generic model. Under the above
independent right-censoring scheme, the ith counting process Ni(t) = I(T̃i ≤ t,Δi = 1) has
intensity

λi(t) = Yi(t)
[
XT

i β(t) + ZT
i γ
]
,

where Yi(t) = I(t ≤ T̃i) is the at risk indicator. We assume that all counting processes are
observed in the time-interval [0, τ ], where τ < ∞. Each counting process has compensator

Λi(t) =
∫ t

0
λi(s)ds such that Mi(t) = Ni(t)−Λi(t) is a martingale. Define the n-dimensional

counting process N = (N1, ..., Nn)
T and the n-dimensional martingale M = (M1, ...,Mn)

T .
Let also X = (Y1X1, . . . , YnXn)

T , Z = (Y1Z1, . . . , YnZn)
T . The results presented below

hold under some regularity conditions; see Martinussen and Scheike (2006). Writing the
model in incremental form

dN(t) = X(t)dB(t) + Z(t)γdt+ dM(t),

and since E{dM(t)} = 0, this suggests the following (unweighted) least squares estimator

of {B(t) =
∫ t

0
β(s) ds, γ)} McKeague and Sasieni (1994):

γ̂ =

(∫ τ

0

ZTHZ dt

)−1 ∫ τ

0

ZTHdN(t), (3.3)

B̂(t) =

∫ t

0

X−dN(t)−
∫ t

0

X−Z dtγ̂, (3.4)

where X− denotes the generalized inverse (XTX)−1XT and H = I −XX− assuming here
that the required inverses exist. Considering the model with only non-parametric terms,
model (3.1), means that Z is empty and is readily seen from the latter display that the
estimator of B(t) in that case is given by

B̂(t) =

∫ t

0

X−dN(t),

which is the estimator initially proposed by Aalen (1980). Weighted estimators, and in
theory efficient estimators, exist. However, they depend on the unknown parameters, and
therefore, to calculate them, some kind of smoothing is needed which may compromise
efficiency in practice; see McKeague and Sasieni (1994) for more on the efficient estimators.
Here we will only deal with the unweighted estimators that can be calculated without any
use of smoothing. It is quite obvious that these simple and direct estimators have sound
properties as the following arguments show. Considering γ̂, the counting process integral
can be written as∫ τ

0

ZTHdN(t) =

∫ τ

0

ZTHd{XdB(t) + Zγdt}+
∫ τ

0

ZTHdM(t)

=

∫ τ

0

ZTHZdtγ +

∫ τ

0

ZTHdM(t)

since HX = 0, and therefore γ̂ is an essentially unbiased estimator of γ since the martin-
gale term has zero-mean. Similar arguments concerning B̂(t) are readily given. The limit
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distributions of the estimators are

n1/2{γ̂ − γ} = C−1(τ)n−1/2

∫ τ

0

ZTHdM(t),

n1/2{B̂(t)−B(t)} = n1/2

∫ τ

0

X−dM(t)− P (t)n1/2{γ̂ − γ},

where

C(t) = n−1

∫ t

0

ZTHZ ds, P (t) =

∫ t

0

X−Z dt.

These limit distributions may be written as sums of essentially iid terms:

n1/2{γ̂ − γ} = n−1/2
n∑

i=1

εγi + oP (1), n1/2{B̂(t)−B(t)} = n−1/2
n∑

i=1

εBi (t) + oP (1),

where

εγi = c−1(τ)

∫ τ

0

{Zi − (zTx)(xTx)−1Xi}dMi(t),

εBi (t) =

∫ τ

0

(xTx)−1XidMi(t)− p(t)εγi ,

where c(t) and p(t) denote the limits in probability of C(t) and P (t), respectively. Also,
xTx is used as notation for the limit in probability of n−1XTX, and similarly with zTx.
The limit distributions may be simulated likewise what Lin et al. (1993) suggested in a
Cox-model setting:

n1/2{γ̂ − γ} ∼ n−1/2
n∑

i=1

ε̂γi Gi, n1/2{B̂(t)−B(t)} ∼ n−1/2
n∑

i=1

ε̂Bi (t)Gi,

where we let ∼ indicate that two quantities have the same limit distribution. In the latter
display, G1, . . . , Gn are independent standard normals and ε̂γi is obtained from εγi by replac-
ing deterministic quantities with their empirical counterparts and by replacing Mi(t) with
M̂i(t), i = 1, . . . , n, and similarly with ε̂Bi (t). The result is that, conditional on the data,(

n−1/2
n∑

i=1

ε̂γi Gi, n
−1/2

n∑
i=1

ε̂Bi (t)Gi

)
will have the same limit distribution as(

n1/2{γ̂ − γ}, n1/2{B̂(t)−B(t)}
)
.

The hypothesis of time-invariance

H0 : βp(t) = βp,

focusing without loss of generality on the pth regression coefficient, may be reformulated in
terms of the cumulative regression function Bp(t) =

∫ t

0
βp(s) ds as

H0 : Bp(t) = βp · t.

Martinussen and Scheike (2006) studied the test process

Vn(t) = n1/2(B̂p(t)− B̂p(τ)
t

τ
) (3.5)
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that is easy to compute and considered test statistics as

sup
t≤τ

|Vn(t)|.

Under H0, we have

Vn(t) = n1/2

{
(B̂p(t)−Bp(t))− (B̂p(τ)−Bp(τ))

t

τ

}
.

Clearly, the limit distribution of Vn(t) is not a martingale due to the term B̂p(τ), but
one may use the above resampling technique of Lin et al. (1993) to approximate its limit
distribution. Specifically, the limit distribution of Vn(t) may be approximated by

V̂n(t) = n−1/2
n∑

i=1

[
{ε̂Bi (t)}p − {ε̂Bi (τ)}p

t

τ

]
Gi

where vk is the kth element of a given vector v and where we are fixing the data. The
above limit distributions and the conditional multiplier approach may also be used to test
other hypothesis such as overall effect of a given covariate. Such inferential procedures and
estimation are implemented in the contributed R package timereg; for examples of its use,
see Martinussen and Scheike (2006).

3.1.2 Goodness-of-fit procedures

The additive hazard model is very versatile but it is still of importance to check whether
the model provides an adequate fit to the data at hand. The starting point will then usually
be model (3.1) and if this model is found to give an adequate fit then one may proceed
to investigate the time-dynamics of the covariate effects. The goodness-of-fit procedures
presented below are based on the martingale residuals

M̂(t) = N(t)−
∫ t

0

X(s)dB̂(s) =

∫ t

0

H(s)dM(s).

Under the model, the martingale residuals are thus themselves martingales. To validate the
model fit, one possibility is to sum these residuals depending on the level of the covariates
(Aalen, 1993; Grønnesby and Borgan, 1996). A K-cumulative residual process may then be
defined as

MK(t) =

∫ t

0

KT (s)dM̂(s) =

∫ t

0

KT (s)H(s)dM(s),

where K(t) = {KT
1 (t), . . . ,K

T
n (t)}T is an n × m matrix, possibly depending on time. A

typical choice ofK is to let it be a factor with levels defined by the quartiles of the considered
covariates. Based on a iid representation of MK(t) one may calculate p-values using for
instance a supremum-test, see Martinussen and Scheike (2006). With a continuous covariate
one may also target a test to investigate whether the specific covariate is included in the
model on the right scale, a typical alternative is to use a log-transformed version of the
covariate. This construction is similar to what Lin et al. (1993) proposed under the Cox
model and is based on

Mc(z) =

n∑
i=1

I(Xi1 ≤ z)M̂i(τ)

here assuming that the covariate under investigation is X1. This process in z has a decompo-
sition similarly to MK developed above, and resampling may thus be used to validate the fit
of the model (Martinussen and Scheike, 2006). These goodness-of-fit procedures are imple-
mented in the R-package timereg. For other goodness-of-fit testing concerning the additive
hazard model, see Gandy and Jensen (2005a) and Gandy and Jensen (2005b).
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3.1.3 Further results on additive hazard models

The additive hazard is applied in some more specialized areas of survival analysis. Below
we describe some of these. But first we present some structural properties of the model that
underline that this model may indeed provide an appealing alternative to the proportional
hazard model.

3.1.3.1 Structural properties of the additive hazard model

Consider the additive hazard model

α(t|X,Z) = β0(t) + βX(t)X + βZ(t)Z (3.6)

and let BX(t) =
∫ t

0
βX(s) ds and similarly with BZ(t). We will explore when the additive

hazard structure is preserved when only conditioning on X which was first investigated
in Aalen (1993). The model above is formulated with X and Z both being scalar valued
but the following can easily be generalized to cover the vector situation also. The hazard
function, when only conditioning on X, is

α(t|X) = β0(t) + βX(t)X + βZ(t) + ψZ|X(BZ(t)),

where ψZ|X(·) denotes minus the derivative of the log Laplace transform of Z given X. It
is therefore readily seen that additive structure is preserved if X and Z are independent as
only the intercept term is changed. This also holds true if (X,Z) has a normal distribution
also allowing for dependence between the two. This is in contrast to the proportional hazard
model where the proportional structure is not preserved even whenX and Z are independent
Struthers and Kalbfleisch (1986).

When dealing with data from a non-randomized study it may be of interest to calculate
the causal hazard function as it corresponds to the hazard function under a randomized
study. To do so we briefly introduce Pearl’s (Pearl, 2000) do operator, do(X = x) (or X̂ = x),
which is an intervention setting variable X to x. Therefore, the conditional distribution of
T given X is set to x, P (T |X̂ = x), is different from P (T |X = x) where the latter is the
conditional distribution of T given that we find X equal to x. Taking again model (3.6) as
the starting point it may be seen, using the so-called “G-computation formula” (Robins,
1986; Pearl, 2000), that

α(t|X̂ = x) = β̃0(t) + βX(t)x, (3.7)

β̃0(t) = β0(t) + βZ(t)ψZ(BZ(t)),

where ψZ(·) denotes minus the derivative of the log Laplace transform of Z. It is seen
from display (3.7) that the additive hazard structure is again preserved and therefore the
causal effect of X can be estimated from model (3.6) formulated for the observed data.
Such a property does not hold true for the proportional hazard model; see Martinussen and
Vansteelandt (2012) for more details on these issues. The additive hazard model also forms
the basis for investigation of so-called “direct effects” in Fosen et al. (2006); Martinussen
(2010); Lange and Hansen (2011); and Martinussen, Vansteelandt, Gerster and Hjelmborg
(2011). In a situation as depicted in Figure 3.1, the direct effect of X, formulated via the
hazard function on absolute scale, is

α(t|X̂ = x+ 1, K̂)− α(t|X̂ = x, K̂)
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FIGURE 3.1
Situation with L and K being observed confounders and U being unobserved.

3.1.3.2 Clustered survival data and additive hazard model

Clustered failure time data arise in many research areas, for example, in studies where time
to disease onset is recorded for members of a sample of families. One approach to analyze
such data is to use a frailty model, and recently Martinussen, Scheike and Zucker (2011)
proposed the use of the additive hazard model in such a setting. The Aalen additive gamma
frailty hazard model specifies that individual i in the kth cluster has conditional hazard
function

αik(t|Zk, Xik) = ZkX
T
ikβ(t), (3.8)

where Zk is the unobserved frailty variable, taken to be gamma distributed with mean 1 and
variance θ, Xik is the covariate vector and β(t) is the vector of time-dependent regression
coefficients. The counting process associated with individual i in the kth cluster has the
following intensity with respect to the marginal history:

λm
ik(t) = {1 + θXT

ikB(t−)}−1Yik(t)X
T
ikβ(t), (3.9)

where Yik(t) is the at-risk indicator. Thus the marginal intensity still has an additive struc-
ture, but with the design depending on B(t−). Based on this, an estimator was developed
that has a recursive structure, and large sample properties were presented; see Martinussen,
Scheike and Zucker (2011) for more details. Another approach was taken by Cai and Zeng
(2011) where the frailty effect also enters at the additive scale

αik(t|Zk, Xik) = β0(t) +XT
ikβ + Zk, (3.10)

using the Lin and Ying version of the additive model and where Zk follows a one-parameter
distribution with zero-mean. Estimators and large sample are provided in Cai and Zeng
(2011).

As alternative to the frailty approach one may instead use a marginal regression model
approach if interest centers on estimating regression effects at the population level and
estimation of correlation is of less interest. For use of the fully nonparametric version of the
additive hazards model in this context, see Martinussen and Scheike (2006). Instead one
may also apply the Lin and Ying version of the additive model; see Pipper and Martinussen
(2004) and Yin and Cai (2004).

3.1.3.3 Additive hazard change point model

As described in Section 3.1 the Aalen additive hazard model is well suited to investigate
the time dynamics of the effect of a given covariate. Hence one can test the constant effects
model against a model where the structure of the effect is left fully unspecified. An appealing
model in between the constant effects model and the full Aalen model is the change-point
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model in which the effect of a covariate is constant up to an unknown point in time and
changes thereafter to a new value. This model can be written as

α(t|X,Z) = X
′
β(t) + Z{γ1 + γ2I(t > θ)}, (3.11)

where α(t|X,Z) is the hazard rate,X is a p-dimensional covariate and Z is a scalar covariate,
β(t) is a vector of unknown locally integrable time-dependent regression functions, and γ1,
γ2 and θ are unknown parameters with the last being the change-point parameter that is also
taken as an unknown parameter. To test whether or not there is evidence of a change-point
effect corresponds to testing the hypothesis H0 : γ2 = 0, which is a nontrivial problem as
the change-point parameter θ is only present under the alternative. Martinussen and Scheike
(2007) derived a test tailored to investigate this hypothesis, and also gave estimators for all
the unknown parameters defining the model. They also proposed a test that can be used
to compare the change point model to full Aalen model with no prespecified form of the
covariate effects.

3.1.3.4 Additive hazard and high-dimensional regressors

It has become of increasing interest to develop statistical methods to explore a potential
relationship between a high-dimensional regressor, such as gene-expression data, to the
timing of an event such as death. It has been demonstrated that the additive hazard model
may also be useful in this respect. The starting point for these developments has so far been
the additive hazard model with all effects being constant with time, that is, the Lin and
Ying model,

α(t|Z) = β(t) + ZT γ,

where Z is p-dimensional covariate vector; in this case with p large. With gene expression
data, p may be very large and often much larger than the sample size n. This is referred
to as the p >> n situation. Based on the Lin and Ying model Martinussen and Scheike
(2009a) derived a partial least squares estimator via the so-called “Krylov sequence,” and
Ma et al. (2006) derived a principal components analysis in this context. Other popular
approaches in a high-dimensional regressor setting is the Lasso and Ridge regression to
mention some; see Bovelstad et al. (2009) for a comparison of methods using the Cox model
as the base model. One complication with the additive hazard model compared with the
proportional hazard model is, however, that there is no simple likelihood to work with for
the additive model. Leng and Ma (2007) suggested to use a least squares criterion, similarly
to the partial likelihood for Cox’s regression model, for the Lin and Ying model:

L(β) = βT {
∫

ZT (t)H(t)Z(t)dt}β − 2βT {
∫

ZT (t)H(t)dN(t)}. (3.12)

using the notation introduced in Section 3.1. This criterion was also suggested independently
by Martinussen and Scheike (2009b) that provided further motivation. This criterion opens
the route to many popular estimation procedures applied in the high-dimensional regressor
setting when the underlying model is the Lin and Ying model. Recently Gorst-Rasmussen
and Scheike (2012) took the same model to propose a sure independence screening method
that shows good performance. For estimation in the high-dimensional case one may use the
contributed R package ahaz that can also do other types of estimation and inference within
the additive hazard model context.

3.1.3.5 Combining the Cox model and the additive model

The Cox model and the Aalen model may be combined in various ways to improve model fit
or to enhance interpretation of parameters. Scheike and Zhang (2002) considered the model

α(t|X,Z) = {XTβ(t)} exp {ZT γ},
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FIGURE 3.2
Gastrointestinal tumour data. Left display: Kaplan-Meier estimates of survival probabilities
of the chemotherapy (solid line) and chemotherapy plus radiotherapy (dashed line) groups.
Right display: effect of combined therapy - Aalens least squares estimate of B1(t) with 95%
pointwise confidence bands with the dashed curve being the estimate based on a change-
point model).

termed the Cox-Aalen model, where the baseline hazard function of the Cox model is
replaced by an additive hazard term depending on X. Martinussen and Scheike (2002)
considered a proportional excess risk model that also combines the Cox model and the
additive model.

It is also of interest to decide whether the Cox model or the additive hazard is most ap-
propriate to apply in a given application. This is a nontrivial problem as these two classes of
models are non-nested. Martinussen et al. (2008) used the MizonRichard encompassing test
for this particular problem, which corresponds to fitting the Aalen model to the martingale
residuals obtained from the Cox regression analysis.

3.1.3.6 Gastrointestinal tumour data

A typical instance where the Cox model provides a poor fit is when crossing survival curves
is observed as shown in Figure 3.2 (left display) that displays the Kaplan-Meier estimates
of survival probabilities of the chemotherapy and chemotherapy plus radiotherapy groups
of gastric cancer patients in a randomized clinical trial (Stablein and Koutrouvelis, 1985);
these data were also considered in Zeng and Lin (2007b). The crossing of the survival curves
can be explained by the patients receiving the more aggressive treatment (radiotherapy)
who are at elevated risk of death initially but may benefit from the treatment in the long
run if they are able to tolerate the treatment initially. That the Cox model provides a poor
fit to the data is confirmed by the supremum test based on the score process Lin et al.
(1993) with p < 0.001. We fitted Aalens additive hazards model to the gastrointestinal
tumour data:

α(t|X) = β0(t) + β(t)X,

where X is the indicator of chemotherapy plus radiotherapy treatment. The cumulative
regression coefficient corresponding to the combined therapy group is depicted in Figure
3.2 (right display), showing nicely that a time varying effect is indeed the case for these
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data with a negative effect of the combined treatment in the first 300 days or so, and
then apparently with an adverse effect thereafter. For these data one may be interested in
applying the change-point model

α(t|X) = β0(t) +X{γ1 + γ2I(t > θ)},

with θ being the change-point parameter. For the gastrointestinal tumour data we obtain
the estimates θ̂ = 315 and (γ̂1, γ̂2) = (0.00175,−0.00255) with the estimated cumulative
regression function superimposed on the Aalen estimator in Figure 3.2 indicating that this
model gives a good fit to these data.

3.2 The accelerated failure time model

Another useful model in survival analysis is the accelerated failure time (AFT) model that
can be formulated using survival functions. Let T be a survival time and Z a covariate
vector that does not depend on time and let S(t|Z) be the conditional survival function.
The AFT model assumes that

S(t|Z) = S0(te
ZT β), (3.13)

where S0 is a baseline survival function. From (3.13) it is seen that covariates act multiplica-
tively on time so that their effect is to accelerate (or decelerate) time-to-failure relative to
S0. An equivalent and popular formulation of AFT-model is the following linear regression
for the log-transformed event time, log(T ), given Z such that

log(T ) = −ZTβ + ε, (3.14)

where the distribution of eε is given by S0 and ε is assumed to be independent of Z. The
AFT model has received considerable attention in the statistical literature in the last two
decades or so. Although, in its semiparametric version (see below) it is computationally
intensive, it is now considered as an alternative to the Cox model. It is appealing due to its
direct relationship between the failure time and covariates, which was also noted by David
Cox in Reid (1994). One may extend the model to cover the case where covariates may
change with time by considering

eε =

∫ T

0

eZ
T (t)β dt

see for example Zeng and Lin (2007a), but we will only consider the simpler case here. The
AFT model can also be formulated in terms of the hazard function for T given Z:

λ(t|Z) = λ0(te
ZT β)eZ

T β , (3.15)

where λ0(t) is the hazard associated with the distribution of eε.

3.2.1 Parametric models

If we are willing to specify a specific form of S0 then the AFT model is fully parametric.
For instance, the Weibull model is given by

S0(t) = e−ktα , k, α > 0.
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In such a case, estimation and statistical inference is straightforward using standard like-
lihood methods for survival data. For the Weibull model we have the hazard function
λ0(t) = kαtα−1 and hence, by (3.15),

λ(t|Z) = kα(teZ
T β)α−1eZ

T β = λ0(t)e
ZTαβ

being also a proportional hazard function with a Weibull baseline hazard function, so in
this specific example the two models coincide.

3.2.2 Semiparametric models

We will now look into the case where S0(t) is left unspecified, or, equivalently, ε in (3.14) is
not specified, which is referred to as the “semiparametric AFT model.” There exist two ap-
proaches to tackle this situation. One develops estimation based on the hazard specification
(3.15), while the other one uses the additive mean model specification (3.14) as a starting
point.

3.2.2.1 Inference based on hazard specification

Let C be the censoring time for T , and put T̃ = T ∧ C and Δ = I(T ≤ C). Hence
the intensity of the counting process N(t) = I(T̃ ≤ t)Δ is thus given by Y (t)λ(t) with
Y (t) = I(t ≤ T̃ ) being the at-risk indicator and λ(t) given in (3.15). Assume that n i.i.d.
counting processes are being observed subject to this generic hazard model. We thus consider
N(t) = {N1(t), .., Nn(t)} the n-dimensional counting process of all subjects. Define also the
time-transformed counting process

N∗(t) = (N1(te
−ZT

1 β), .., Nn(te
−ZT

n β))

with associated at-risk process Y ∗i (t, β) = Yi(te
−ZT

i β), i = 1, . . . , n. This time-

transformation is made because then the intensity of Ni(te
−ZT

i β) is

λ∗i (t) = Y ∗i (t)λ0(t),

which immediately suggests that Λ0(t) =
∫ t

0
λ0(s)ds should be estimated by the Breslow-

type estimator

Λ̂0(t, β) =

∫ t

0

1

S∗0 (s, β)
dN∗· (s) (3.16)

where dN∗· (t) =
∑n

i=1 dN
∗
i (t), and

S∗0 (t, β) =
n∑

i=1

Y ∗i (t, β)

if β were known. The efficient score function for β is

n∑
i=1

∫ ∞

0

∂

∂β
(λi(t, β))λ

−1
i (t, β) (dNi(t)− Yi(t)λi(t)dt) (3.17)

=

n∑
i=1

∫ ∞

0

(
λ

′
0(te

ZT
i β)teZ

T
i β

λ0(teZ
T
i β)

+ 1

)
Zi(dNi(t)− Yi(t)λi(t)dt)

=
n∑

i=1

∫ ∞

0

(
λ′0(u)u
λ0(u)

+ 1

)
Zi(dN

∗
i (u)− Y ∗i (u, β)dΛ0(u)),
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and inserting dΛ̂0(u, β) for dΛ0(u) gives

UW (β) =

n∑
i=1

∫ ∞

0

W (u)Zi

(
dN∗

i (u)−
Y ∗i (u, β)
S∗0 (u, β)

dN∗· (u)
)

=
n∑

i=1

∫ ∞

0

W (u) (Zi − E∗(u, β)) dN∗
i (u), (3.18)

where

S∗1 (u, β) =
n∑

i=1

Y ∗i (u, β)Zi, E∗(u, β) =
S∗1 (u, β)
S∗0 (u, β)

,

and

W (u) =

(
λ′0(u)u
λ0(u)

+ 1

)
(3.19)

is the efficient weight function. We cannot use (3.18) directly for estimation purposes since
the weight function W (u) involves the unknown baseline hazard function λ0(u) and its
derivative λ′0(u). These can be estimated and inserted into (3.18) but it is not recommend-
able since it is hard to get reliable estimates of especially λ′0(t). A way around this is to
take (3.18) and replace the weight function W (u) with one that can be computed as for
example W (u) = 1 or W (u) = n−1S∗0 (u, β) referred to as the “log-rank and Gehan weight
functions,” respectively. A practical complication is that the score function UW (β) is a step
function of β so UW (β) = 0 may not have a solution. The score function may furthermore
not be component-wise monotone in β. It is actually monotone in each component of β if
the Gehan weight is chosen (Fygenson and Ritov, 1994). The estimator β̂ is usually chosen
as the one which minimizes ||UW (β)||. The contributed R package lss calculates the Gehan

rank estimator. It has been established, under regularity conditions, that n1/2(β̂ − β) is
asymptotically zero-mean normal with covariance matrix A−1

W BWA−1
W , where AW and BW

are the limits in probability of

1

n

n∑
i=1

∫ ∞

0

W (u) (Zi − E∗(u, β))⊗2

(
λ′0(u)u
λ0(u)

+ 1

)
dN∗

i (u),

1

n

n∑
i=1

∫ ∞

0

W (u)2 (Zi − E∗(u, β))⊗2
dN∗

i (u),

respectively; see Tsiatis (1990) and Ying (1993). It is seen that AW and BW coincide in the
case where W (u) is taken as the efficient weight function (3.19). The asymptotic covariance
matrix depends on λ

′
0, which is difficult to estimate. One may, however, apply a resampling

technique avoiding estimation of λ
′
0; see Lin et al. (1998) and Jin et al. (2003).

The score function can also be written on the (log)-transformed time scale

UW̃ (β) =

n∑
i=1

∫ ∞

−∞
W̃ (t)

(
Zi − E∗(et, β)

)
dN∗

i (e
t)

=
n∑

i=1

∫ ∞

−∞
W̃ (t)

(
Zi − Ẽ(t− ZT

i β, β)
)
dÑi(t− ZT

i β), (3.20)

where Ñi(t) = I(log(T̃i) ≤ t)Δi, Ỹi(t) = I(t ≤ log(T̃i)),

Ẽ(t, β) =
n∑

i=1

ZiỸi(t)/
n∑

i=1

Ỹi(t), W̃ (t) =
λ′0ε(t)
λ0ε(t)

,
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with λ0ε(t) the hazard function for ε. Another way of motivating (3.20) is by classical non-
parametric testing theory; see Tsiatis (1990) and Kalbfleisch and Prentice (2002) for much
more details on that approach.

An interesting variant of (3.15), considered by Chen and Jewell (2001), is

λ(t) = λ0(te
ZT β1)eZ

T β2 , (3.21)

which contains the proportional hazard model (β1 = 0) and the accelerated failure time
model (β1 = β2), and for β2 = 0 what is called “the accelerated hazard model” (Chen
and Wang, 2000). Chen and Jewell (2001) suggested estimating equations for estimation of

β = (β1, β2) and showed for the resulting estimator, β̂, that n1/2(β̂ − β) is asymptotically
zero-mean normal with a covariance that also involves the unknown baseline hazard (and
its derivative). They also suggested an alternative resampling approach for estimating the
covariance matrix without having to estimate the baseline hazard function or its derivative.
With these tools at hand, one may then investigate whether it is appropriate to simplify
(3.21) to either the Cox model or the AFT model.

3.2.2.2 Inference using the additive mean specification

There exist other ways of estimating the regression parameters β of the semiparametric
AFT-model, which build more on classical linear regression models estimation. Starting
with (3.14), let V = log(T ), U = log(C) and Ṽ = V ∧ U , and write model (3.14) as

V = −β0 − ZTβ + ε

assuming that ε is independent of Z = (Z1, . . . , Zp)
T and has zero mean. If V was not

right-censored, then it is of course an easy task to estimate the regression parameters using
least squares regression. A number of authors (Miller, 1976; Buckley and James, 1979; and
Koul et al., 1981) have extended the least-squares principle to accommodate censoring; we
describe the approach of Buckley and James. The idea is to replace V with a quantity that
has the same mean as V , and which can be computed based on the right-censored sample.
With

V ∗ = VΔ+ (1−Δ)E(V |V > U,Z),

and Δ = I(V ≤ U), then E(V ∗ |Z) = E(V |Z). Still, V ∗ is not observable but it can be
estimated as follows. Since

E(V |V > U,Z) = −ZTβ +

∫∞
U+ZT β

vdF (v)

1− F (U + ZTβ)

with F the distribution of V +ZTβ, one can construct the so-called “synthetic data points:”

V̂ ∗i (β) = ViΔi + (1−Δi)

⎛⎝−ZT
i β +

∫∞
Ui+ZT

i β
vdF̂ (v)

1− F̂ (Ui + ZT
i β)

⎞⎠ ,

where F̂ is the Kaplan-Meier estimator based on (Ṽi + ZT
i β,Δi), i = 1, . . . , n. One may

then estimate the parameters from the normal equations leading to the following estimating
equation for the regression parameter vector β:

U(β) =

n∑
i=1

(V̂ ∗i (β) + ZT
i β)(Zi − Z) = 0, (3.22)
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where Z = n−1
∑

i Zi. Equation (3.22) needs to be solved iteratively if it has a solution.
This estimator is referred to as the “Buckley-James estimator.” The large sample properties
of the resulting estimator were studied by Ritov (1990). Equation (3.22) can also be written
as, with S(v) = v,

n∑
i=1

⎛⎝ΔiS(Ui + ZT
i β) + (1−Δi)

∫∞
Ui+ZT

i β
S(v)dF̂ (v)

1− F̂ (Ui + ZT
i β)

⎞⎠ (Zi − Z) = 0, (3.23)

that may be derived from a likelihood principle; the efficient choice of S(v) being S(v) =
f

′
(v)/f(v) with f(v) = F

′
(v) the density function. Ritov (1990) also established an asymp-

totic equivalence between the two classes of estimators given by (3.20) and (3.23).
The estimating function U(β) in (3.22) is neither continuous nor monotone in β, which

makes it difficult to calculate the estimator in practice. Jin et al. (2006) proposed an iterative
solution to (3.22) with a preliminary consistent estimator as starting value; this estimator
is also available in the R package lss.

3.3 Quantile regression for survival analysis

3.3.1 Introduction

In survival analysis, quantile regression (Koenker and Bassett, 1978) offers a significant
extension of the accelerated failure time (AFT) model. Let T denote the failure time of
interest and Z ≡ (Z1, . . . , Zp)

T denote a p × 1 vector of covariates. Define Z̃ = (1,ZT)T

and V = log(T ). For the response V , the τ -th conditional quantiles of V given Z̃ is defined
as QV (τ |Z̃) ≡ inf{t : Pr(V ≤ t|Z̃) ≥ τ}, where τ ∈ (0, 1). We adopt the same quantile
definition for other response random variables. With survival data, a common quantile
regression modeling strategy is to link the conditional quantile QV (τ |Z̃) to Z̃ through a
linear model:

QV (τ |Z̃) = Z̃Tβ0(τ), τ ∈ [τL, τU ], (3.24)

where β0(τ) is a (p + 1) × 1 vector of unknown regression coefficients possibly depending
on τ , and 0 ≤ τL ≤ τU ≤ 1. Like the AFT model, the quantile regression model (3.24)
offers an easy coefficient interpretation as a covariate effect on event time. Specifically, a
non-intercept coefficient in β0(τ) represents the change in the τth quantile of log(T ) given
one unit change in the corresponding covariate.

It is important to note that the AFT model,

log(T ) = ZTb+ ε, ε⊥Z, (3.25)

is a special case of model (3.24) with β0(τ) = (Qε(τ), b
T)T. Here ⊥ stands for independence,

and Qε(τ) represents the τth quantile of ε. From this view, we see that the AFT model
(3.25) requires the effects of covariates on QV (τ |Z̃) be constant for all τ ∈ [τL, τU ] (i.e.,
location shift effects). In contrast, the quantile regression model (3.24) flexibly formulates
coefficients as functions of τ , thereby permitting covariate effects to vary across different
quantile levels. As a result, it can accommodate a more general relationship between T and
Z compared to the AFT model (3.25).

Note, when τL = τU , model (3.24) would only assert “local” linearity between the
quantile of log(T ) and Z̃ at a single quantile level, and therefore imposes weaker restrictions
than a “global” quantile regression model corresponding to a case with τL < τU . A practical



Alternatives to the Cox Model 63

advantage of conducting “global” quantile regression is the capability of investigating the
dynamic pattern of covariate effects.

In this section, we shall primarily focus on quantile regression with randomly right-
censored data. Let C denote time to censoring. Define T̃ = T ∧ C and Δ = I(T ≤ C). The
observed data under right censorship consists of n i.i.d. replicates of (T̃ ,Δ, Z̃), denoted by
(T̃i,Δi, Z̃i), i = 1, . . . , n. In addition, we define Ṽ = log(T̃ ), Ṽi = log(T̃i), U = log(C), and
Ui = log(Ci). In Sections 3.3.2, 3.3.3 and 3.3.4, we consider three different random censoring
scenarios, with general inference procedures discussed in Section 3.3.5. Extensions to more
complex survival settings are briefly described in Section 3.3.6.

3.3.2 Estimation under random right censoring with C always known

Early work on quantile regression with censored data by Powell (1984, 1986) was targeted
at type I censoring cases where the censoring time C is fixed and prespecified. Motivated by
the fact that QṼ (τ |Z̃) = {Z̃Tβ0(τ)} ∧U , an estimator of β0(τ) is defined as the minimizer
of

r(b, τ) =
n∑

i=1

ρτ{Ṽi − (Z̃T

i b) ∧ Ui}

with respect to b, where ρτ (x) = x{τ − I(x < 0)}. This estimation method can also be
applied to a more general case where C is independent of T given Z̃, and is always known
but not necessarily fixed. In the absence of right censoring (i.e., Ci = ∞), r(b, τ) reduces
to the check function of Koenker and Bassett (1978), the objective function for defining
sample regression quantiles with complete data without censoring. Note that r(b, τ) is not
convex in b and thus it may have multiple local minima. Further efforts have been made
to improve the numerical performance of this approach by several authors, for example:
Fitzenberger (1997); Buchinsky and Hahn (1998); and Chernozhukov and Hong (2001). An
implementation of Powell’s method is available in the crq function in the contributed R
package quantreg by Koenker (2012).

3.3.3 Estimation under covariate-independent random right censoring

Under the assumption that T and C are independent and C is independent of Z̃ (i.e.,
covariate-independent random censoring), a natural estimating equation for β0(τ), derived
from Ying et al. (1995)’s work, is given by

n−1/2
n∑

i=1

Z̃i

[
I{Ṽi − Z̃Tβ(τ) > 0}

Ĝ{Z̃Tβ(τ)}
− (1− τ)

]
= 0, (3.26)

where Ĝ(·) is the Kaplan-Meier estimate for G(·), the survival function of C̃. The estimating
function, the left-hand side (LHS) of (3.26), is not continuous in β(τ), and thus an exact
zero-crossing may not exist. The solution to Equation (3.26) may be alternatively defined
as a minimizer of the L2 norm of the estimating function. Such an objective function is
discontinuous and may have multiple minima. To solve Equation (3.26), as suggested by
Ying et al. (1995), the grid search method may be used for cases with low-dimensional Z̃
and simulated annealing algorithm (Lin and Geyer, 1992) may be used for high-dimensional
cases.

For the same right censoring scenario, an alternative estimating equation for β0(τ)
is suggested by the work of Peng and Fine (2009). Specifically, the inverse probability
of censoring weighting (IPCW) technique (Robins and Rotnitzky, 1992) can be used to
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estimate β0(τ) based on the fact that

E

{
I(Ṽ ≤ t,Δ = 1)

G(Ṽ )
|Z̃
}

= Pr(V ≤ t|Z̃).

This leads to the following estimating equation for β0(τ):

n−1/2
n∑

i=1

Z̃i

[
I{Ṽi ≤ Z̃T

i β(τ),Δi = 1}
Ĝ(Ṽi)

− τ

]
= 0. (3.27)

Note, the estimating function in (3.27) is not continuous but monotone (Fygenson and Ritov,
1994). By the monotonicity of (3.27), the solution to Equation (3.27) can be reformulated
as the minimizer of the L1-type convex function (of b),

n∑
i=1

{
I(Δi = 1)

∣∣∣∣∣ Ṽi

Ĝ(Ṽi)
− bT

Z̃i

Ĝ(Ṽi)

∣∣∣∣∣
}

+

∣∣∣∣∣M − bT

n∑
l=1

(
− Z̃lI(Δl = 1)

Ĝ(Ṽl)
+ 2Z̃lτ

)∣∣∣∣∣ ,
whereM is an extremely large positive number selected to bound bT

∑n
l=1

(
−ZlI(Δl=1)

Ĝ(Ṽl)
+ 2Zlτ

)
from the above for all b’s in the compact parameter space for β0(τ). This minimization
problem can be readily solved by the l1fit function in S-PLUS or the rq() function in the
contributed R package quantreg (Koenker, 2012).

3.3.4 Estimation under standard random right censoring

Standard random right censoring refers to a censoring mechanism where C is only assumed
to be independent of T given Z̃. It is less restrictive than the censorship considered in
Sections 3.3.2 and 3.3.3.

Two major types of approaches have been developed for quantile regression with survival
data subject to standard random right censoring; one type employs the principle of self-
consistency (Efron, 1967) and the other type utilizes the martingale structure associated
with randomly right-censored data. Hereafter, we shall refer to them as a self-consistent
approach and martingale-based approach, respectively. Here we focus on approaches that
are oriented to the following global linear quantile regression model,

QV (τ |Z̃) = Z̃Tβ0(τ), τ ∈ [0, τU ], (3.28)

which is a special case of model (3.24) with τL = 0. Of note, model (3.28) entails
exp{Z̃Tβ0(0)} = 0, which is useful boundary information to be employed in the estima-
tion of β0(τ) with τ > 0. Some efforts, for example, by Wang and Wang (2009), have been
made to address a local linear quantile regression model (i.e., τL = τU ) by incorporating
nonparametric estimation of the distribution function of C given Z̃.

3.3.4.1 Self-consistent approach

Portnoy (2003) made the first attempt to tackle the estimation of model (3.28) under the
standard random right censoring assumption by employing the principle of self-consistency
(Efron, 1967). The critical idea behind his algorithm is about splitting a censored event
time, Ṽi with Δi = 0, between Ui and ∞ with appropriately designed weights, sharing the
same spirit as that adopted for Efron’s self-consistent estimator of survival function (Efron,
1967). The initial iterative self-consistent algorithm (Portnoy, 2003) was simplified into a
grid-based sequential estimation procedure (Neocleous et al., 2006), which is implemented by
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the crq function in the contributed R package quantreg (Koenker, 2012). The corresponding
asymptotic studies were established by Portnoy and Lin (2010).

The self-consistent approach can be formulated through stochastic integral equations
(Peng, 2012). Define Ni(t) = I(Ṽi ≤ t,Δi = 1), Ri(t) = I(Ṽi ≤ t, Δi = 0), and FV (t) ≡
Pr(V ≤ t). First, consider Efron’s (Efron, 1967) self-consistent estimating equation for FV (t)
in the one-sample case:

FV (t) = n−1
n∑

i=1

{
Ni(t) +Ri(t)

FV (t)− FV (Ṽi)

1− FV (Ṽi)

}
. (3.29)

Expressing the right-hand side (RHS) of (3.29) by a stochastic integral and further applying
stochastic integral by parts, one can rewrite Equation (3.29) as

FV (t) = n−1
n∑

i=1

[
Ni(t) +Ri(t){1− FV (t)}

∫ t

0

Ri(u)

{1− FV (u)}2
dFV (u)

]
. (3.30)

With t replaced by Z̃T
i β(τ), Equation (3.30) evolves into an estimating equation for β0(τ):

n1/2S(SC)
n (β, τ) = 0, (3.31)

where S
(SC)
n (β, τ) equals

n−1
n∑

i=1

Z̃i

[
Ni{Z̃T

i β(τ)}+Ri{Z̃T

i β(τ)}(1− τ)

∫ τ

0

Ri{Z̃T
i β(u)}

(1− u)2
du− τ

]
.

Define a grid of τ -values, G, as 0 < τ1 < τ2 < . . . < τM = τU . Let ‖G‖ denote the size
of G, maxk=0,...,M (τk+1 − τk). Without further mentioning, G will be adopted throughout

Section 3.3.4. A self-consistent estimator, β̂SC(·), is defined as a cadlag step function that
only jumps at the grid points of G and approximates the solution to Equation (3.31). The

algorithm taken to obtain β̂SC(·) is outlined as follows.

1. Set exp{Z̃iβ̂SC(0)} = 0 for all i. Set k = 0.

2. Given exp{Z̃iβ̂SC(τl)} for l ≤ k, obtain β̂SC(τk+1) as the minimizer of the following
weighted check function:[ ∑

Δi=1

ρτ (Ṽi − Z̃T

i b) +
∑
Δi=0

{
w̃k+1,iρτ (Ṽi − Z̃T

i b)

+(1− w̃k+1,i)ρτ (Y
∗ − Z̃T

i b)
}]

, (3.32)

where w̃k+1,i =
∑k

l=0 Ri{Z̃T
i β̂SC(τl)}

(
1−τk+1

1−τl+1
− 1−τk+1

1−τl

)
, and Y ∗ is an extremely large

value.

3. Replace k by k+1 and repeat step 2 until k = M or only censored observations remain
above exp{Z̃T

i β̂SC(τk−1)}.
Large sample studies for β̂SC(·) are facilitated by the stochastic integral equation repre-

sentation of (3.31). Specifically, under certain regularity conditions and given limn→∞ ‖G‖ =

0, supτ∈[ν,τU ] ‖β̂SC(τ)−β0(τ)‖ →p 0, where 0 < ν < τU . If n
1/2 limn→∞ ‖G‖ = 0 is further

satisfied, then n1/2{β̂SC(τ)−β0(τ)} converges weakly to a Gaussian process for τ ∈ [ν, τU ].

Peng (2012) also investigated several variants of β̂SC(·)(·), showing their asymptotic equiv-

alence to β̂SC as well as their connection with the self-consistent estimator proposed by
Portnoy (Portnoy, 2003; Neocleous et al., 2006).
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3.3.4.2 Martingale-based approach

Model (3.28) can also be estimated based on the martingale structure of randomly right-
censored data (Peng and Huang, 2008). Define ΛV (t|Z̃) = − log{1−Pr(V ≤ t|Z̃)}, N(t) =
I(Ṽ ≤ t,Δ = 1), and M(t) = N(t)−ΛV (t∧Y |Z̃). Let Ni(t) and Mi(t) be sample analogs of
N(t) and M(t), respectively, i = 1, . . . , n. Since Mi(t) is the martingale process associated
with the counting process Ni(t), E{Mi(t)|Z̃i} = 0 for all t > 0. This implies

E

{
n∑

i=1

Z̃i

[
Ni{Z̃T

i β0(τ)} − ΛV {Z̃T

i β0(τ) ∧ Ṽi|Z̃i}
]}

= 0. (3.33)

By the monotonicity of Z̃T
i β0(τ) in τ ∈ [0, τU ] under model (3.28), we have

ΛV {Z̃T

i β0(τ) ∧ Ṽi|Z̃i} =

∫ τ

0

I{Ṽi ≥ Z̃T

i β0(u)}dH(u), (3.34)

where H(x) = − log(1−x). Coupling the equalities (3.33) and (3.34) suggests the estimating
equation,

n1/2S(PH)
n (β, τ) = 0, (3.35)

where

S(PH)
n (β, τ) = n−1

n∑
i=1

Z̃i

[
Ni{Z̃T

i β(τ)} −
∫ τ

0

I{Ṽi ≥ Z̃T

i β(u)}dH(u)

]
.

An estimator of β0(τ), denoted by β̂PH(τ), can be obtained through approximating the
stochastic solution to Equation (3.35) by a cadlag step function. The sequential algorithm

for obtaining β̂PH(τ) is outlined as follows:

1. Set exp{Z̃T
i β̂PH(τ0)} = 0 for all i. Set k = 0.

2. Given exp{Z̃T
i β̂PH(τl)} for l ≤ k, obtain β̂PH(τk+1) as the minimizer of the following

L1-type convex objective function:

lk+1(h) =

n∑
i=1

∣∣∣∣ΔiṼi − δiZ̃
T

ih

∣∣∣∣+ ∣∣∣∣Y ∗ − n∑
l=1

(−ΔlZ̃
T

l h)

∣∣∣∣
+

∣∣∣∣Y ∗ − n∑
r=1

[
(2Z̃T

rh)

k∑
l=0

I{Ṽr ≥ Z̃T

r β̂PH(τl)}{H(τl+1)−H(τl)}
]∣∣∣∣,

where Y ∗ is an extremely large value.

3. Replace k by k + 1 and repeat step 2 until k = M or no feasible solution can be found
for minimizing lk(h).

The crq function in the contributed R package quantreg (Koenker, 2012) provides an imple-

mentation of β̂PH(τ) based on an algorithm slightly different from the one presented above.
More recently, Huang (2010) derived a grid-free estimation procedure for model (3.28) by
using the concept of quantile calculus.

Peng and Huang (2008) established the uniform consistency and weak convergence of

β̂PH(·). Moreover, β̂PH(·) was shown to be asymptotically equivalent to the self-consistent

estimator β̂SC(·) (Peng, 2012). The numerical results reported in Koenker (2008) and Peng
(2012) confirm this theoretical result and show comparable computational performance
between these two approaches.
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3.3.5 Variance estimation and other inference

The estimators of β0(τ) discussed in Sections 3.3.2–3.3.4 generally have asymptotic vari-
ances that involve unknown density functions. Under random right censoring with known
censoring time or covariate-independent censoring, we can adapt Huang (2002)’s technique

to avoid density estimation. Specifically, let β̂(τ) be general notation for an estimator of

β0(τ), and Sn(β(τ), τ) denote the estimating function associated with β̂(τ), for example,
the LHS of (3.26) and (3.27). Asymptotic theory may show that Sn{β0(τ), τ} converges to
a multivariate normal distribution with variance matrix Σ(τ). Suppose one can obtain a

consistent estimator of Σ(τ), denoted by Σ̂(τ). The following are the main steps to estimate

the asymptotic variance of β̂(τ):

1. Find a symmetric and nonsingular (p+1)×(p+1) matrixEn(τ) ≡ {en,1(τ), . . . , en,p+1(τ)}
such that Σ̂(τ) = {En(τ)}2.

2. Calculate Dn(τ) =

(
S−1
n {en,1(τ), τ} − β̂(τ), . . . ,S−1

n {en,p+1(τ), τ} − β̂(τ)

)
, where

S−1
n (e, τ) is defined as the solution to Sn(b, τ)− e = 0.

3. Estimate the asymptotic variance matrix of n1/2{β̂(τ)− β0(τ)} by n{Dn(τ)}⊗2.

Bootstrapping procedures are also frequently used for variance estimation under quantile
regression. Resampling methods that follow the idea of Parzen and Ying (1994) were shown
to yield valid variance estimates and other inference (Peng and Huang, 2008). Simple boot-
strapping procedures based on resampling with replacement also seem to have satisfactory
performance (Portnoy, 2003; Peng, 2012).

One practical appeal of quantile regression with survival data is its capability of accom-
modating and exploring varying covariate effects. Second-stage inference can be employed
to serve this need. Given β̂(τ) for a range of τ , it is often of interest to investigate: (1) how
to summarize the information provided by these estimators to help understand the under-
lying effect mechanism; and (2) how to determine whether some covariates have constant
effects so that a simpler model may be considered.

A general formulation of problem (1) may correspond to the estimation of some func-

tional of β0(·), denoted by Ψ(β0). A natural estimator for Ψ(β) is given by Ψ(β̂0). Such
an estimator may be justified by the functional delta method provided that Ψ is compactly
differentiable at β0 (Andersen et al., 1998).

Addressing question (2) can be formulated as a testing problem for the null hypothesis

H̃0,j : β
(j)
0 (τ) = ρ0, τ ∈ [τL, τU ], where the superscript

(j) indicates the jth component of a
vector, and ρ0 is an unspecified constant, j = 2, . . . , or p+1. An example test procedure is
presented in Peng and Huang (2008). Of note, accepting H̃0,j for all j ∈ {2, . . . , p+1} may
indicate the adequacy of an AFT model. This naturally renders a procedure for testing the
goodness-of-fit of an AFT model.

Model checking is often of practical importance. When the interest only lies in checking
the linearity between covariates and conditional quantile at a single quantile level, one
can adapt the approaches developed for uncensored data, for example, the work by Zheng
(2000), Horowitz and Spokoiny (2002), and He and Zhu (2003). When the focus is to test a
global linear relationship between conditional quantiles and covariates, a natural approach
is to use a stochastic process which has mean zero under the assumed model. For example,
a diagnostic process for model (3.28) (Peng and Huang, 2008) may take the form,

Kn(τ) = n−1/2
n∑

i=1

q(Z̃i)Mi(τ ; β̂),
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where q(·) is a known bounded function, and

Mi(τ ;β) = Ni

(
exp{Z̃T

i β(τ)}
)
−
∫ τ

0

I{Ṽi ≥ Z̃T

i β(u)}dH(u).

It can be shown that K(τ) converges weakly to a zero-mean Gaussian process, whose dis-
tribution can be approximated by that of

K∗(τ) = n−1/2
n∑

i=1

q(Z̃i)Mi(τ ; β̂)(1− ζi) + n−1/2
n∑

i=1

q(Z̃i){Mi(τ ;β
∗)−Mi(τ ; β̂)}.

Here β∗(τ) denote the resampling estimator obtained by perturbing the estimating equation
(3.35) by {ζi}ni=1, which are independent variates from a nonnegative known distribution
with mean 1 and variance 1. An unusual pattern of K(·) compared to that of K∗(·) would
suggest a lack-of-fit of model (3.28). A formal lack of fit test is given by the supremum
statistic, supτ∈[l,u] |K(τ)|, where 0 < l < u < τU . The p-value may be approximated by the
empirical proportion of supτ∈[l,u] |K∗(τ)| exceeding supτ∈[l,u] |K(τ)|.

3.3.6 Extensions to other survival settings

In practice, survival data may involve more complex censoring mechanism than random
right censoring. Truncation can also present, for example, in many observational studies.
There are recent method developments for quantile regression in more complex survival
scenarios. For example, Ji et al. (2012) proposed a modification of Peng and Huang (2008)’s
martingale-based approach for survival data subject to known random left censoring and/or
random left truncation in addition to random right censoring. Quantile regression with
competing risks or semicompeting risks data was addressed by the work of Peng and Fine
(2009) and Li and Peng (2011).

There are continued research efforts to address quantile regression for other important
survival scenarios, such as interval censored data and dependently censored data. As a
promising regression tool for survival analysis, quantile regression may be recommended in
a greater extent in real applications to provide complementary and yet useful secondary
analysis.

3.3.7 An illustration of quantile regression for survival analysis

To illustrate quantile regression for survival analysis, we use a dataset from a dialysis study
that investigated predictors of mortality risk in a cohort of 191 incident dialysis patients
(Kutner et al., 2002). Analysis covariates included patient’s age (AGE), the indicator of fish
consumption over the first year of dialysis (FISHH), the indicator of baseline HD dialysis
modality (BHDPD), the indicator of moderate to severe symptoms of restless leg symp-
toms (BLEGS), the indicator of education equal or higher than college (HIEDU), and the
indicator of being black (BLACK). We first fit the data with AFT model (3.25), where
T stands for time-to-death. In Table 3.1, we present the estimation results based on the
log-rank estimator, Gehan’s estimator, and the least-squares estimator. All covariates ex-
cept for BLEGS are consistently shown to have significant effects on survival by all three
different estimators. For the coefficient of BLEGS, Gehan’s estimator and the least-squares
estimator yield significant p values while the log-rank estimator does not.

We next conduct quantile regression based on model (3.28) for the same dataset.
Figure 3.3 displays Peng and Huang (2008)’s estimator of β0(τ) along with 95% pointwise
confidence intervals. In Figure 3.3, we observe that the coefficient for BLEGS diminishes
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TABLE 3.1
Results from fitting AFT model to the dialysis dataset. Coef: coefficient estimate; SE:
standard error.

Gehan’s Log-rank Least-squares
estimator estimator estimator

Coef SE p value Coef SE p value Coef SE p value

AGE −.031 .005 < .001 −.035 .004 <.001 .033 .006 < .001
FISHH .402 .139 .004 .485 .128 <.001 .507 .163 .002
BHDPD −.505 .156 .001 −.473 .136 < .001 −.509 .164 .002
BLEGS −.340 .166 .040 −.173 .145 .232 −.412 .176 .019
HIEDU −.352 .133 .008 −.364 .161 .024 .335 .139 .016
BLACK .640 .144 <.001 .591 .138 < .001 .643 .153 < .001

gradually with τ whereas estimates for the other coefficients seem to be fairly constant. We
apply the second-stage inference to formally investigate the constancy of each coefficient.
The results confirm our observation from Figure 3.3, suggesting a varying effect of BLEGS
and constant effects of the other covariates. This may lead to an interesting scientific im-
plication that BLEGS may affect the survival experience of dialysis patients with short
survival times, but may have little impact on that of long-term survivors. In addition, the
evidence for the nonconstancy of BLEGS coefficient may indicate some degree of lack-of-fit
of the AFT model for the dialysis data.

We further estimate the average quantile effects defined as
∫ u

l
β
(i)
0 (u)du (i = 2, . . . , 7).

The results are given in Table 3.2. We observe that the estimated average effects are similar
to the AFT coefficients obtained by Gehan’s estimator and the least-squares estimator, but
have relatively larger discrepancies with the log-rank estimates. This may indirectly reflect
the presence of some nonconstant covariate effect. When quantile regression model (3.28)
holds without any varying covariate effects, we would expect to see more consistent results
between Gehan’s estimator, which emphasizes early survival, and the log-rank estimator,
which treats early and late survival information equally.

TABLE 3.2
Estimation of average covariate effects based on quantile regression. AveEff: Estimated
average effect; SE: standard error.

AveEff SE p value

AGE −.030 .003 < .001
FISHH .327 .116 .005
BHDPD −.489 .162 .003
BLEGS −.369 .161 .022
HIEDU −.350 .137 .011
BLACK .654 .144 < .001
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FIGURE 3.3
Peng and Huang’s estimator (solid lines) and 95% pointwise confidence intervals (dotted
lines) of regression quantiles in the dialysis example.
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4.1 Introduction

The proportional hazards model (Cox, 1972) specifies that the hazard function for the failure
time T conditional on a set of covariates Z takes the form

λ(t|Z) = eβ
TZλ0(t),

where β is a set of unknown regression parameters, and λ0(·) is an arbitrary baseline hazard
function. The partial likelihood (Cox, 1975) is used to estimate β. Breslow (1972) provided

an estimator for the cumulative baseline hazard function Λ0(t) ≡
∫ t

0
λ0(s)ds. The asymptotic

properties of the maximum partial likelihood estimator and the Breslow estimator were
established by Tsiatis (1981) and Andersen and Gill (1982) among others.

Because the proportional hazards assumption may be violated in practice, it is useful
to consider nonproportional hazards models. Under the proportional odds model (Bennett,
1983), the hazard ratio between two sets of covariate values converges to unity, rather
than staying constant, as time increases. Both the proportional hazards and proportional
odds models belong to the class of linear transformation models, which relates an unknown

77
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transformation of T linearly to Z:

H(T ) = −βTZ + ε, (4.1)

whereH(·) is an unspecified increasing function, β is a set of unknown regression parameters,
and ε is a random error with a parametric distribution (Kalbfleisch and Prentice, 2002, p.
241). The choices of the extreme-value and standard logistic error distributions yield the
proportional hazards and proportional odds models, respectively. Dabrowska and Doksum
(1988), Cheng et al. (1995) and Chen et al. (2002) proposed inefficient estimators for this
class of models. Murphy et al. (1997) proposed efficient nonparametric maximum likelihood
estimators (NPMLEs) for the proportional odds model, while Zeng and Lin (2006) developed
NPMLEs for the whole class of linear transformation models.

Although the class of linear transformation models generalizes the proportional hazards
model, it is less flexible than the latter in that it is confined to traditional survival time (i.e.,
single-event) data and time-independent covariates. By contrast, the proportional hazards
model can easily incorporate time-dependent covariates and has been extended to recurrent
event data through the counting process framework (Andersen and Gill, 1982). To accom-
modate time-dependent covariates and recurrent events, Zeng and Lin (2006) formulated
transformation models through the intensity function for the counting process. In addition,
Zeng and Lin (2007) studied transformation models with random effects for multivariate
failure time data and joint models for repeated measures and failure time.

In this chapter, we provide an overview of transformation models, adopting the general
framework of Zeng and Lin (2006; 2007). In the next section, we describe transformation
models for various data structures and construct the corresponding likelihood functions.
In Section 4.3, we show how to calculate the NPMLEs. In Section 4.4, we present the
asymptotic results. In Section 4.5, we provide illustrations with three real examples. In
Section 4.6, we discuss some related problems.

4.2 Data, models and likelihoods

4.2.1 Transformation models for counting processes

Let counting process N∗(t) denote the number of events that have occurred by time t,
and let Z(·) denote a vector of possibly time-dependent covariates. We specify that the
cumulative intensity function for N∗(t) conditional on {Z(s); s ≤ t} takes the form

Λ(t|Z) = G

{∫ t

0

R∗(s)eβ
TZ(s)dΛ(s)

}
, (4.2)

where G is a specific increasing function, R∗(·) is an indicator process, β is a vector of
unknown regression parameters, and Λ(·) is an unspecified increasing function. For survival
data, R∗(t) = I(T ≥ t), where I(·) is the indicator function. For recurrent events, R∗(·) = 1.
The choice of G(x) = x yields the proportional hazards/intensity model (Cox, 1972; Ander-
sen and Gill, 1982). For survival data with time-independent covariates, Equation (4.2) im-

plies that G{Λ(t)eβTZ} is a cumulative hazard function so that Λ(T )eβ
TZ = G−1(− log ε0),

where ε0 has a uniform distribution. Thus, log Λ(T ) = −βTZ + logG−1(− log ε0), which is
equivalent to (4.1).

We consider the class of Box-Cox transformations G(x) = {(1 + x)ρ − 1}/ρ (ρ ≥ 0)
with ρ = 0 corresponding to G(x) = log(1+x) and the class of logarithmic transformations
G(x) = log(1 + rx)/r (r ≥ 0) with r = 0 corresponding to G(x) = x.
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FIGURE 4.1
Plots of the ratios Λ(t|Z = z)/Λ(t|Z = 0) against Λ(t) at eβ

Tz = 2 under the transformation

models Λ(t|Z) = G{Λ(t)eβTZ} with G(x) = {(1 + x)ρ − 1}/ρ and G(x) = log(1 + rx)/r.

Figure 4.1 shows the patterns of covariate effects over time for these two classes of
transformations. For the first class, covariate effects increase over time if ρ > 1 and decrease
over time if ρ < 1. For the second class, covariate effects always decrease over time, the rate
of decrease being higher for larger r.

Let C denote the censoring time, which is assumed to be independent of N∗(·) condi-
tional on Z(·). For a random sample of n subjects, the data consist of {Ni(t), Ri(t), Zi(t); t ∈
[0, τ ]} (i = 1, . . . , n), where Ri(t) = I(Ci ≥ t)R∗i (t), Ni(t) = N∗

i (t ∧ Ci), a ∧ b = min(a, b),
and τ is the duration of the study. To allow general censoring/truncation patterns, we re-
define Ni(t) as the number of events observed by time t on the ith subject, and Ri(t) as
the indicator of whether the ith subject is at risk at t.

Write λ(t|Z) = Λ′(t|Z). Assume that censoring is noninformative about β and Λ(·).
Then the likelihood for β and Λ(·) is proportional to

n∏
i=1

∏
t≤τ

{Ri(t)λ(t|Zi)}dNi(t) exp

{
−
∫ τ

0

Ri(t)λ(t|Zi)dt

}
, (4.3)

where dNi(t) is the increment of Ni over [t, t+ dt). For survival data, (3) reduces to

n∏
i=1

λ(t|Zi)
δi exp

{
−
∫ T̃i

0

λ(t|Zi)dt

}
,

where T̃i = Ti ∧ Ci, and δi = I(Ti ≤ Ci).
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4.2.2 Transformation models with random effects for dependent failure
times

For recurrent events, Equation (4.2) implies that the occurrence of a future event is inde-
pendent of the prior event history unless such dependence is captured by time-dependent
covariates. It is difficult to construct appropriate time-dependent covariates. It is more ap-
pealing to characterize the dependence of recurrent events through random effects or frailty.
Frailty is also useful in formulating the dependence of several types of events on the same
subject or the dependence of failure times among members of the same group or cluster.
To encompass all these types of multivariate failure time data, we represent the underlying
counting processes by N∗

ikl(·) (i = 1, . . . , n; k = 1, . . . ,K; l = 1, . . . , nik), where i pertains to
a subject or cluster, k to the type of event, and l to individuals within a cluster (Andersen et
al., 1992). The specific choices of K = nik = 1, nik = 1 and K = 1 correspond to recurrent
events, multiple types of events and clustered failure times, respectively.

We assume that the cumulative intensity function for N∗
ikl(t) takes the form

Λk(t|Zikl; bi) = Gk

{∫ t

0

R∗ikl(s)e
βTZikl(s)+bTi Z̃ikl(s)dΛk(s)

}
, (4.4)

where Gk (k = 1, . . . ,K) are analogous to G of Section 2.1, Z̃ikl is a subset of Zikl plus the
unit component, bi (i = 1, . . . , n) are independent random vectors with multivariate density
function f(b; γ) indexed by a set of parameters γ, and Λk(·) (k = 1, . . . ,K) are arbitrary
increasing functions. Equation (4.4) accommodates nonproportional hazards/intensity mod-
els and multiple random effects. We recommend to use normal random effects, which have
unrestricted covariance matrices. In light of the linear transformation model representa-
tion, normal random effects are more natural than gamma frailty, even for the proportional
hazards model. Computationally, normal distributions are more tractable than others, es-
pecially for multiple random effects.

Write θ = (βT, γT)T. Let Cikl, Nikl(·) and Rikl(·) be defined analogously to Ci, Ni(·)
and Ri(·) of Section 2.1. Assume that Cikl is independent of N∗

ikl(·) and bi conditional on
Zikl(·) and noninformative about θ and Λk (k = 1, . . . ,K). The likelihood for θ and Λk

(k = 1, . . . ,K) is

n∏
i=1

∫
b

K∏
k=1

nik∏
l=1

∏
t≤τ

[
Rikl(t)λk(t)e

βTZikl(t)+bTZ̃ikl(t)Gk

×
{∫ t

0

Rikl(s)e
βTZikl(s)+bTZ̃ikl(s)dΛk(s)

}]dNikl(t)

× exp

[
−Gk

{∫ τ

0

Rikl(t)e
βTZikl(t)+bTZ̃ikl(t)dΛk(t)

}]
f(b; γ)db, (4.5)

where λk(t) = Λ′k(t) (k = 1, . . . ,K).

4.2.3 Joint models for repeated measures and failure times

Let Yij denote a response variable and Xij a vector of covariates observed at time tij ,
for observation j = 1, . . . , ni on subject i = 1, . . . , n. We formulate their relationships
through generalized linear mixed models (Diggle et al., 2002, §7.2). The random effects bi
(i = 1, . . . , n) are independent zero-mean random vectors with multivariate density function
f(b; γ) indexed by a set of parameters γ. Given bi, the responses Yi1, . . . , Yini are indepen-
dent and follow a generalized linear model with density fy(y|Xij ; bi). The conditional means
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satisfy
g{E(Yij |Xij ; bi)} = αTXij + bTi X̃ij , (4.6)

where g is a known link function, α is a set of regression parameters, and X̃ is a subset of
X.

As in Section 2.1, let N∗
i (t) denote the number of events the ith subject has experienced

by time t and Zi(·) a vector of covariates. We allow N∗
i (·) to take multiple jumps so as to

accommodate recurrent events. If one is interested in adjusting for informative drop-out in
the repeated measures analysis, then N∗

i (·) will take a single jump at the drop-out time. To
account for the correlation between N∗

i (·) and the Yij , we incorporate the random effects
bi into Equation (4.2)

Λ(t|Zi; bi) = G

{∫ t

0

R∗i (s)e
βTZi(s)+(ψ◦bi)TZ̃i(s)dΛ(s)

}
,

where Z̃i is a subset of Zi plus the unit component, ψ is a vector of unknown constants,
and v1 ◦ v2 is the component-wise product of two vectors v1 and v2. Normally, we set
Xij = Zi(tij). It is assumed that N∗

i (·) and the Yij are independent given bi, Zi and Xij .
Write θ = (αT, βT, γT, ψT)T. Assume that censoring and measurement times are non-

informative (Tsiatis and Davidian, 2004). Then the likelihood for θ and Λ(·) can be written
as

n∏
i=1

∫
b

∏
t≤τ

{Ri(t)λ(t|Zi; b)}dNi(t) exp

{
−
∫ τ

0

Ri(t)λ(t|Zi; b)dt

} ni∏
j=1

fy(Yij |Xij ; b)f(b; γ)db,

(4.7)
where λ(t|Z; b) = Λ′(t|Z; b).

4.3 Estimation

The likelihood functions given in (4.3), (4.5) and (4.7) can all be written in the following
form

Ln(θ,A) =

n∏
i=1

K∏
k=1

nik∏
l=1

∏
t≤τ

λk(t)
dNikl(t)Ψ(Oi; θ,A), (4.8)

where A = (Λ1, . . . ,ΛK), Oi is the observation on the ith subject or cluster, and Ψ is
a functional of random process Oi, infinite-dimensional parameter A and d-dimensional
parameter θ. To obtain the NPMLEs of θ and A, we treat A as right-continuous and
replace λk(t) by the jump size of Λk at t. Under model (4.2) with G(x) = x, the NPMLEs
are identical to the maximum partial likelihood estimator of β and the Breslow estimator
of Λ.

To calculate the NPMLEs, we maximize Ln(θ,A) with respect to θ and the jump sizes
of A at the observed event times. This maximization can be carried out in many scientific
computing programs. For example, the Optimization Toolbox of MATLAB contains an
algorithm fminunc for unconstrained nonlinear optimization. One may choose between large-
scale and medium-scale optimization. The large-scale optimization algorithm is a subspace
trust region method based on the interior-reflective Newton algorithm of Coleman and Li
(1994; 1996). Each iteration involves approximate solution of a large linear system using the
technique of preconditioned conjugate gradients. The gradient of the function is required.
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The Hessian matrix is not required, and is estimated numerically when it is not supplied.
We recommend to provide the Hessian matrix, so that the algorithm is faster and more
reliable. The medium-scale optimization is based on the BFGS Quasi-Newton algorithm
with a mixed quadratic and cubic line search procedure. This algorithm is also available in
Numerical Recipes in C (Press et al., 1992). MATLAB also contains an algorithm fmincon
for constrained nonlinear optimization, which is similar to fminunc.

The optimization algorithms do not guarantee a global maximum and may be slow
for large sample sizes. Our experience, however, shows that these algorithms perform very
well for small and moderate sample sizes provided that the initial values are appropriately
chosen. One may use the estimates from the Cox proportional hazards model or a parametric
model as the initial values. One may also use some other sensible initial values, such as zero
for the regression parameters and Y for H(Y ). To gain more confidence in the estimates,
one may try different initial values.

It is natural to fit random-effects models through the expectation-maximization (EM)
algorithm (Dempster et al., 1977), in which random effects pertain to missing data. The
EM algorithm is particularly convenient for the proportional hazards model with random
effects because, in the M-step, the estimator of the regression parameter is the root of an
estimating function that takes the same form as the partial likelihood score function and
the estimator for A takes the form of the Breslow estimator; see Nielsen et al. (1992), Klein
(1992) and Andersen et al. (1997) for the formulas in the special case of gamma frailty.

For transformation models without random effects, we may use the Laplace transfor-
mation to convert the problem into the proportional hazards model with a random effect.
Let ξ be a random variable whose density f(ξ) is the inverse Laplace transformation of

e−G(t), i.e., e−G(t) =
∫∞
0

e−tξf(ξ)dξ. If P (T > t|ξ) = exp
{
− ξ
∫ t

0
eβ

TZ(s)dΛ(s)
}
, then

P (T > t) = exp
[
−G

{ ∫ t

0
eβ

TZ(s)dΛ(s)
}]
. Thus, we can turn the estimation of the general

transformation model into that of the proportional hazards frailty model. This strategy also
works for general transformation models with random effects, although there will be two
sets of random effects in the likelihood; see Appendix A.1 of Zeng and Lin (2007) for details.

There is another simple and efficient approach. Using either the forward or the backward
recursion described in Appendix A.2 of Zeng and Lin (2007), we can reduce the task of
solving equations for θ and all the jump sizes of Λ to that of solving equations for θ and
only one of the jump sizes. This method is more efficient and more stable than direct
optimization.

4.4 Asymptotic properties

We consider the general likelihood given in (4.8). Denote the true values of θ and A by

θ0 and A0 and their NPMLEs by θ̂ and Â. Under mild regularity conditions (Zeng and

Lin, 2007; 2010), θ̂ is strongly consistent for θ0 and Â(·) uniformly converges to A0(·)
with probability one. In addition, the random element n1/2{θ̂− θ0, Â(·)−A0(·)} converges

weakly to a zero-mean Gaussian process, and the limiting covariance matrix of θ̂ achieves
the semiparametric efficiency bound (Bickel et al., 1993).

To estimate the variances and covariances of θ̂ and Â(·), we treat (4.8) as a parametric
likelihood with θ and the jump sizes of A as the parameters and then invert the observed
information matrix for all these parameters. This approach not only allows one to estimate
the covariance matrix of θ̂, but also the covariance function for any functional of θ̂ and Â(·).
The latter is obtained by the delta-method (Andersen et al., 1992, §II.8) and is useful in
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predicting event occurrences. A limitation of this approach is that it requires inverting a
potentially large-dimensional matrix and thus may not work well when there are a large
number of observed failure times.

When the interest lies primarily in θ, one can use the profile likelihood approach (Murphy
and van der Vaart, 2000). Let pln(θ) be the profile log-likelihood function for θ, i.e., pln(θ) =

maxA logLn(θ,A). Then the (s, t)th element of the inverse covariance matrix of θ̂ can be

estimated by −ε−2
n {pln(θ̂+εnes+εnet)−pln(θ̂+εnes−εnet) −pln(θ̂−εnes+εnet)+pln(θ̂)},

where εn is a constant of order n−1/2, and es and et are the sth and tth canonical vectors,
respectively. The profile likelihood function can be easily calculated through the algorithms
described in the previous section. Specifically, pln(θ) can be calculated via the EM algorithm
by holding θ fixed in both the E-step and the M-step. In this way, the calculation is very
fast due to the explicit expression of the estimator of A in the M-step. In the recursive
formulas, the profile likelihood function is a natural product of the algorithm.

4.5 Examples

4.5.1 Lung cancer study

We first consider survival data from the Veterans’ Administration lung cancer trial (Prentice,
1973). The subset of data for the 97 patients without prior therapy has been analyzed by
many authors, including Bennett (1983), Pettitt (1984), Cheng et al. (1995), Murphy et
al. (1997) and Chen et al. (2002). Chen et al. related the survival time to the performance
status and tumour type through linear transformation models with G(x) = log(1 + rx)/r,
where r = 0, 1, 1.5 and 2. For comparisons, we fitted the same models and display the
results in Table 4.1.

For r = 0, our numbers agree with the standard software output. For r = 1, our results
are similar to those of Murphy et al. (1997). Small tumour is significantly different from
large tumour under r = 1, 1.5 and 2, but not under r = 0.

To determine which model best fits the data, we plot in Figure 4.2 the observed values of
the loglikelihood functions for the Box-Cox and logarithmic transformations. The likelihood
is maximised at r = 0.83. Since the likelihood at r = 1 is only slightly smaller, one would
choose r = 1 to obtain the familiar proportional odds model. The prediction of the subject-
specific survival experience under the proportional odds model is illustrated in Figure 4.3.

TABLE 4.1
Estimates of regression parameters for the Veteran’s Administration lung cancer data.

r = 0 r = 1 r = 1.5 r = 2

Performance status -0.024 (0.006) -0.053 (0.010) -0.063 (0.012) -0.072 (0.014)
Adeno vs. large tumour 0.851 (0.348) 1.314 (0.554) 1.497 (0.636) 1.679 (0.712)
Small vs. large tumour 0.547 (0.321) 1.383 (0.524) 1.605 (0.596) 1.814 (0.661)
Squam vs. large tumour -0.215 (0.347) -0.181 (0.588) -0.075 (0.675) 0.045 (0.749)

Note: Standard error estimates shown in parentheses.



84 Handbook of Survival Analysis

FIGURE 4.2
The observed values of the loglikelihood functions for the lung cancer data: (a) pertains
to the Box-Cox transformations G(x) = {(1 + x)ρ − 1}/ρ; (b) pertains to the logarithmic
transformations G(x) = log(1 + rx)/r.

4.5.2 Colon cancer study

In a clinical trial on colon cancer, 315, 310 and 304 patients with Stage C disease received
observation, levamisole alone, and levamisole combined with fluorouracil (Lev+5-FU), re-
spectively (Lin, 1994). By the end of the study, 155 patients in the observation group, 144
in the levamisole alone group and 103 in the Lev+5-FU group had cancer recurrences, and
there were 114, 109 and 78 deaths in the observation period, levamisole alone and Lev+5-
FU groups, respectively. Lin (1994) fitted separate proportional hazards models to cancer
recurrence and death. That analysis ignored the informative censoring on cancer recurrence
and did not explore the joint distribution of the two endpoints.

Following Lin (1994), we focus on the comparison between the observation and Lev+5-
FU groups. We treat cancer recurrence as the first type of failure and death as the second,
and consider four covariates:

Z1i =

{
0 if the ith patient was on observation,
1 if the ith patient was on Lev+5-FU;

Z2i =

{
0 if the surgery for the ith patient took place ≤20 days prior to randomization,
1 if the surgery for the ith patient took place >20 days prior to randomization;

Z3i =

{
0 if the depth of invasion for the ith patient was submucosa or muscular layer,
1 if the depth of invasion for the ith patient was serosa;
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FIGURE 4.3
Estimated survival curves for the lung cancer patients: the upper three curves pertain to the
point estimate and 95% confidence limits for a patient with a large tumour and performance
status of 80, and the lower three curves to those of a patient with a small tumour and
performance status of 40.

Z4i =

{
0 if the number of nodes involved in the ith patient was 1–4,
1 if the number of nodes involved in the ith patient > 4.

We fit the class of models in (4.4) with a normal random effect (to capture the dependence
between cancer recurrence and death) and the Box-Cox transformations {(1+x)ρ−1}/ρ and
logarithmic transformations r−1 log(1 + rx) through the EM algorithm. The combination
of G1(x) = 2{(1 + x)1/2 − 1} and G2(x) = log(1 + 1.45x)/1.45 maximizes the likelihood
function. Thus, we select this bivariate model.

Table 4.2 presents the results under the selected model and the proportional hazards and
proportional odds models. All three models show that Lev+5-FU is effective in preventing
cancer recurrence and death. The interpretation of treatment effects and the prediction of
events depend on which model is used.

We can predict an individual’s future events based on his/her event history. The survival
probability at time t for a patient with covariate values z and with cancer recurrence at t0
is∫

b
exp{−G2(Λ2(t)e

βT
2 z+b)}G′1(Λ1(t0)e

βT
1 z+b) exp{−G1(Λ1(t0)e

βT
1 z+b)}dΦ(b/σb)∫

b
exp{−G2(Λ2(t0)eβ

T
2 z+b)}G′1(Λ1(t0)eβ

T
1 z+b) exp{−G1(Λ1(t0)eβ

T
1 z+b)}dΦ(b/σb)

, t ≥ t0,

where Φ is the standard normal distribution function. We estimate this probability by re-
placing all the unknown parameters with their sample estimators, and estimate the standard
error by the delta method. An example of this kind of prediction is given in Figure 4.4.

To test the global null hypothesis of no treatment effect on cancer recurrence and death,
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TABLE 4.2
Estimates of regression parameters and variance component under random-effects transfor-
mation models for the colon cancer study.

Prop. hazards Prop. odds Selected

Treatment
Cancer -1.480 (0.236) -1.998 (0.352) -2.265 (0.357)
Death -0.721 (0.282) -0.922 (0.379) -1.186 (0.422)

Surgery
Cancer -0.689 (0.219) -0.786 (0.335) -0.994 (0.297)
Death -0.643 (0.258) -0.837 (0.369) -1.070 (0.366)

Depth
Cancer 2.243 (0.412) 3.012 (0.566) 3.306 (0.497)
Death 1.937 (0.430) 2.735 (0.630) 3.033 (0.602)

Node
Cancer 2.891 (0.236) 4.071 (0.357) 4.309 (0.341)
Death 3.095 (0.269) 4.376 (0.384) 4.742 (0.389)

σ2
b 11.62 (1.22) 24.35 (2.46) 28.61 (3.06)

log-likelihood -2895.1 -2895.0 -2885.7

Note: Standard error estimates are shown in parentheses.

one may impose the condition of a common treatment effect while allowing separate effects
for the other covariates. The estimates of the common treatment effects are −1.295, −1.523
and −1.843, with standard error estimates of 0.256, 0.333 and 0.318 under the proportional
hazards, proportional odds and selected models. Thus, one would conclude that Lev+5-FU
is highly efficacious.

4.5.3 HIV study

A clinical trial was conducted to evaluate the benefit of switching from zidovudine (AZT)
to didanosine (ddI) for HIV patients who have tolerated AZT for at least 16 weeks (Lin and
Ying, 2003). A total of 304 patients were randomly chosen to continue the AZT therapy
while 298 patients were assigned to ddI. The investigators were interested in comparing the
CD4 cell counts between the two groups at weeks 8, 16 and 24. A total of 174 AZT patients
and 147 ddI patients dropped out of the study due to patient’s request, physician’s decision,
toxicities, death and other reasons.

To adjust for informative drop-out in the analysis of CD4 counts, we consider the joint
modeling described in Section 2.3. For CD counts, we use a special case of (4.6)

E{log(Yij)|Xi, tij ; bi} = α0 + α1Xi + α2tij + bi, (4.9)

where Xi is the indicator for ddI, tij = 8, 16 and 24 weeks, and bi is zero-mean normal with
variance σ2

b . For drop-out time, we use the proportional hazards model with covariate Xi

and random effect bi. Table 4.3 summarizes the results of this analysis.
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FIGURE 4.4
Estimated survival probabilities of the colon cancer patients with cancer recurrences at days
500 under the selected model: the point estimates and pointwise 95% confidence limits are
shown by the solid and dot-dashed curves, respectively. The upper and lower sets of curves
pertain to z = (1, 1, 0, 0) and z = (0, 0, 1, 1), respectively.

TABLE 4.3
Joint analysis of CD4 counts and drop-out time for the HIV study.

Est SE

CD4 Counts
ddI 0.506 0.215
Time -0.041 0.005

Dropout Time
ddI -0.316 0.116

σ2
b 7.421 0.575

ψ -0.132 0.021

Note: Est and SE denote the parameter estimate and standard error estimate, respectively.

These results account for informative drop-out and show that ddI slowed down the
decline of CD4 counts over time. The strong significance of the variance component indicates
that drop-out was highly informative.
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4.6 Discussion

Although it is customary to use the linear mixed model for continuous repeated measures,
the underlying normality assumption may not hold. A simple strategy to achieve approxi-
mate normality is to apply a parametric transformation to the response variable. Unfortu-
nately, it is difficult to find the correct transformation in practice, especially when there are
outlying observations, and different transformations may lead to conflicting results. Zeng
and Lin (2007) proposed the semiparametric linear mixed model or random-effects linear
transformation model

H̃(Yij) = αTXij + bTi X̃ij + εij ,

where H̃ is an unknown increasing function, and εij (i = 1, . . . , n; j = 1, . . . , nij) are inde-
pendent errors with density function fε.

In many studies involving recurrent events, the observation of recurrent events is ended
by a terminal event, such as death or drop-out. Shared random effects models similar to those
described in Section 2.3 have been proposed to formulate the joint distribution of recurrent
and terminal events (e.g., Wang et al., 2001; Liu et al., 2004; Huang and Wang, 2004). In
particular, Liu et al. (2004) incorporated a common gamma frailty into the proportional
intensity model for the recurrent events and the proportional hazards model for the terminal
event. They developed a Monte Carlo EM algorithm to obtain the NPMLEs, but provided
no theoretical justifications. Zeng and Lin (2009) extended the joint model of Liu et al.
(2004) by replacing the proportional hazards/intensity model with the general random
effects transformation models and established the asymptotic properties of the NPMLEs.

The methods described in this chapter have been implemented in MATLAB by my
colleague Donglin Zeng; see http://www.bios.unc.edu/∼dzeng/Transform.html. The class
of linear transformation models was recently implemented by Stata. There is an ongoing
effort to implement the transformation models described in Section 2 in Stata.

Cohort sampling, such as case-cohort (Prentice, 1986) and nested case-control sampling
(Thomas, 1977), provides a cost-effective strategy to conduct large epidemiological cohort
studies with expensive exposure variables. Kong et al. (2004) and Lu and Tsiatis (2006)
proposed weighted estimators for the class of linear transformation models under case-cohort
sampling, while Zeng et al. (2006) studied NPMLEs for general transformation models under
both case-cohort and nested case-control sampling.

We have focused on right-censored data. Interval censoring arises when the failure time
is only known to fall in some interval. It is much more challenging to apply the NPMLE
to interval censored data than right-censored data. So far the asymptotic theory is only
available for the proportional hazards model with current status data (Huang, 1996), which
arise when the failure time is only known to be less than or greater than a single monitoring
time. We are currently working in this area.
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5.1 Introduction

An increasingly important goal in medical research is to extract information from a large
number of variables measured on patients in order to make predictions of disease-related
outcomes. When the outcome of interest is a possibly censored time to event, such as the
time to disease recurrence or death, statistical methods that account for censoring must
be used. Most classical statistical methods that relate covariates to outcome assume that
the number of covariates, p, is less than the number of observations, n; to work well, most
methods require p to be significantly less than n. In current research, however, it is common
for p to be large relative to n, a data structure usually described as high-dimensional data.
Sometimes, as in the case of most genomic studies, the covariates vastly outnumber the
sample size. This setting is often denoted by p � n, and is occasionally referred to as
ultra-high dimensional data. In these settings, most classical statistical methods are not
applicable without modification. Here, we review methods that have been developed for
relating high-dimensional data to survival outcomes, focusing on methods which can be
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used to make risk predictions for new observations; for methods related to testing in the
high-dimensional setting, see Chapter 15.

The methods we discuss here are applicable in any setting in which the goal of the
study is to relate a possibly censored survival time to a large number of predictors, but
for illustration purposes, we will focus on the particular setting of relating gene expression
data to recurrence-free survival of breast cancer patients. Let Ti be the time to disease
recurrence or death for the ith patient; because this time may not be observed if the patient
withdraws from the study or dies of another cause, we instead observe Yi = min{Ti, Ci},
where Ci is the time of censoring, and Δi = I[Ti ≤ Ci], the indicator of whether the
observed time corresponds to disease recurrence or censoring. Let Xi be a low-dimensional
vector of variables we want to insist are included as linear effects in any model under
consideration; these could include routine clinical variables like age and tumor grade, or
established biomarkers. Let Zi be a p-dimensional vector of variables subject to possible
dimension reduction, such as genomic predictors or other covariates under investigation. For
simplicity, we will refer to the components of Xi as “clinical variables” and the components
of Zi as “genomic variables,” though the actual variables in these two groups will vary
depending on the application. Letting Wi = (X�i ,Z

�
i )
�, the observed data thus consist

of n independent and identically distributed vectors, O = {(Yi,Δi,W
�
i ), i = 1, ..., n}.

The censoring Ci is assumed to be independent of Ti conditional on Wi, which is the
conventional assumption required to obtain consistent estimators of model parameters for
censored survival data. However, we note that under potential model misspecification, a
stronger assumption such as Ci being independent of both Ti and Wi is often imposed to
ensure proper inference. More details and related discussions can be found in Robins et al.
(1997) and Uno et al. (2007).

The most commonly used model for analyzing survival data is the Cox proportional
hazards (PH) model (Cox, 1972) introduced in Chapter 1, which assumes that the hazard
of an event at time t for an individual with covariates W can be modeled by the product
of a baseline hazard function λ0(t) and a regression function of the covariates:

λW(t) = λ0(t) exp(W
�θ). (5.1)

The standard classical approach to fit this model is to maximize the log-partial likelihood
(LPL)

�(θ) =

n∑
i=1

Δi

⎛⎝W�
i θ − log

⎧⎨⎩∑
j∈Ri

exp{W�
j θ}

⎫⎬⎭
⎞⎠ (5.2)

with respect to θ, where Ri is the risk set of individuals still at risk at time Yi. However,
when p is large relative to n, this approach may be infeasible, and a number of different
strategies have been proposed for adapting this approach to the high-dimensional setting.
Some methods proceed by feature selection, in which only a subset of the covariates are
selected for inclusion in the model. Feature selection can be done discretely, by developing
a strategy to assess whether individual features should enter the model, or by shrinkage,
in which penalization on the magnitude of the coefficients in the model leads to some
coefficients being set identically to zero (e.g., Tibshirani et al., 1997; Fan and Li, 2002; Zhang
and Lu, 2007; Antoniadis et al., 2010). Hybrids of marginal screening and shrinkage, such
as sure independence screening (SIS), have been proposed to handle ultra-high dimensional
survival data (e.g., Fan et al., 2010; Zhao and Li, 2011). In recent years, there has been
growing interest in leveraging external information about groupings of predictors, such
as pathway information about genomic markers. Structured regularization based on pre-
determined groups has been proposed to incorporate such information (Kim et al., 2012;
Wang et al., 2009). These methods will be discussed in Section 5.2.
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Another set of approaches, discussed in Section 5.3, focus on summarizing the feature
space with a smaller number of derived variables, without necessarily reducing the number
of features involved in the model. These methods develop constructed covariates that sum-
marize information in the original feature space, and aim to capture the original feature
space using a small number of these constructed covariates.

For settings where the PH assumption fails to hold, a wide range of survival models such
as the accelerated failure time model (introduced in Chapter 3) and the semiparametric
transformation model have been proposed as useful alternatives. Methods for fitting these
models have also been extended to incorporate high-dimensional predictors, and we discuss
these extensions in Section 5.4.

In Section 5.5, we apply a selection of these methods to breast cancer datasets in Wang
et al. (2005) and Sotiriou et al. (2006) and compare the resulting models with respect to
prediction performance, which we quantify using a C-statistic (5.7). A common secondary
goal beyond predictiveness is parsimony, or sparsity. This may be desirable for cost effec-
tiveness if the goal of the study is to develop a tool for physicians to use to predict patient
risk; it may also be desirable for interpretability, since developing and validating biological
hypotheses based on genomic associations can be easier if there are fewer of them. Addi-
tional methods and remarks about the strengths and weaknesses of various methods will be
discussed in Section 5.6. Other helpful recent reviews of methods for survival analysis when
p is large relative to n may be found in Witten and Tibshirani (2010) and Binder et al.
(2011).

5.2 Methods based on feature selection

One strategy for dealing with high dimensionality in the covariate space is to assume that
only a subset of the features, say k < p features, are associated with survival, and attempt
to select those features for inclusion in the model. This assumption of sparsity would be
reasonable if only a small number of features are expected to be predictive of survival. In
practice, a sparsity assumption may also be imposed if a parsimonious solution is desired
due to the cost associated with measuring a large number of features. The existing methods
which assume the true model is sparse may work well with respect to prediction accuracy
regardless of whether the sparsity assumption holds, but the established theoretical results
on the proposed estimators typically require sparsity. Some major approaches for feature
selection include discrete feature selection (Section 5.2.1) and shrinkage-based feature se-
lection (Section 5.2.2). Of increasing interest are methods that select groups of features
or otherwise take into account group structure; such methods could be used in genomic
data to make use of existing biological annotation of pathways and networks of genes. Some
methods for integrating prior group information into risk prediction are described in Section
5.2.3. For most regularization procedures, tuning parameters play an important role in the
performance of the final model. In Section 5.2.4, we discuss methods for selecting the tuning
parameters.

5.2.1 Discrete feature selection

A simple approach for selecting features is univariate selection, in which we screen variables
one at a time for association with survival. For example, for each feature we could perform
a univariate Cox score test, and include the top k features based on the ranking of the
corresponding p-value. The number k is a tuning parameter and can be selected to achieve a
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certain error rate such as the family-wise error rate or the false discovery rate (Benjamini and
Hochberg, 1995). This approach is easy to implement; however, in settings where covariates
are correlated, as in gene expression data, it may select highly correlated features which do
not lead to a multivariate model that improves over the univariate models.

To improve over univariate selection, we could account for correlation between genes by
including genes in a multivariate model sequentially, analogous to forward stepwise linear
regression. That is, we could start with the null model (or the model with clinical covariates
alone), calculate the score statistics for all features, and include the feature with the largest
score statistic. Then, with that first feature already in the model, we can use a score test to
select which of the remaining features can be added to most improve the model. We continue
this process until our model includes k genes, where k is once again a tuning parameter.
This approach is also easy to implement, and better accounts for correlation between genes;
however, it leads to a locally optimal model rather than the best model with k genes.

Bøvelstad et al. (2007) compared the performance of these discrete selection methods
with the performance of methods based on shrinkage (ridge and Lasso, discussed in Section
5.2.2) and summary variables (supervised and unsupervised principal components regression
and partial least squares, discussed Section 5.3). They demonstrated that methods based
on shrinkage and derived variables tended to outperform discrete variable selection.

5.2.2 Shrinkage methods

Feature selection methods based on discrete screening may not capture well the joint effects
of multiple genes, and hence may result in prediction models with low prediction accuracy.
On the other hand, fitting a joint model with p features may not be feasible or stable when
p is not small relative to n. To overcome such difficulties, various regularization procedures,
aiming to maximize a penalized LPL with a penalty accounting for the model complex-
ity, have been proposed. In this section, unless noted otherwise, we assume the correct
specification of the Cox model (5.1):

λW(t) = λ0(t) exp(W
�θ) = λ0(t) exp(X

�α+ Z�β), (5.3)

where λW(t) is the conditional hazard function given W, λ0(t) is an unknown baseline
hazard function, and θ = (α�,β�)� is the unknown vector of regression parameters to be
estimated. An L2-penalty on the magnitude of the β coefficients yields the ridge-regularized
estimator θ̂ridge (Verweij and Van Houwelingen, 1994), which is the minimizer of:

−�(θ) + λ

p∑
j=1

β2
j (5.4)

where �(·) is the LPL function and, throughout, λ ≥ 0 denotes a tuning parameter that

needs to be selected. In the high-dimensional setting, with a properly chosen λ, θ̂ridge is likely
to outperform the standard LPL estimator even when p < n. The asymptotic properties of
the ridge estimator can be found in Huang and Harrington (2002) for the case with fixed p.

Importantly, this approach does not do feature selection because all components of θ̂ridge
will in general be nonzero.

When a sparse solution is desired, a natural approach is to use an L1-penalty to regularize
the LPL, which yields the Lasso solution θ̂Lasso = (α̂�Lasso, β̂

�
Lasso)

� (Tibshirani et al., 1997;
Gui and Li, 2005; Park and Hastie, 2007) which minimizes:

−�(θ) + λ

p∑
j=1

|βj |.
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The non-smoothness of the L1 penalty leads to sparse solutions with large λ’s. Using similar
arguments as given in Knight and Fu (2000) for the Lasso regularized least squares estimator,

one may show that with a properly chosen λ = O(n
1
2 ), θ̂Lasso is

√
n-consistent for θ under

correct specification of (5.3) for fixed p. However, such a
√
n-consistent estimator is not

consistent in variable selection in that P (β̂Lasso,Ac = 0) converges to a constant P0 < 1,
where A = {j : βj �= 0}, Ac is the complement set of A and throughout, we use notation
βA to denote the subvector of β corresponding to the index set A.

The inconsistency in variable selection and the bias towards zero of the nonzero co-
efficients estimated in finite sample are undesirable features of the standard Lasso which
motivated the development of methods in which coefficients receive different amounts of pe-
nalization depending on the magnitude of their values. One such approach is the adaptive
Lasso which uses weighted L1-penalties to apply less penalization to larger coefficients and
more penalization to variables that are potentially non-informative (Zou, 2006). The adap-

tive Lasso penalized LPL estimator (Zhang and Lu, 2007) is defined as θ̂Lasso the minimizer
of:

−�(θ) + λ

p∑
j=1

|βj |τj

where the τj are positive data-driven weights. In the low-dimensional setting, the τj may

be chosen as τj = 1/|β̃j | where the β̃j are from the unpenalized LPL estimator. In the

high-dimensional setting, the β̃j may be taken from the ridge estimator θ̂ridge (5.4). Another
approach for reducing the bias in estimating the nonzero βj is to employ alternative bounded
penalty functions. Fan and Li (2002) noted that a “good” penalty function should aim to
produce an estimator that is (i) unbiased, in that the estimator is nearly unbiased when
the true parameter is large avoiding model bias; (ii) sparse, in that small coefficients are
automatically set to 0 to reduce model complexity; and (iii) continuous, in that the estimator
is continuous in data to avoid instability in model prediction. One penalty function that
satisfies all these properties is the smoothly clipped absolute deviation penalty (SCAD)

(Fan and Li, 2002), which leads to θ̂SCAD, the minimizer of:

−�(θ) +

p∑
j=1

{
I{|βj | ≤ λ}+ (aλ− |βj |)

(a− 1)λ
I{|βj | > λ}

}

for tuning parameters λ and a. For fixed p, both θ̂aLasso and θ̂SCAD are
√
n-consistent with

properly chosen λ (Fan and Li, 2002; Zhang and Lu, 2007). Furthermore, these estimators
possess the oracle property in that asymptotically they perform as well as if the active set
A is known. Specifically, these procedures attain model selection consistency with P (β̂Ac =

0) → 1, and n
1
2 (β̂A − βA) is asymptotically normal with mean 0 and variance IA,A(β)−1,

where IA,A(β) is the sub-matrix of the information matrix corresponding to the index set
(A,A).

Another potential problem with the Lasso is that when two highly correlated features
are associated with the outcome of interest, the Lasso will tend to identify only one of the
features, which can be undesirable for interpretability and replicability. To counteract this
problem, Zou and Hastie (2005) proposed the elastic net (EN) for linear regression. The EN
adds a ridge-type penalty to the Lasso, minimizing

−�(θ) + λ2

p∑
j=1

β2
j + λ1

p∑
j=1

|βj |,

which improves Lasso’s ability to identify sets of correlated genes associated with outcome.
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The EN penalty is applied to the Cox model with an algorithm adapted to the high-
dimensional setting in Engler and Li (2007). An adaptive version of the EN, similar to the
adaptive Lasso, was proposed in Zou and Zhang (2009) to overcome the inconsistency in
model selection and the large bias in estimating non-zero coefficients of the EN estimator.
One may employ such a penalty for the LPL to improve the estimation of θ. The asymptotic
properties of the adaptive EN estimator for linear regression were derived in Zou and Zhang
(2009) for the case when p grows with n but at a slower rate. One may expect that similar
properties hold for the adaptive EN penalized LPL estimator.

For the ultra-high dimensional setting, when p is much larger than n, an approach that
combines univariates selection (5.2.1) with shrinkage estimation (5.2.2) is sure independence
screening (SIS) developed in Fan et al. (2010) and Zhao and Li (2011). In Zhao and Li (2011),
a marginal Cox model is fit for every feature to get estimates of the univariate parameter and
its variance. Then covariates are retained whose magnitude (standardized by its variance)
passes a threshold which is defined in terms of the desired false positive rate. Finally, the
retained variables are combined into a full model using a shrinkage approach such as the
Lasso, Adaptive Lasso, or SCAD.

In addition to the aforementioned procedures, a variety of other methods that can pro-
duce sparse solutions have been developed for the Cox model, such as the Dantzig selector
(Antoniadis et al., 2010); Cox univariate shrinkage (Tibshirani et al., 2009); and covariance
regularized regression (Witten and Tibshirani, 2009). In general, the relative performance of
these methods depends on the sparsity of the signal, the dimension p and the signal-to-noise
ratio. Benner et al. (2010) compare the performance of the Cox model with the ridge, Lasso,
adaptive Lasso, elastic net, and SCAD penalties on high-dimensional data, and find that
the traditional Lasso and the elastic net appear to perform best in real data applications.
On the other hand, Waldron et al. (2011) compared the performance of ridge, Lasso, and
the elastic net on genomic data, and preferred ridge and the elastic net.

5.2.3 Methods based on group structure

Extensive work has been done to annotate the human genome, and there are numerous
databases that list pathways and networks of genes thought to work together (e.g., the
Molecular Signature Database (Subramanian et al., 2005)). In addition, accumulated knowl-
edge about genetic architecture can be useful for grouping markers into sets of markers that
have similar magnitudes of effects. Gene-set based analysis could also potentially increase
power because the number of pathways is generally much smaller than the number of genes
and, if properly grouped, the joint effects of multiple markers in a gene-set can be easier to
detect than their individual effects. A number of procedures have been proposed to improve
estimation by leveraging information about the group structure.

The group Lasso, developed for linear regression (Yuan and Lin, 2006), can be adapted
to the Cox model (e.g., Kim et al., 2012). Specifically, writing the model with K groups of
features and pk features in the kth group as:

λW(t) = λ0(t) exp

⎧⎨⎩α�X+

K∑
k=1

pk∑
j=1

βkjZkj

⎫⎬⎭ ,

the group Lasso estimator would minimize:

−�(θ) + λ

K∑
k=1

√
β�k Kkβk,

where βk = (βk1, ..., βkpk
)� and the Kk are pre-specified positive definite weight matrices.
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Examples of Kk include the identity matrix Ipk×pk
, and the identity matrix scaled to account

for group size, pkIpk×pk
. For certain values of λ, some of the pathway effects will be set

identically to zero; for pathways which are not set to zero, the estimated effects of all
markers in the pathway will in general be nonzero. Thus, this penalty selects groups, but
does not do feature selection within a group; one advantage of this approach is that it
is independent of the basis used within a group. The asymptotic properties of the group
Lasso estimator as well as an adaptive version of the group LASSO with data dependent
choices of Kk were studied in Bach (2008) and Nardi and Rinaldo (2008) for the linear
regression setting. One may expect similar properties of the estimators corresponding to
the PH model. In general, many annotated pathways may overlap extensively; fitting the
group Lasso penalty for linear regression when groups overlap is discussed in Jacob et al.
(2009), and the computational method described there can be easily extended to the Cox
model.

The group Lasso penalty treats a group as a unit and does not allow feature selection
within group. However, in settings where only a fraction of the genes within a group are
associated with the survival outcome, it would be desirable to only include these features in
risk prediction. To enable such within-group feature selection, Wang et al. (2009) propose
a hierarchical approach that both selects important pathways and selects important genes
within pathway. Specifically, they propose imposing an L1-type penalty within pathway by
minimizing

−�(β) + λ
K∑

k=1

⎛⎝ pk∑
j=1

|βkj |

⎞⎠ 1
2

for an appropriate tuning parameter λ; they also propose an adaptive version that allows
different penalties for different coefficients, and provide asymptotic results for a general
set of estimators defined by minimizing penalized objective functions of the form −�n(θ) +∑K

k=1 p
(k)
λn

(|βk|). They establish variable selection consistency for both groups and individual

features, as well as oracle properties with respect to estimation efficiency when p
(k)
λn

(|βk|)
satisfy a set of criteria. Finally, they describe how to apply their method when pathways
overlap.

5.2.4 Selection of tuning parameters

Tuning plays an important role in almost all regularization procedures. When p is large, it
can be easy to find a model that accurately predicts the response in the data used to fit
the model – the training data – but which has poor predictive performance when applied
to a new dataset – the validation data. This is because with so many predictors available,
the model can take advantage of random correlations between predictors and response in
the training data to improve its apparent fit in that data; this problem is often referred to
as overfitting. The goal of tuning, then, is to select a model with sufficient complexity to
capture the signal in the training data and that provides useful predictions in a new dataset.

To choose a good value for a tuning parameter, we need to identify a range of possible
values for the parameter, and select a criterion for evaluating the model corresponding to
each value. In shrinkage procedures such as the ridge in which we minimize (5.4), small
values of λ yield a fit close to an unconstrained fit, while large values of λ yield a fit with all
components of β near 0; thus, we search for values of λ which provide a range of candidate
models from a nearly full model to a nearly null model. To evaluate the model fit associated
with each value of the tuning parameter, standard approaches include cross-validation, AIC,
and BIC, but these criteria may require some additional care in the censored data setting.

When performing cross-validation, the data are repeatedly partitioned into training data
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and validation data, and for each partition, the model is built on the training data and its
fit is evaluated on the validation data. This procedure is performed for each value of λ
under consideration, and the value of λ which optimizes the model fit (averaged across
partitions) is selected. In linear and logistic regression, the likelihood is often used as the
model fit criterion in cross-validation, and it is natural to try to use the LPL as the model
fit criterion for the Cox model. However, as described in Verweij and Van Houwelingen
(2006), this needs to be done with care because unlike the likelihood which is the sum of
independent terms, the LPL is the sum of dependent terms. Other criteria that could be
used within cross-validation are measurements such as the C-statistic discussed in Section
5.5.

The AIC and BIC criteria were developed for linear regression and in that setting, each
takes the form of the log-likelihood penalized by a term accounting for model complexity;
to select a model, we would choose the tuning parameter which minimizes our selected
criterion (either AIC or BIC). While the initial development of these criteria and their
interpretation depended on the log-likelihood being a sum of independent terms, they have
been successfully used for model selection in the Cox model by replacing the log-likelihood
by the LPL, and defining

AIC = −2�{θ̂(λ)}+ 2DF(λ)

and
BIC = −2�{θ̂(λ)}+ log(n)DF(λ),

where DF(λ) are the effective degrees of freedom (DF) for the model corresponding to

θ̂(λ). One issue that has been raised when applying the BIC is whether the penalty term
should be a function of the overall sample size n or the number of events D =

∑n
i=1 Δi,

since there are only D nonzero terms in the LPL (5.2). Using D in place of n is discussed
and advocated in Volinsky and Raftery (2000). The effective DF for a given model with
a regularized estimate of θ can be defined in various ways including counting the number
of nonzero coefficients, estimating the trace of a projection matrix, and estimating the
covariance between the predicted response and observed response (Hastie et al., 2009). For
the Lasso penalty, Zou et al. (2007) showed that the effective DF can be approximated well
by the number of nonzero coefficients.

The choice of the criteria may depend on the goal of regularization. BIC-type crite-
ria tend to select overly sparse models, which can hinder risk prediction; while AIC-type
criteria and cross-validation tend to include more features. This can improve prediction
performance, but can also lead to problems due to overfitting to the training data.

5.3 Methods based on derived variables

Feature selection is an appealing way to reduce model complexity, and is particularly effec-
tive when only a small number of candidate features relate to the outcome of interest. An
alternative way to reduce the complexity of the feature space is to project the original space
to a lower dimensional subspace and derive prediction models within the subspace. We can
conceptualize a standard linear regression of Y on Z as a projection of the n-vector Y onto
the subspace V ∈ R

n spanned by the p columns of the matrix Z. When the columns of Z
are collinear, the dimension of V will be less than p; when the columns of Z are correlated,
we may be able to well-approximate V by a subspace V ′ with even smaller dimension c, in
the sense that the projection of Y onto V ′ is “close” to the projection of Y onto V in some
way. This intuition motivates a number of dimension reduction techniques, in which we seek
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to summarize information about the p variables Z1, . . . , Zp using a smaller number, c, of
constructed variables U1, . . . ,Uc, which are linear combinations of the original components
of Z. Letting U be the n× c matrix whose rows are the values of the constructed variables
�U = (U1, ...,Uc)

� for each of the n individuals, we have:

U = ZV (5.5)

where V is a p × c matrix of weights. When c � n, standard low-dimensional regression
methods can be implemented directly with the constructed variables �U . For example, in
linear regression, we could simply regress Y on the columns of U using ordinary least
squares. Similarly, for survival data, we could use the constructed variables �U in the Cox
model:

λW(t) = λ0(t) exp(α
�X+ β� �U). (5.6)

What is left, then, is to specify a method for choosing the weight matrix V (and with it, the
number of constructed variables c). We discuss principal components regression in Section
5.3.1, as well as methods based on partial least squares, a method developed for linear
regression, in Section 5.3.2.

5.3.1 Principal components regression

A principal components (PC) decomposition of Z constructs covariates �U which sequentially
capture directions of greatest variability in the data while being themselves uncorrelated.
Specifically, we let the c columns of V, {v1, ..,vc} be:

vl = argmaxv{v�Z�Zv} such that v�l vl = 1 and v�l vl′ = 0 for l′ < l.

The number of PCs to use in the model, c, may be any number less than min{p, n}, and
is a tuning parameter. Note that if tuning c by cross-validation, the principal components
should be recalculated in the training set each time the data is partitioned. The PCs can
be found by taking V = V in the singular value decomposition of the data matrix

Z = UDV�.

PC regression (Massy, 1965) proceeds, as suggested above, by including these derived vari-

ables �U as covariates in the model of interest – for us, the Cox model. Note that PC
regression based on standard singular value decomposition is never sparse in the original
data, regardless of the choice of c, since the columns of V generally have nonzero compo-
nents. However, sparse PC analysis has been proposed that selects only a subset of variables
for each PC and can lead to a sparse model (Zou et al., 2006; Witten et al., 2009).

One main feature of PC regression is that the dimension reduction is completely unsuper-
vised, in that the derived variables are only constructed using information on the predictors
Z without considering how the Zj relate to the outcome. To incorporate the information on
the association between Z and the outcome into constructing the derived variables, super-
vised PC regression has been proposed (Bair and Tibshirani, 2004; Bair et al., 2006). In this
approach, variables are screened univariately first, and those that pass a screening threshold
are collected into a smaller data matrix, from which principal components are calculated
as above. These PCs are sparse in the original data, and may encode more information
relevant to the outcome of interest. Methods based on partial least squares (Section 5.3.2)
also try to construct summary variables while incorporating information about outcome.
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5.3.2 Approaches based on partial least squares

As described, standard PC regression is unsupervised and hence it is possible that while the
top PCs capture variability in the feature space well, they are not associated with outcome.
An alternative to PC regression methods is the partial least squares (PLS) method for

constructing derived variables �U , which has been previously proposed for linear regression
(Wold et al., 1993). In linear regression when the outcome of interest Y is a continuous
variable, PLS approaches seek directions that capture the largest amount of covariance
between Y and Z instead of finding directions that capture the largest amount of variance
in Z. If we let the c columns {v1, ...,vc} of V in (5.5) be

vl = argmaxv{v�Z�YY�Zv} such that v�l vl = 1 and v�l Z
�Zvl′ = 0 for l′ < l,

then, as before, we can use the constructed variables U = ZV in a regression model.
The above formulation cannot be directly used in the survival setting since the weights vl

involve the covariance betweenY and Z which is not directly available with censored data. A
number of approaches have been proposed. Nguyen and Rocke (2002) suggest implementing
PLS using the observed time to event T in place of Y regardless of an individual’s censoring
status, but this approach could produce misleading covariates not associated with survival
if censoring is extensive or related to covariates. Park et al. (2002) reformulate the survival
problem using Poisson regression in a generalized linear model framework. A comparison of
these methods as well as a modification of the method of Park et al. (2002) are presented in
Nyg̊ard et al. (2008), who also discuss explicitly how to include non-genomic covariates in
their models in such a way that the non-genomic covariates are not subject to any dimension
reduction; doing so is not always obvious in other PLS-based methods.

Another PLS-based approach, partial Cox regression, in which constructed variables are
built up sequentially, is proposed by Li and Gui (2004). A first summary variable, say U1,
is defined as the linear combination of genes with coefficients given by the coeffcients from
univariate Cox models. To construct the next summary variable, all genes are regressed
on U1, and the residuals from those regressions are used as new covariates in Cox models
which include U1 as a covariate as well. The coefficients on the residual covariates from
those Cox models are used as weights in U2. A final PLS-inspired approach is the sliced
inverse regression method of Li and Li (2004). They begin by extracting the first q PCs of
the data, where q is chosen so that the associated PCs capture a reasonable proportion of
the variability structure of the predictors. They then use sliced inverse regression adapted
to censored data (Li et al., 1999) to try to identify a small number of linear combinations
of the principal components that capture all the information in the covariate space related
to survival time.

5.4 Other models

While the Cox model has enjoyed a predominance of use in the medical literature for ana-
lyzing censored data, a number of survival models have been proposed as useful alternatives
for settings when the Cox’s proportional hazards assumption may fail to hold. Ma et al.
(2010) compare the performance of gene signatures selected by Lasso in high-dimensional
genomic settings in three commonly used survival models: the Cox model, the accelerated
failure time (AFT) model, and the additive risk model. They found that the predictiveness
and reproducibility of the gene signatures varied by model, and stressed the importance of
considering multiple models when developing prognosis models. Here, we briefly describe
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methods developed for the nonparametric hazard model (Section 5.4.1), the additive risk
model (Section 5.4.2), the AFT model (Section 5.4.3), and the semiparametric linear trans-
formation model (Section 5.4.4).

5.4.1 Nonparametric hazard model

The nonparametric hazard model relaxes the assumption that the relationship between the
covariates and the log-hazard is linear – i.e., it states that:

λW(t) = λ0(t) exp{g(W)}

where the form of the function g(W) is not specified. Li and Luan (2002) propose fitting
this model by assuming g(W) belongs to a reproducing kernel Hilbert space, and different
choices of kernel lead to different amounts of flexibility in the form of g(W). Leng and Zhang
(2006) propose another method for fitting this model using kernel methods, by proposing a
particular kernel with known basis functions and penalizing the sum of the norms of those
basis functions to induce sparsity.

5.4.2 Additive risk model

The additive risk model, as introduced in Chapter 3, assumes that the hazard function is
the sum of a baseline hazard function and covariate effects:

λWi
(t) = λ0(t) + θ�W.

Ma and Huang (2007) propose methods for fitting this model with a Lasso-type penalty
on the coefficients. More flexible formulations of the model have also been considered. Ma
et al. (2006) examine several such formulations in the high-dimensional setting, and propose
fitting them using PC regression for dimension reduction, with an additional step of test-
based PC selection. Martinussen and Scheike (2009) develop ridge, Lasso, adaptive Lasso,
and Dantzig selector methods for this model.

5.4.3 Accelerated failure time model

The accelerated failure time (AFT) model, as introduced in Chapter 3, relates the covariates
directly to survival time via

log T = g(W) + ε,

where ε is error with completely unspecified distribution. For linear effects with g(W) =
θ�W, Huang et al. (2006) and Cai et al. (2009) develop methods for fitting the AFT model
with a Lasso-type penalty on the coefficients. PC regression methods are described in Ma
(2007). Methods that account for group structure are discussed in Wei and Li (2007) and
Luan and Li (2008). Kernel machine methods that can allow g(W) to take a nonlinear form
are discussed in Liu et al. (2010).

A number of methods implement an imputation-based approach for fitting this model.
They first impute the missing survival times for those whose times are censored, and then
apply a method developed for linear regression on the imputed data. Using this idea, Huang
and Harrington (2005) propose an adaptation of PLS, as do Datta et al. (2007), who compare
Lasso and PLS procedures after imputation.
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5.4.4 Semiparametric linear transformation models

The semiparametric linear transformation model states that:

h(T ) = θ�W + ε

where ε now has a prespecified distribution but h is an unknown monotone increasing
function. This model includes both the PH and proportional odds models as special cases.
While this model lacks a natural loss function, Zhang et al. (2010) developed a variable
selection procedure with Lasso-type penalty by constructing a “profiled score” loss function
using estimating equations.

5.5 Data analysis example

Genomic information has already improved our understanding of breast cancer. A number
of gene expression signatures have been introduced into clinical practice to better identify
cancers with high and low risk of recurrence (Desmedt et al., 2011). Despite these advances,
approximately 60% of patients with early-stage breast cancer are given adjuvant therapy
in addition to local treatment, while only a small proportion are thought to benefit (Reis-
Filho and Pusztai, 2011). Better markers of aggressive disease would help physicians predict
which patients could safely avoid adjuvant therapy and its negative side effects, and which
patients should be treated with more aggressive therapy.

To compare the performance of some of the methods described here, we applied the
methods to a gene expression study of 286 lymph node negative breast cancer patients who
received no systemic adjuvant therapy (Wang et al., 2005). Our goal was to derive gene
expression signatures for predicting time to breast cancer progression or death using various
methods, and to compare their predictive performance. First, to show the performance of the
methods within a single dataset, we randomly partitioned the 286 patients into a training
set of 150 patients and an internal validation set of 136 patients; each model was built in
the training set and tuned using AIC and BIC within that dataset, and then applied to
the internal validation set. To demonstrate the portability of each approach to independent
data, we also applied each model to an external validation set made up of 119 lymph node
negative patients with no adjuvant therapy, with gene expression assessed on the same chip
(Sotiriou et al., 2006). Among the entire group of 286 patients in Wang et al. (2005), 107
deaths or recurrences were observed, with follow-up time ranging between 2 months and
14.3 years (median 7.2 years); 63% of observations were censored. Among the 119 patients
in Sotiriou et al. (2006), 27 deaths or recurrences were observed, with follow-up time ranging
between 2 months and 14.5 years (median 7.7 years); 77% of observations were censored.
Both datasets were standardized so that the genes had mean 0 and standard deviation 1.

To assess the prediction performance of each model, we estimated a C-statistic using
the approach proposed in Uno et al. (2011). A C-statistic is a measure of the concordance
between an estimated risk score and the survival times (Harrell et al., 1996). If g(W) is
the risk score calculated from a model (e.g., g(W) = θ�W in model (5.1)) then a possible
C-statistic is Pr(g(W1) > g(W2)|T2 > T1), which captures how well the ordering of the
survival times matches the ordering of the estimated risk scores; however, when the survival
times are subject to censoring and the censoring time may have support shorter than that
of T, that C-statistic may not be estimable. We may instead define a modified version which
is estimable, denoted by Cτ , which captures information only over a prespecified follow-up
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TABLE 5.1
Results of breast cancer data analysis. Six methods, tuned with either the AIC or BIC cri-
teria, are shown with an indication of their tuning parameter values (number of genes, esti-
mated degrees of freedom, or number of principal components). Presented are C-statistics
(Cτ ) and 95% confidence interval lower and upper bounds (LB and UB) of the resulting
models within the data used to build the model (Training); on an excluded subset of the
same dataset (Internal); and on an independent dataset (External).

Training Internal External
Tuning Cτ LB UB Cτ LB UB Cτ LB UB

Univariate AIC 30 genes 89.8 85.6 94 57.8 47.5 68.1 63.5 47.9 79.2
Univariate BIC 11 genes 83 77.1 88.8 60.7 50.8 70.5 63.2 48.5 78
Ridge AIC 29.5 est DF 87.9 83.3 92.5 69.8 60.7 78.8 65.9 50.9 80.8
Ridge BIC 5.71 est DF 82.5 76.5 88.5 69.4 59.7 79.2 66.1 51.7 80.6
Lasso AIC 6 genes 80.1 73.7 86.6 58 47.9 68.1 60.2 45.7 74.6
Lasso BIC 0 genes 50 30.3 69.7 50 28.3 71.7 50 21.8 78.2
Elastic Net AIC 8.63 est DF 83.3 77.5 89.1 69.6 59.9 79.2 66.7 52 81.3
Elastic Net BIC 4.79 est DF 82.3 76.3 88.4 69.4 59.5 79.2 66.1 51.7 80.5
Adaptive Lasso AIC 5 genes 67 58.4 75.6 58.2 48.2 68.3 57.1 41.4 72.8
Adaptive Lasso BIC 0 genes 50 30.3 69.7 50 28.3 71.7 50 21.8 78.2
PCR AIC 104 PCs 100 100 100 63.7 54.4 73 61.9 47.1 76.7
PCR BIC 8 PCs 86.1 81.1 91.1 74.5 66.7 82.3 62.1 45.6 78.6

period (0, τ):
Cτ = Pr(g(W1) > g(W2)|T2 > T1, T1 < τ). (5.7)

For example, in a study with approximately 5 years of follow-up after subject accrual, we
might take τ = 5. In our example, we take τ = 3 years, and calculate the estimate of Cτ

provided in Uno et al. (2011) which is a consistent, nonparametric estimate of Cτ under the
assumption that censoring is independent of survival and covariates; we also provide 95%
confidence intervals calculated using perturbation resampling.

The datasets initially had 12,774 genes, but the methods can run into computational dif-
ficulties when implemented using the whole data. Therefore, we did a preliminary screening
using only the 150 patients in the training set, retaining genes with univariate Cox model p-
value of 0.005 or less. This reduced the data to 394 genes. The results from fitting a selection
of methods (univariate selection; penalization with ridge, Lasso, elastic net, and adaptive
Lasso penalties; and principal components regression) and two tuning methods (AIC and
BIC) are shown in Table 5.1. As presented, we used n in the BIC criterion; however, chang-
ing n to be D, the number of deaths in the data, did not substantively change the results.
The analysis was performed in R using the packages survival, genefilter, survcomp,
penalized and survC1 (R Development Core Team, 2011; Therneau and Lumley, 2011;
Gentleman et al., 2012; Haibe-Kains et al., 2010; Goeman, 2011; Uno, 2011).

The effects on model size of tuning using AIC versus BIC are evident: minimizing the
BIC produces a much sparser model, even selecting 0 genes in the two Lasso fits. The AIC
selects many more factors into the model and can lead to models that are potentially over-
fitted, but have higher predictive values. The methods which perform best with respect to
predictive performance in this data are ridge regression and the elastic net, and the per-
formance of these procedures is not overly dependent on whether AIC or BIC is used to
tune the model, despite different resulting model complexity as quantified by the estimated
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degrees of freedom. Contrasting the C-statistics from the training dataset and the validation
datasets, we can see alarmingly high overfitting biases, suggesting the importance of cor-
recting for such biases using independent datasets when analyzing high-dimensional data.
Results from the internal and external validation are fairly comparable, indicating that the
gene signatures derived from these methods have reasonably good portability.

5.6 Remarks

A wide range of methods have become available to construct regression models for sur-
vival outcomes in the presence of high-dimensional predictors. Dimension reduction, a key
component of these methods, can be achieved through feature selection and/or using lower
dimensional derived predictors.

For the feature selection-based methods, it is crucial to select an appropriate tuning pa-
rameter to achieve an optimal balance between model complexity and estimated prediction
accuracy with available data. The relative performance of different approaches is largely
dependent on the particular setting, including aspects such as the signal-to-noise ratio, the
sparsity of the underlying model as well as the goal of the model building. When the goal
is to identify informative predictors for discovery purposes, procedures aiming to achieve
variable selection consistency may be preferable. For such cases, the tuning parameters of
the regularization procedures could be selected based on the BIC criterion. On the other
hand, less stringent rules for variable selection, while resulting in larger models, often pro-
vides better prediction performance. Hence for prediction purposes, one may choose AIC
or cross-validation for tuning parameter selection.

In general, for both prediction and interpretability, it is important to develop models
that include low-dimensional routine clinical covariates in addition to functions of the high-
dimensional genomic data (Bøvelstad et al., 2009; van Houwelingen and Putter, 2012). For
a model to be useful, its predictions should order individuals correctly according to their
true risk, a quality often referred to as discrimination and captured by the C-statistic.
Additionally, the model should provide accurate predictions of the actual survival time for
each patient. This latter quality is often referred to as calibration, and a different measure
of model performance should be used to assess it, such as the Brier score (Brier, 1950).

In addition to the methods described above, clustering techniques are commonly used
to assist in analyzing genomic data, and some have been proposed for implementation with
survival outcomes (e.g., Hastie et al., 2001). In clustering methods, genes whose expression
patterns are similar across individuals can be gathered together into a “meta-gene” in some
manner, and then this meta-gene can be used as a predictor. Clustering methods can be
somewhat unstable because the structure of the clusters can heavily depend on technique
and parameter choices. One potentially fruitful use for cluster information is in building
gene sets for use in methods that can take advantage of group structure, such as those
mentioned in Section 5.2.3. Such an approach is proposed in Ma et al. (2007). They first
divide genes into clusters using a K-means clustering approach. Important variables are
selected within cluster using Lasso, and then important gene clusters are selected using the
group Lasso.

When the primary goal is prediction, ensemble methods may be useful to achieve a good
bias-variance tradeoff. Ensemble methods are methods which take a fitting procedure (such

as a procedure for estimating β̂ in a Cox model) and perform that procedure repeatedly on
perturbations of the original data, producing ultimately a final fit which is averaged over
those perturbations (Bühlmann, 2004). For example, one such ensemble method is called
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“bagging” and aims to improve stability of a possibly unstable estimation approach such as
variable selection by repeating the procedure on bootstrapped samples of the original data
and averaging over the resulting β̂ estimates to create a final model. These methods can
improve prediction by reducing variance or reducing bias, depending on the base procedure,
but can result in models with some loss of interpretability. Several ensemble methods have
been proposed for survival analysis (Hothorn et al., 2006); a comparison of some ensemble
methods with standard approaches may be found in Van Wieringen et al. (2009).
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Antoniadis, A., Fryzlewicz, P. and Letué, F. (2010), ‘The dantzig selector in Cox’s propor-
tional hazards model’, Scandinavian Journal of Statistics 37(4), 531–552.

Bach, F. (2008), ‘Consistency of the group lasso and multiple kernel learning’, The Journal
of Machine Learning Research 9, 1179–1225.

Bair, E., Hastie, T., Paul, D. and Tibshirani, R. (2006), ‘Prediction by supervised principal
components’, Journal of the American Statistical Association 101(473), 119–137.

Bair, E. and Tibshirani, R. (2004), ‘Semi-supervised methods to predict patient survival
from gene expression data’, PLoS Biology 2(4), e108.

Benjamini, Y. and Hochberg, Y. (1995), ‘Controlling the false discovery rate: a practical and
powerful approach to multiple testing’, Journal of the Royal Statistical Society. Series B
(Methodological) pp. 289–300.

Benner, A., Zucknick, M., Hielscher, T., Ittrich, C. and Mansmann, U. (2010), ‘High-
dimensional cox models: The choice of penalty as part of the model building process’,
Biometrical Journal 52(1), 50–69.

Binder, H., Porzelius, C. and Schumacher, M. (2011), ‘An overview of techniques for linking
high-dimensional molecular data to time-to-event endpoints by risk prediction models’,
Biometrical Journal 53(2), 170–189.

Bøvelstad, H., Nyg̊ard, S. and Borgan, Ø. (2009), ‘Survival prediction from clinico-genomic
models-a comparative study’, BMC bioinformatics 10(1), 413.

Bøvelstad, H., Nyg̊ard, S., Størvold, H., Aldrin, M., Borgan, Ø., Frigessi, A. and Lingjærde,
O. (2007), ‘Predicting survival from microarray data: a comparative study’, Bioinformat-
ics 23(16), 2080–2087.

Brier, G. (1950), ‘Verification of forecasts expressed in terms of probability’, Monthly
Weather Review 78(1), 1–3.



108 Handbook of Survival Analysis
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6.1 Introduction

The cure model, or sometimes called “the cure rate model,” refers to a class of models
for censored survival data from subjects when some of them will not develop the event of
interest, however long they are followed. Those who are not going to develop the event of
interest are often referred to as “cured subjects,” or “long-term survivors.” Clinical studies
in cancer is a situation where there is a strong rationale for the existence of cured subjects
because if the treatment is successful, the original cancer is removed and the subject will
not experience recurrence of the disease. This is particularly true for patients in early cancer
stages. Cured subjects can also be found in other disciplines, such as economics and social
studies.

Let T be the time of the event of interest, then a characteristic of a cure model is that
the limit of P (T > t) is non-zero as t tends to infinity. If a simple estimate of P (T > t),
obtained for example from a Kaplan-Meier plot, does suggest a non-zero asymptote, then
this is the type of situation where a cure model may be appropriate and useful.
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The challenge in analyzing survival data from subjects with a possibility of being cured
is how to handle censoring. A subject is censored either because he or she is cured or because
he or she is not cured but has not been followed up for long enough for the event to occur.
In many situations these two possibilities cannot be distinguished. In some cases it may
be possible to define a threshold time, either from the scientific context or for pragmatic
reasons, beyond which the event cannot happen, then a censored subject is considered cured
if the censored time is greater than the threshold.

In cure models the distribution of T itself is usually not of interest, but rather it is
the relationship between T and other covariates that is of primary interest. In this chapter
we will discuss the formulation of cure models that involve covariates, such covariates are
typically measured at time zero, but could also be time-dependent. Maller and Zhou (1996)
provided a nice review of research in cure models prior to 1996. Other brief reviews can
be found in Yakovlev et al. (1996); Ibrahim et al. (2001b); Lawless (2003). The purpose of
this chapter is to review recent advances in cure models for analyzing survival data with
a cured fraction. Particularly, the review will focus on general descriptions of cure models
discussed in the last fifteen years in the literature. We will omit the more theoretical aspects
which can be found in the references at the end of the chapter. The relationship among the
models, their properties, estimation methods and software will be presented.

6.2 Mixture cure models

6.2.1 Model formulation

Because it is considered that some subjects would never experience the event of interest, it
is natural to consider a mixture model where the population is a mixture of two groups, the
cured and the not cured. Let T be the time to the event of interest and let Y be the cure
indicator with Y = 1 if the subject is not cured and Y = 0 otherwise. Let P (Y = 1) = π.
Define Su(t) and Sc(t) as the survival functions of the uncured and cured populations
respectively, i.e., Su(t) = P (T > t|Y = 1) and Sc(t) = P (T > t|Y = 0). Following the
discussion in Section 6.1, Sc(t) ≡ 1, i.e., it is a degenerate survival function. Thus the
mixture cure model is defined by the following unconditional survival function of T :

P (T > t) = S(t) = πSu(t) + 1− π (6.1)

Even though the mixture cure model was first proposed to analyze survival data with a
cured fraction more than 60 years ago (Boag, 1949), it is still attracting a great deal of
attention, because of its easy-to-use mixture model structure, its appealing interpretation
and the ease of generalization to more complex situations. Since the mixture cure model
is really a combination of two models, one sometimes called “the incidence model” for the
probability of cure and one sometimes called “the latency model” for the event time, this
facilitates the separate consideration of the effect of the covariates on the cure probability
and the effect of covariates on the distribution of the time to the event for those who are
not cured.

The effect of z, a set of covariates, on π is often modeled using a logistic link

logit[π(z)] = z′γ (6.2)

where logit(π) = log(π/(1 − π)) and γ is a vector of the coefficients of the covariates in z,
which includes an intercept term.



Cure Models 115

The covariate effects on Su(t) can be modeled in a number of ways. Let x be the set of
covariates that may have effects on Su(t) and Su0(t) be the baseline survival function when
x = 0, which could be described either parametrically or nonparametrically. Typically there
would be considerable overlap between x and z, and they may be identical except for the
extra intercept term in z. The most widely used model for the effects of x on Su(t) is based
on the proportional hazards (PH) assumption (Kuk and Chen, 1992; Peng and Dear, 2000;
Sy and Taylor, 2000; Peng, 2003b; Fang et al., 2005):

Su(t) = Su(t|x) = Su0(t)
exp(x′β) (6.3)

where β is a vector of the coefficients of the covariates in x. Whether β includes an intercept
term depends on whether the baseline distribution is specified or not. The corresponding
mixture cure model is referred to as the PHMC model . It is easy to use and interpret due
to its similarity with the popular Cox PH model (Cox, 1972).

The accelerated failure time (AFT) model (Cox and Oakes, 1984) can also be used to
model the effects of x on Su(t) (Li and Taylor, 2002a,b; Zhang and Peng, 2007a,b; Lu, 2010),
which leads to the following equation

Su(t|x) = Su0(te
−x′β) (6.4)

It is equivalent to assuming log T = x′β + ε and P (eε > t) = Su0(t) for uncured subjects.
The corresponding mixture cure model is referred to as the “AFTMC model.” Unlike the
PH assumption, the AFT assumption allows crossing hazards and direct interpretation of
the effects of x on the log T scale.

Another useful alternative model assumption for Su(t|x) is the accelerated hazards (AH)
model (Chen and Wang, 2000; Zhang and Peng, 2009):

Su(t|x) = Su0(te
−x′β)exp(x

′β) (6.5)

The corresponding cure model is referred to as the “AHMC model.” Unlike the PH and
AFT assumptions above, the AH assumption allows a gradual effect of x on the distribution
of T for uncured subjects. That is, if the baseline hazard function is monotone but not a
constant, the hazard functions of two groups differ only when t > 0, and the larger the time
t, the greater the differences in hazard. This can be seen easily if the model is rewritten
based on the corresponding hazard functions: hu(t|x) = hu0(te

x′β).
The proportional odds (PO) assumption can also be used to model the effects of x on

Su(t|x) as follows:

Su(t|x) =
1

1 + [Su0(t)−1 − 1]e−β′x

The corresponding cure model is referred to as the “POMC model.” Contrary to the AH
model, the PO assumption implies that the hazard ratio of the uncured subjects approaches
one as t → ∞. That is, the differences in hazard will fade away under the PO assumption.

For the interpretation for all of these models it is important to recognize that Su(t|x) is
the conditional distribution of T given not cured, and the interpretation in terms of hazards
or odds does not apply to the unconditional distribution S(t).

The major appeal of the mixture cure model is the flexibility it provides in how the
covariates can affect the event time distribution. The association is given by the two sets
of parameters γ and β. The γ’s describe whether the subject is cured and the β’s describe
when the event will happen amongst those who are not cured. Because there are more
parameters needed to describe the relationship between the covariates and the event time
than in a typical survival model, the data may need to be richer or its size larger to permit
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reliable estimation. If the data are not very informative about the effect of a covariate, then
there is a danger that the corresponding γ and β are competing with each other to describe
its effect. However, if the data are sufficiently informative then the potential for a clearer
interpretation makes the model very attractive.

6.2.2 Estimation methods

The EM algorithm (Dempster et al., 1977) can be conveniently used to obtain the maximum
likelihood estimates of the parameters in the mixture cure models. Let C be the non-
informative censoring time variable. Suppose that there are n subjects in a study, and
the observed values of min(T,C), I(T ≤ C), x and z for the subject i are denoted as
(ti, δi, xi, zi), i = 1, . . . , n, where I(A) is an indicator function with I(A) = 1 if A is true
and 0 otherwise. Let yi be the value of the partially latent variable Y for subject i. Given
yi, i = 1, . . . , n, the log-likelihood function is �(γ, β, Su0|y1, . . . , yn) = �1(γ|y1, . . . , yn) +
�2(β, Su0|y1, . . . , yn), where

�1(γ|y1, . . . , yn) =
n∑

i=1

{yi log[π(zi)] + (1− yi) log[1− π(zi)]}

�2(β, Su0|y1, . . . , yn) =
n∑

i=1

{yiδi log[hu(ti|xi)] + yi log[Su(ti|xi)]}

Given the current estimates of γ, β, Su0, the E-step of the EM algorithm calculates the
posterior expectation of yi as follows:

wi = E(yi|γ, β, Su0) = δi + (1− δi)
π(zi)Su(ti|xi)

1− π(zi) + π(zi)Su(ti|xi)

and replaces yi with wi in �1 and �2. The M-step updates the estimates of γ, β, Su0 by
maximizing �1(γ|w1, . . . , wn) and �2(β, Su0|w1, . . . , wn). The E-step and M-step iterate until
a convergence is achieved. After the algorithm has converged the estimates of wi have a
nice interpretation as the probability the subject is not cured given the observed data for
that subject.

Maximizing �1(γ|w1, . . . , wn) can be carried out easily by the Newton-Raphson method.
Maximizing �2(β, Su0|w1, . . . , wn), however, relies on how Su0(t) is parametrized. If Su0(t)
is specified up to a few unknown parameters, �2(β, Su0|w1, . . . , wn) can be easily maximized
in a similar way as �1(γ|w1, . . . , wn). We will primarily consider the semiparametric mixture
cure model, in which Su0(t) is nonparametrically specified. Given the fact that wiδi = δi and
that �2 is similar to the log-likelihood functions of survival data without a cure fraction,
many estimation methods for survival data without a cure fraction can be adapted to
maximize �2(β, Su0|w1, . . . , wn) when Su0 is nonparametrically specified. For example, for
the PHMC model, �2(β, Su0|w1, . . . , wn) can be treated as the regular log-likelihood function
for the PH model with w1, . . . , wn as offset values, and it can be maximized using existing
methods for Cox’s PH model (Peng and Dear, 2000; Sy and Taylor, 2000, 2001; Peng,
2003a,b). The estimates are proved to be consistent and asymptotically normal (Fang et al.,
2005). The EM algorithm can be easily adapted to accommodate a monotone baseline
hazard function hu0(t) (Peng and Dear, 2004) and further heterogeneity in the failure time
distribution of uncured subjects that is not captured by the existing x (Peng and Zhang,
2008a).

The methods above only produce a nonparametric, nonsmooth estimate of the baseline
survival function Su0(t). If a smooth baseline survival function is preferred, the PHMCmodel
can be estimated by allowing flexible modeling of the hazard function hu0(t) using M-splines
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(Corbiere et al., 2009). The smoothing parameter in the M-splines can be determined using
cross-validation.

Semiparametric methods for the AFT model can also be adapted to update
�2(β, Su0|w1, . . . , wn) even though they tend to be more involved than those for the PH
model. For example, the two semiparametric methods for the AFT model discussed in
Ritov (1990) were both adapted to update �2(β, Su0|w1, . . . , wn) successfully in Li and Tay-
lor (2002a); Zhang and Peng (2007b). However, both methods suffer from slow or lack of
convergence due to nonsmooth estimating equations. Recently, a more efficient estimation
method based on a smoothed likelihood function was proposed for the AFT model (Zeng
and Lin, 2007). It was adapted to update �2(β, Su0|w1, . . . , wn) for the AFTMC model (Lu,
2010), and is more computationally efficient than the previous methods. It also produces a
smooth baseline hazard function estimate.

For the AHMC model, a semiparametric estimation method for the AH model (Chen
and Wang, 2000) was adapted to update �2(β, Su0|w1, . . . , wn) for the AHMC model (Zhang
and Peng, 2009). But this method also suffers the computational issues due to nonsmooth
estimating equations, and the method of Zeng and Lin (2007) was recently adapted by
Zhang et al. (2013) to estimate the parameters in the semiparametric AHMC model more
computationally efficiently.

Bayesian methods are also considered for the mixture cure models. For example, Zhuang
et al. (2000); Cho et al. (2001) considered the parametric PHMC model with Su0(t) from a
Weibull or a piecewise constant hazard distribution and possible missing values in x and z.
The missing values are assumed to be missing at random (MAR). They employed proper
priors on the parameters in the mixture cure model and in the distributions for the missing
covariates and a Metropolis-Hastings algorithm within the Gibbs sampler to obtain draws
from the posterior distribution of the parameters. An improper prior should be avoided for
γ because otherwise the posterior distribution of β and γ will be improper (Chen et al.,
1999), which may cause convergence issues in the simulation algorithm.

6.2.3 Tonsil cancer example

A head and neck cancer study (Withers et al., 1995; Sy and Taylor, 2000; Peng et al., 2007)
provides a nice example where the merits of the mixture cure model can be illustrated. In
this study patients with localized disease of the tonsil were treated with radiation therapy.
In this situation the goal of the radiation treatment is to kill the cancerous cells within the
tumor, and the endpoint of interest for this treatment is recurrence of the cancer within the
tonsil region, called “local recurrence.” For tonsil cancer it is well known that the majority
of local recurrences occur within three years, and very rarely are they after five years. Thus
patients who are followed for more than five years can effectively be considered as locally
cured. In this study there were many patients with follow-up longer than five years and a
Kaplan-Meier plot of time-to-recurrence did have a horizontal asymptote (see Figure 6.1).
This is a situation where it is natural to consider a mixture model because the patients can
be thought of as either being cured or not cured at time zero by the treatment. However,
the cured status of the patient is not observed at time zero, and may only reveal itself later.
In this study the time independent covariates of interest were the dose of radiation and the
number of days over which it was delivered, the size of the tumor (measured by T stage), the
nodal status and the patient’s age. Fitting a PHMC model revealed that the dose, number
of days and size of the tumor were important factors in whether the patient was cured,
but not in when the recurrence occurred given not cured. In contrast the age of the patient
was important for when the recurrence happens. Younger patients tended to recur earlier,
which is very consistent with the concept that such patients have more aggressive or faster
growing (in this case faster regrowing) tumors. The nodal status had a possible impact on
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FIGURE 6.1
Kaplan-Meier survival curves of the tonsil cancer patients by T stages.

both the incidence and the latency. This is consistent with clinical knowledge that node
positivity reflects both larger extent of disease, hence harder to cure, and the ability of the
tumor to spread, hence earlier recurrence. The specific parameter estimates are given by
Model 1 in Table 25.1 when a logistic model is assumed for the incidence and a Weibull
model for the latency in the PHMC model. More details of using PHMC models for this
dataset can be found in Sy and Taylor (2000) and Peng et al. (2007).

6.2.4 Identifiability

A mixture cure model can be considered a special case of a frailty model in survival analysis.
Thus some of the well-known identifiability issues with frailty models for single event times
may also arise for cure models. However, the cure model is not as general as the frailty
model, because the frailty variable is binary and for one of the mixture groups the survival
distribution is known. Because of this, the issues of identifiability are usually less of a
concern.

The fundamental potential problem with identifiability arises because of uncertainty
associated with the tail of the distribution Su0(t). The parameters of the model for π(z)
describe what happens at t = ∞. Since follow-up is never infinite, this may be problematic if
many events could plausibly occur after the longest follow-up. In this case it may be difficult
to distinguish a high cure rate with a short tail for Su0(t) from a low cure rate with a long
tail. Thus for example, different choices for the form of Su0(t) can lead to different cure rates
(Yu et al., 2004), also the variances of the parameter estimates tend to be large (Farewell,
1986). For these reasons the absolute value of the cure rate should be interpreted cautiously.
In practice we have found that these problems do not manifest themselves if care is taken
in choosing situations where a cure model is appropriate and in choosing which aspects of
the fit to interpret. While the cure rates themselves need to be interpreted cautiously, the
regression coefficients β and γ, except for the intercept in γ, are more stable provided there
is a sufficient number of events.
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FIGURE 6.2
Boxplots of the estimated cure rates from group z = 0 (a), z = 1 (b), and boxplots of the
estimates of β (c) and γ (d) under various maximum censoring times (follow-up times).

The identifiability issue can be illustrated in the following numerical example. Suppose
that we generate data from model (6.1), (6.2), and (6.4) with Su0(t) = exp(−λt). We only
consider one binary covariate that is used for both x and z in the model with β = log(0.5),
and γ′ = (γ0, γ1) = (2,−1). The setting implies that the cure rate for the group with z = 0
is 12% and 27% for the group with z = 1, and that the hazard of uncured subjects in
the group with x = 1 is half of the hazard of uncured subjects in the group with x = 0.
We examine how the parameter estimates in the mixture cure model are affected by the
identifiability issue caused by insufficient follow-up. The censoring times are generated from
the uniform distribution between 0 and M , a value that determines the length of follow-up.
We set M = 3, 4, 6, 8, 10, and for each value of M , we generated 500 datasets with each
dataset containing 200 censored survival times and covariate values from the mixture cure
model. The mixture cure model with Su0(t) from the Weibull distribution is fit to the data.
The boxplots of the estimated cure rates from the two groups (z = 0 and z = 1) and of
the estimates of β and γ are given in Figure 6.2 (a), (b), (c), and (d), respectively. The
smooth curve in (a) and (b) are the true survival function S(t) for z = 0 and z = 1, and the
horizontal lines in (c) and (d) correspond to the true value of β = log(0, 5) and γ1 = −1.
It is easy to see that when the follow-up decreases, the variability of cure rates increases.
However, the estimates of β and γ1 are relatively stable, and the increase in variability is
mild compared to that in cure rate estimates when the follow-up time decreases.

If fully nonparametric models are used for both π(z) and Su(t|x), then identifiability
is likely to be a problem. However, once some structure is assumed for these terms, such
as a logistic model for π(z) and proportional hazards for Su(t|x), then the models are
identifiable (Li et al., 2001; Peng and Zhang, 2008b). Although technically identifiable,
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the near non-identifiability may manifest itself for a particular dataset in flat likelihood
surfaces, which may result in numerical problems in estimation. In our experience if there
is a strong scientific rationale for a cured group and a Kaplan-Meier plot of the time to
the event clearly levels off with many censored observations having long follow-up, then the
mixture cure model is an appealing choice and safe to use. In the tonsil cancer example
described in Section 6.2.3, where the event of interest is local recurrence, these conditions
are satisfied. One pragmatic approach to eliminating the identifiability problem is to set the
tail of the estimated Su0(t) to zero from the largest uncensored time onwards, thus forcing
the survival function to be a proper survival function (Taylor, 1995). Not only does this
solve the identifiability problem it also tends to reduce the numerical problems that can
arise in the estimation algorithms due to the near non-identifiability. Due to its simplicity,
this method has been widely used in many semiparametric estimation methods for mixture
cure models. A less-known but more sophisticated method to address this issue is to have the
estimated survival function gradually approaching zero after the largest uncensored time,
instead of being zero immediately at that time. This can be achieved by using a parametric
distribution for just the tail of Su(t|x) in the semiparametric methods (Peng, 2003a).

In situations, in a cancer study say, where death from any cause is the endpoint, which
cannot be considered curable, it may be dangerous to use a cure model, unless the death
from other causes, as opposed to the death from cancer, can be considered negligible within
the follow-up period. One approach to fitting cure models when death from other causes
can occur is to use relative survival, as described in Section 6.6.

Another identifiability issue that is a possible concern, is whether the model can support
two parameters per covariate. It is natural to think they may be competing with each other,
diminishing confidence in their interpretation. In our experience, this is not a concern if there
is sufficient follow-up in the data. We illustrate this with the tonsil cancer data described
in Section 6.2.3. Model 1 in Table 6.1 shows the results when all covariates are included
in both parts of the model, with the clear interpretation that some covariates (T-stage,
Total dose and Treatment duration) are important for incidence, that age is important for
latency, and that node may be important for both. Models 2 and 3 are when the covariates
are included in only one part of the model. For most of the covariates the coefficients do
not change that much from Model 1, thus there is a real loss of interpretation. For example,
the important effects of total dose and treatment duration on incidence in Model 1 do not
get compensated for in a model with only latency coefficients (Model 2), thus these effects
would be missed. Similarly the effect of age on latency is missed in a model (Model 3) with
only coefficients for incidence.

The results for Model 4 are for when all the observations are artificially censored at
1 year, a time that would be considered as insufficient follow-up. Some of the covariate
coefficients are substantially different from those in Model 1; for example, the effect of age
on latency is now lost. The difference is due to identifiability caused by insufficient follow-up
as demonstrated in Figure 6.2.

6.2.5 Mixture cure model for clustered survival data

The mixture cure model has been generalized to the situation where subjects are clustered.
Clustered subjects can be twins, patients from the same family, hospital or health centers,
animals from the same litter, etc. Repeated failure times from one subject also forms a
cluster. Due to shared environment and latent factors specific to each cluster, the survival
times of uncured subjects and the cure status of all subjects from the same cluster tend
to be correlated. It may be important to take this correlation into account when analyzing
such data.

Let Tij , Yij , δij , xij and zij be the observed failure time, cure status, censoring indicator,
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and two sets of covariates from the jth subject in the ith cluster, i = 1, . . . , n, j = 1, . . . , ni.
We assume that given covariates, the censoring is independent of the failure time Tij and
the cure status Yij . We further assume that Tij |Yij = 1’s and Yij ’s from subjects in the
same cluster may be correlated, but those from different clusters are independent.

A wide range of statistical methods have been developed to handle clustered survival
data with a cure fraction under the mixture cure model framework. One popular approach
is to estimate subject-specific measures of effect based on random effect or frailties. Denote
by ui the random effect that induces the correlation among Tij |Yij = 1, and denote by vi the
random effect that induces the correlation among Yij , then (6.2) and (6.4) in the mixture
cure model (6.1) can be extended to include the random effects in the following conditional
models (Yau and Ng, 2001; Lai and Yau, 2008; Peng and Taylor, 2011):

Su(t|xij , ui) = Su0(t)
exp(x′

ijβ+ui),

logit[π(zij , vi)] = z′ijγ + vi,

where ui and vi are often assumed to follow a normal distribution with mean 0 and variance
σ2
u and σ2

v . The two random effects can be independent or correlated. The models above
provide simple shared frailty structures for the data. A more flexible model can be assumed
for both parts of the mixture cure model by replacing ui by x̃′iju and vi by z̃′ijv, where u
and v are vectors of random effects, and x̃ij and z̃ij are the design vectors associated with
u and v. The parameters can be estimated using the BLUP (best linear unbiased predictor)
method and the REML (residual maximum likelihood estimator) when the baseline survival
function Su0(t) is parametrically or nonparametrically specified (Yau and Ng, 2001; Lai and
Yau, 2008). Obtaining the maximum likelihood estimates of the parameters, on the other
hand, can be computationally intensive (Seppa et al., 2010; Peng and Taylor, 2011). But
this approach allows non-normal random effects and can be used to estimate parameters in
the AFTMC or the AHMC model with random effects.

The other approach to handle clustered survival data with a cured fraction is to es-
timate marginal, population-averaged measures of effects. This approach usually specifies
the marginal distributions of Tij |Yij and Yij similar to (6.1) and (6.2) with one of (6.3),
(6.4), (6.5), and leaves the correlation structures among them unspecified, thus is robust to
model misspecification. To estimate the parameters in the marginal distributions, one can
temporarily ignore the correlation and estimate the parameters using a method discussed
in Section 6.2.2, and then adjust the variances of the estimates due to the correlation using
the sandwich or Jackknife methods (Peng et al., 2007; Yu and Peng, 2008). The models of
Chatterjee and Shih (2001) and Wienke et al. (2003) are marginal mixture cure models.
However, the correlations among Tij |Yij and among Yij are explicitly estimated in the model
in addition to the parameters in the marginal distributions. However, these approaches dif-
fer in that they do not allow covariate effects, and the marginal parameters are estimated
by a quasi-likelihood method, instead of using a full-likelihood method.

6.3 Proportional hazards cure model

6.3.1 Model formulation

Another approach to develop a cure model is to consider the kinetics underlying the growth
of a tumor in a cancer patient. One theory is to assume (Yakovlev et al., 1996)

T = min{T̃1, . . . , T̃N} = T̃(1), (6.6)
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where T̃i’s are i.i.d. latent event times or activation times that can be viewed as promotion
time for cancer cells to develop a detectable cancer mass, N is a discrete random variate to
denote the number of T̃i and is independent of T̃i’s, and T̃(1) is the first-order statistic of

T̃1, . . . , T̃N . This is also called the “first-activation scheme” and is one of a number of schemes
developed in Cooner et al. (2007) that may be suitable for tumor kinetics. The schemes
involve different distributions for N and T̃i and different order statistics T̃(r), 1 ≤ r ≤ N , to
define the failure time T , and they lead to different cure models. The most popular model
is based on the first activation scheme with N following a Poisson distribution with mean
exp(β0 + z′β), and T̃i ∼ FH(t). Under this assumption, the unconditional survival function
is

P (T > t) = S(t|z) = exp[−eβ0+z′βFH(t)] (6.7)

The model can be rewritten as S(t|z) = [e− exp(β0)F
H(t)]exp(z

′β) or h(t|z) = fH(t) exp(β0 +
z′β), where fH(t) = dFH(t)/dt. It is obviously similar to the classic PH model (Cox, 1972)
except that the baseline survival function counterpart of the PH model in model (6.7) is an
improper survival function satisfying limt→∞ exp[−eβ0FH(t)] = exp(−eβ0) ∈ (0, 1). Thus
we refer to this model as the proportional hazards cure (PHC) model. Since the baseline
cumulative hazard counterpart of the PH model in model (6.7), exp(β0)F

H(t), is bounded,
model (6.7) is also called the “bounded cumulative hazard cure model.”

As an alternative to the mixture cure model, the PHC model received a great deal of
interest in the last decade due to the similarity of the model to the classical PH model.
However, one disadvantage of the PHC model in comparison with the mixture cure model
is that the effect of z on the distribution of T |Y = 1 does not have a simple interpretation.
This can be seen from the fact that P (Y = 1) = π = exp(−eβ0) and

P (T > t|Y = 1) = Su(t|z) =
exp[eβ0+z′βFH(t)]− 1

exp[eβ0+z′β ]− 1

in the PHC model. The proportionality restriction in z in the model also limits the wide
applications of the model in practice. The restriction can be relaxed by including covariate
effects in FH(t), such as

1− FH(t|x) = SH(t|x) = SH
0 (t)exp(x

′γ), (6.8)

where SH
0 (t) is a baseline survival function (Tsodikov, 2002). The inclusion of x in FH(t)

widens the applicability of the PHC model, because there are now two sets of parameters
to describe the effects of the covariates. But the covariate effects in Su(t) are difficult to
interpret compared to the PHMCmodel because the effects of z and x are not well separated.

6.3.2 Estimation methods

Let D = {t1, . . . , tn, δ1, . . . , δn} be the set of observed data. The likelihood function for the
data is

L(β, α|D) =
n∏

i=1

[eβ0+z′
iβfH(ti)]

δi exp[−eβ0+z′
iβFH(ti)]

where α is the parameter in FH(t). Maximum likelihood estimation methods can be used to
estimate β and FH(t) when FH(t) is nonparametrically specified (Tsodikov, 1998, 2003). By
treating N in (6.6) as a latent variable, Chen and Ibrahim (2001) proposed to use the EM
algorithm to obtain the maximum likelihood estimates of the parameters in the PHC model
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when FH(t) is assumed to have a piecewise constant hazard with a smoothing parameter
that controls the degree of parametricity in the right tail of FH(t). The method can also
handle missing values in covariates when missing is MAR (Chen and Ibrahim, 2001; Herring
and Ibrahim, 2002).

Bayesian methods have been described to estimate the parameters in the PHC model.
The posterior distribution of β and α can be written as

p(β, α|D) ∝ L(β, α|D)p0(β, α)

where p0(β, α) is a prior of β and α. If a historical dataset D0 is available, the prior can
also depend on the historical data using the power prior formulation:

p(β, α|D) ∝ L(β, α|D)[L(β, α|D0)]
α0p0(β, α)

where 0 ≤ α0 ≤ 1 is prespecified and it determines the contribution of historical data to
the prior of the parameters.

If a nonparametric instead of parametric specification for the baseline distribution FH(t)
is preferred, Ibrahim et al. (2001a) proposed a method based on a piecewise constant hazard
assumption for FH(t) and a smoothing parameter that controls the degree of parametricity
in the right tail of FH(t).

Due to the similarity of (6.7) to the PH model, some nice Bayesian properties of the PH
model are inherited by the model (6.7). For example, if a noninformative prior is used in β,
i.e., p0(β, α) ∝ p0(α), the posterior distribution p(β, α|D) can still be a proper distribution
(Chen et al., 1999).

The Bayesian method is also convenient to deal with missing covariates. When missing
covariates are assumed to be MAR, Chen, Ibrahim and Lipsitz (2002) proposed to specify a
parametric distribution for the covariates that is written as a sequence of one-dimensional
conditional distributions. Then the Bayesian method can be used to estimate the parameters
in the PHC model with proper priors on the parameters in the distribution for the missing
covariates.

Due to the complexity of the posterior distributions in the Bayesian methods, Markov
chain Monte Carlo methods are often used to approximate the posterior distributions. De-
tails can be found in Ibrahim et al. (2001b) and Tsodikov et al. (2003).

6.3.3 Proportional hazards cure model for clustered survival data

The PHC model can be readily extended to analyze clustered survival data with a cure
fraction in a similar way to how a frailty model extends the standard PH model. One
may assume that given a frailty ui that is shared within cluster i, the conditional survival
function of Tij is

S(t|xij , ui) = exp[−uie
β0+z′

ijβFH(t)],

and ui follows a prespecified frailty distribution with a fixed scale. One example of the
frailty distribution is the stable distribution (Chen, Ibrahim and Sinha, 2002) because the
resulting marginal model preserves the proportionality of the conditional model in z. Other
frailty distributions, such as the gamma distribution, can also be considered.

Another approach to extend the PHC model for clustered data is to define the frailty
term ui to be shared by T̃1, . . . , T̃N ’s in (6.6) from all subjects in the same clusters (Yin,
2005). The resulting frailty model is

S(t|xij , ui) = exp{−eβ0+z′
ijβ [1− SH(t)ui ]},
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Most of the existing methods to estimate the parameters in the models above are
Bayesian methods. The promotion time distribution FH(t) can be specified parametri-
cally or nonparametrically using a piecewise hazard distribution with gamma priors on the
hazard segments.

6.4 Unifying cure models based on transformations

The cure models discussed in Section 6.2 and Section 6.3 are the two most common cure
models in the literature. There are other cure models that are less known in the statistics
community, but are useful alternatives to the two common models. One example of such a
model is the proportional odds cure (POC) model (Gu et al., 2011):

P (T > t) = S(t|z) = [1 + eβ0+z′βFO(t)]−1 (6.9)

where FO(t) is a cumulative distribution function. It is a proportional odds model if FO(t)
is treated as a baseline odds function. Of course, as an odds function, FO(t) is improper.
Thus this model is an analogy of the extension of the PH model to the PHC model by using
an improper baseline odds function in the proportional odds model of Pettitt (1984).

Another less-known cure model is the additive cure model (Yin and Ibrahim, 2005b):

h(t|z) = fH(t) + β0 + z′β (6.10)

where fH(t) is a proper probability density function. This is an additive hazard model (Lin
and Ying, 1994) except that the baseline hazard function is replaced with fH(t), thus is
improper.

Given the different cure models, it becomes important to choose an appropriate cure
model among them in practice for a given dataset. The biological interpretation found
for the PHC models may help if it is plausible. However, the elusive nature of the latent
variables T̃1, . . . , T̃N used in the biological interpretation often makes this task challenging.
One approach to alleviate this issue is to unify different types of cure models under a new
model formed based on the Box-Cox transformation (Box and Cox, 1964). For example, the
unconditional survival function of T may be defined as follows (Yin and Ibrahim, 2005a;
Taylor and Liu, 2007)

S(t|z, x) =

⎧⎪⎨⎪⎩
{
1− λ exp(β′z)

1 + λ exp(β′z)
FH(t|x)

}1/λ

0 < λ ≤ 1

exp(−eβ
′xFH(t|x)) λ = 0

(6.11)

where λ is the transformation parameter and FH(t|x) is a cumulative distribution function
that may depend on a vector of covariates x. It is easy to see that model (6.11) becomes
the mixture cure model (6.1) when λ = 1 and the PHC model (6.7) when λ → 0. Therefore
model (6.11) unifies the mixture cure model and the PHC model. The model can also be
motivated using one of the tumor activation schemes in Section 6.3 (Peng and Xu, 2012).

Another family of cure models (Taylor and Liu, 2007) is given by

S(t|z, x) =
{{

π(z)λ + (1− π(z)λ)SH(t|x)
}1/λ

λ �= 0

exp[log(π(z))(1− SH(t|x))] λ = 0
(6.12)

where SH(t|x) is a proper survival distribution. In this model π(z) could have a logistic
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form π(z) = exp(β′z)/(1 + exp(β′z))) or more conveniently be derived from a log-log link,
π(z) = exp(− exp(β′z)). It is easy to see that model (6.12) is a mixture cure model when
λ = 1 and a PHC model when λ = 0. Note also that this model has the appealing feature
that the limit as t → ∞ of S(t|z, x) is π(z) and it does not depend on the value of λ.

Another unified cure model based on the Box-Cox transformation is given as follows
(Zeng et al., 2006):

S(t|z) =
{
[1 + aez

′βFH(t|x)]−1/λ λ > 0

exp[−ez
′βFH(t|x)] λ = 0

(6.13)

It is easy to show that model (6.13) unifies the PHC model (6.7) (when λ → 0) and the
POC model (6.9) (when λ = 1).

The Box-Cox transformation can also be used on the two hazard functions in the additive
cure model (6.10) to obtain the following cure model (Yin and Ibrahim, 2005b)

h(t|z) =
{
[fH(t)λ + λ(β0 + z′β)]1/λ 0 < λ ≤ 1

fH(t) exp(β0 + z′β) λ = 0
(6.14)

It is clear that this model unifies the PHC model (when λ = 0) and the additive cure model
(when λ = 1).

Some transformation models are based on unspecified monotone increasing transforma-
tions on the failure time directly. That is, for T |Y = 1, a semiparametric transformation
model (Lu and Ying, 2004) is

g(T ) = −z′β + ε (6.15)

where g(·) is an unknown monotone increasing function and ε is the error term with a known
continuous distribution that is independent of z and survival time. If ε is chosen to follow
the extreme value distribution, the corresponding cure model is the PHMC model. On the
other hand, if ε follows the logistic distribution, the corresponding cure model is the POMC
model. It is easy to define a new distribution based on the Box-Cox transformation that
includes the extreme value distribution and the logistic distribution as special cases. Thus,
this semiparametric transformation cure model unifies the PHMC model and the POMC
model.

There are a variety of estimation methods proposed in the literature to estimate the
parameters in the unified cure models above, including parametric, semiparametric, and
Bayesian methods. Unfortunately, due to the complexity of the unified models, the esti-
mation methods usually fix the value of λ in the Box-Cox transformation at a prespecified
value and then apply the estimation methods to estimate other parameters in the models.
This approach greatly limits the ability to use the unified cure models to determine which
cure model is adequate for a given dataset. This issue was studied in Peng and Xu (2012)
for model (6.11), and it is found that the model has a reasonable power to select between
the mixture cure model and the PHC model when FH(t) is correctly specified. However,
when FH(t) is nonparametrically specified, the power can be low. It is expected that other
unified cure models have similar properties.

For the mixture cure model specified by (6.2) and (6.15), Lu and Ying (2004) proposed
unbiased estimating equations to estimate β, γ and g(·). This model was further considered
by Othus et al. (2009) for a case with time-dependent covariates and dependent censor-
ing. They proposed using an inverse censoring probability reweighting scheme to deal with
the dependent censoring and to construct unbiased estimating equations to estimate the
parameters.
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The unified cure models can be adapted to model clustered survival data with a cured
fraction. For example, a frailty term can be added to model (6.13) to produce a shared
frailty model (Yin, 2008)

S(t|zij) =
{
[1 + λuie

z′
ijβFH(t|x)]−1/λ λ > 0

exp[−uie
z′
ijβFH(t|x)] λ = 0

where the frailty term ui may follow a gamma distribution with a fixed-scale parameter.
Other distributions can also be considered for ui. If a marginal model is preferred, the idea
of Peng et al. (2007) and Yu and Peng (2008) may be applied directly to model (6.15)
for the clustered data (Chen and Lu, 2012), and a semiparametric estimation method is
proposed to estimate the parameters in the model. The model (6.15) can also be used in the
marginal of a copula model to include a correlation parameter in the model for clustered
data (Chen and Yu, 2012). An extension of the two-stage semiparametric estimation method
of Chatterjee and Shih (2001) is available for this model.

6.5 Joint modeling of longitudinal and survival data with a cure
fraction

In clinical trials and other medical studies, it is common to collect important information
on some longitudinal markers, such as disease characteristics or quality of life scales, in
addition to the survival status of a patient. Due to the association between the longitudinal
data and survival times, a joint analysis of the longitudinal and survival data would provide
more efficient estimates than separate analyses of the data (Ibrahim et al., 2010). In the
earlier literature, joint models were mainly based on a classical linear mixed effect model
for the longitudinal data and a Cox PH model for the survival data. When a fraction of
cured subjects is evident in the survival data, a joint model incorporating a cured fraction is
useful. For example, in a prostate cancer study, the data were analyzed using a joint model
of the longitudinal prostate-specific antigen (PSA) values and survival times including a
cured fraction (Law et al., 2002).

Let li(t) be a longitudinal measurement from the ith subject at time t. In a joint model,
the longitudinal measurement is often modeled by

li(t) = g(t, xi, α, ξ) + εi(t) (6.16)

where g(·) is a trajectory function of the longitudinal measurements, α is a fixed effect, ξ is
a random effect, and εi(t) is a random error. For survival data, both the PHMC model and
the PHC model have been considered in joint models. To connect the longitudinal model
to the model for the survival data in a joint model, one can share the random effect ξ of
(6.16) in the PHC model (Chen et al., 2004; Song et al., 2012) as follows

S(t|z) = exp[−eβ0+z′β+ξFH(t)]

or use the longitudinal trajectory as the time-dependent variable in the PHC model (Brown
and Ibrahim, 2003) as follows

1− FH(t) = SH
0 (t)

exp(g(t,xi,α,ξ))

Yu et al. (2008) considered a PHMC model for the survival data and allow g(·) to appear
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in Su(t|x) as a time-dependent covariate and g(·) to depend on the latent cure status Y .
Due to complexity of the joint models, Bayesian methods are often employed to estimate
the parameters in the model and computation can be tedious. In comparison, the method
of Song et al. (2012) is computationally less intensive due to the choice of the random effect
and error term distributions.

6.6 Cure models and relative survival in population studies

In the cure models we have described the event of interest is observable; for example, in a
cancer study we can observe recurrence of the disease after treatment. However, in some
population studies only the time of death is available, and while the length of the follow-up
and the nature of the disease may suggest that the majority of the deaths are due to the
disease, deaths due to other causes may occur and cannot be separated. Since one cannot
be cured of death, this situation typically gives Kaplan-Meier plots which do not have an
obvious asymptote, and using a standard cure model may not be appropriate.

For such studies, it is convenient to define occurrence of cure when the mortality rate of
those diagnosed with the disease returns to the same level as that expected in the general
population. Or equivalently, the excess mortality rate due to the disease approaches zero.
Let hp(t) be the observed hazard for the target group, h∗(t) be the expected hazard for the
general population, and h(t) be the excess hazard (mortality) rate due to the disease. Then
one can assume

hp(t) = h∗(t) + h(t)

and the fact that the excess mortality rate approaches zero implies limt→∞ h(t) =
0. If the corresponding survival functions are defined as Sp(t), S∗(t) and S(t). Then
Sp(t) = S∗(t)S(t). It is obvious that S(t), often referred to as the “relative survival
function” in population studies, is an improper survival function with limt→∞ S(t) =

limt→∞ exp
(
−
∫ t

0
h(u)du

)
> 0. Therefore, the methods discussed in Sections 6.2 and 6.3

can be employed to model the relative survival function. The estimation generally involves
h∗(t), the expected hazard rate for general population, which is often obtained from life ta-
bles. The relative survival cure model has been studied by a number of researchers (Lambert
et al., 2007, 2010; Yu et al., 2004).

6.7 Software for cure models

For some simple cure models, no special software packages are required and standard sta-
tistical packages often can be used to fit them with minimal coding work. For example,
the nonparametric estimation method proposed by Maller and Zhou (1992) for cure rate is
directly based on the Kaplan-Meier survival estimator and can be obtained by most sta-
tistical software packages, such as SAS and R. A simple mixture cure model such as (6.1)
with Su(t) from the exponential or Weibull distribution can be easily coded in SAS or R to
obtain the maximum likelihood estimates of parameters in the model. When a complicated
distribution is considered for Su(t) or covariates are considered in π or in Su(t), the neces-
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sary coding becomes complicated in standard statistical software packages and specialized
software packages are required to fit such models.

GFCURE is an R package to fit the parametric AFTMC models based on the work of
Peng et al. (1998). When choosing the Weibull distribution in the model, it is equivalent to
fitting a parametric PHMC model. For semiparametric mixture cure models, SEMICURE is
an R package to fit the semiparametric PHMC models based on the work of Peng (2003b). A
SAS macro PSPMCM (Corbiere and Joly, 2007) implements both the parametric AFTMC
models and the semiparametric PHMC models. Recently a new R package SMCURE is
available at the CRAN website, and it extends SEMICURE to include the semiparametric
AFTMC models.

For non-mixture cure models, an R package NLTM, that is based on the work in Tsodikov
(2003); Tsodikov and Garibotti (2007), can be used to fit the semiparametric PHC model
for independent data.

CUREREGR is a program that fits both the mixture cure model and the PHC model
parametrically. It is available as a standalone Windows program and as a STATA module,
and is based on the work of Sposto (2002).

For relative survival cure models in population studies, STATA module STRSMIX and
STRSNMIX are available to fit the relative survival by the mixture cure model or by the
PHC model (Lambert, 2007). CANSURV is a Windows program to estimate the relative
survival using a mixture cure model (Yu et al., 2005).
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7.1 Introduction

Anybody working professionally with data and statistics knows (or should know) that one
should never deduce the existence of a cause and effect relationship between two variables
just because they are statistically associated. Indeed, most professionals will almost without
provocation provide the catch-phrase “Association is not causation.” Whilst this phrase is
undoubtedly true it is a bit like writing “May contain traces of nuts” on all food packages;
it protects the statisticians (or food producer), but also lessens the value of the conducted
analysis (or food label). In this chapter we will explore when and how association can indeed
be interpreted as causation in particular in the context of survival analysis.

The chapter is structured as follows. Section 7.2 describes the basic concepts and ideas in
causal inference. The content of this section applies not only to survival outcomes, but to any
type of outcome. Section 7.3 explains how to draw causal conclusions from survival outcomes
in the absence of time-dependent covariates. In Section 7.4 the methods are extended to
also allow for time-dependent covariates and in particular feedback between exposure and
other variables over time. Finally, Section 7.5 presents advice on how to implement some of
the discussed methods in the software package R.

135
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7.2 Tools for formalizing cause and effect

The gold standard for drawing conclusions about cause and effect is large, well-designed
randomized controlled trials (Concato et al., 2000; Hernan, 2004) in which participants
are randomly allocated to treatment or no treatment. In a sufficiently large sample, such
random treatment allocation will ensure comparability in risk of the outcome between the
treatment groups, formally known as exchangeability. Assuming that the randomized con-
trolled trial is ideal in all other respects, i.e., full compliance with the assigned treatment
regime and no loss to follow-up, any difference between treatment groups can be interpreted
as an effect of treatment. However, for obvious ethical, financial, and practical reasons we
cannot address all scientific questions by conducting a randomized trial; often we must re-
sort to observational data. The overarching goal of causal inference is to analyze when and
how statistical associations can be given a causal interpretation. Often this corresponds to
analyzing observational data in a way that mimics specific randomized trials.

To fix these concepts consider the following problem from public health: how does phys-
ical activity affect the risk of developing type 2 diabetes?

Type 2 diabetes is a major and increasing public health problem and there is strong
evidence that physical activity is effective in type 2 diabetes prevention (Malkawi, 2012;
Jeon et al., 2007). Several large intervention trials have addressed how physical interven-
tion affects the risk of diabetes especially in people with pre-diabetic conditions including
impaired fasting glucose and impaired glucose tolerance. Taking the Diabetes Prevention
Program Outcomes Study as an example (Knowler et al., 2002), they randomly assigned
3234 nondiabetic persons with elevated fasting and post-load plasma glucose concentrations
to placebo or a lifestyle-modification program with the goals of at least a 7 percent weight
loss and at least 150 minutes of physical activity per week. For simplicity we will only focus
on the physical activity intervention in the following.

Randomized trials to address this question are conducted by initially recruiting a suitably
large number of non-diabetic people, or in this example pre-diabetic people, satisfying some
additional inclusion criteria and then randomly assigning them to either a physical active
group (e.g., >2.5 hours/week of moderate or >1 hour/week of vigorous physical activity) or
an inactive group (e.g., <1 hour/week of moderate and <1 hour/week of vigorous physical
activity). Clearly it would be unethical to randomize persons to inactivity as this is known
to have adverse health effects, but as a thought experiment it would be possible. Next, it
must be ensured that the participants follow their assigned physical activity regime and are
regularly monitored for development of type 2 diabetes for the decided follow-up time, e.g.,
10 years. For each person in the trial, the outcome of interest would be time to development
of type 2 diabetes; the potentially important issue of competing risks, e.g., death will for
simplicity not be considered in this chapter; see instead Chapter 6. While such a study is
practically possible to conduct, indeed as mentioned above several related randomized trials
have been conducted (Stringhini et al., 2012), it does require much logistic work to ensure
compliance and it takes very long before results are obtained due to the long follow-up.
Furthermore, it would as mentioned not be ethically acceptable to randomize people to
inactivity. Despite these logistic and ethical challenges when assessing the casual effect of
physical activity on type 2 diabetes risk, this is what is meant.

The mathematical framework of counterfactual variables — see Pearl (2009) and Hernn
and Robins (2012) and the many references therein — was developed to formalize cause and
effect. In essence, the counterfactual framework builds on the idea that to establish causality
one should ideally compare the risk of outcome in the same individual or the same group
of individuals when both treated and not treated. As a person can only be either treated
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or not treated at a specific time, one of these risks will inevitably be counter-to-the-fact
and therefore not observable. The overarching aim of causal inference is to design studies
and model data in a way that mimics this ideal of comparing the same group of individuals
under two different treatment regimes. In the type 2 diabetes example, we would for each
person let T (a) denote the time until onset of type 2 diabetes if, perhaps contrary to fact,
physical activity regime was set to a; in the following we will refer this time to type 2
diabetes onset as a survival time. Thus, for each person we imagine that there are not one,
but in fact many possible survival times corresponding to the different physical activity
regimes. Naturally, we will only get to observe one of these survival times namely the one
corresponding to actual physical activity regime (and indeed we might only get to see a
censored version of the survival time). If the randomized study was conducted and analyzed
by the means of a Cox model, the resulting hazard ratio would precisely be the rate between
the hazards for the counterfactual variables under the assumptions of exchangeability, full
treatment compliance and no selective loss to follow-up.

In the type 2 diabetes example a randomized trial with fully adequate follow-up time,
say 10 years, is not likely to be conducted, instead observational data can be used to
mimic the randomized trial. However, in observational studies there might be other variables
affecting both physical activity and disease onset (e.g., socioeconomic position, and gender).
Collectively such variables are referred to as confounders. A useful tool to understand the
whole network of causal influences is the Directed Acyclic Graphs (DAGs), which is a way to
visualize and clarify one’s prior beliefs about the underlying causal structure and thereby
identify a minimal sufficient set of confounders; see Greenland et al. (1999). Figure 7.1
shows how a DAG could look for the type 2 diabetes example (for ease of presentation not
all relevant variables are included; for instance if age is an important predictor for both
exposure and outcome). The arrows in a DAG indicate that there is reason to believe that
a causal link exists between two variables. While DAGs are useful for understanding the
whole causal network of interconnections it is important to stress that they are only as
valid as the assumptions on which they are based. In particular it is important that the
researcher includes all relevant variables including those that are unobserved.

FIGURE 7.1
DAG depicting beliefs regarding the causal network surrounding physical activity (exposure)
and time to onset of type 2 diabetes (outcome).
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The following terminology is in line with the definitions and arguments presented in
Greenland et al. (1999). Each variable in a DAG is called a node, and single-headed arrows
represent direct causal links (i.e., links not involving other variables in the DAG) between
the nodes. A causal path is one that can be traced through a sequence of single-headed
arrows entering an arrow through the tail and leaving through the head. Thus, causal paths
represent for instance how the effect of exposure cascades to the outcome, e.g., Physical
activity → Weight → Type 2 diabetes. A backdoor path between exposure and outcome is
defined as a path that has an arrowhead pointing towards exposure, e.g., Physical activity
← Gender → Type 2 diabetes. Any unblocked backdoor paths from exposure to outcome
will allow for these to be statistically associated even if they are not causally related. An
unblocked backdoor path therefore represents potential confounding.

If one were to conduct a naive statistical analysis including only exposure and outcome,
all paths between exposure and outcome (i.e., physical activity and type 2 diabetes) would be
unblocked no matter the direction of the arrows. The only exception being paths containing
colliding arrows (e.g., Physical activity → Weight ← Socioeconomic position to Type 2
diabetes, where Weight is a so-called collider). Unblocked backdoor paths (i.e., those not
containing a collider) can be closed by adjusting for one of the variables on the path, such as
for example adjustment for gender and socioeconomic position will close the open backdoor
path Physical activity ← Gender & socioeconomic position → Type 2 diabetes. If such
adjustment requires adjustment for a variable that is a collider (or a causal effect of a
collider) on a different pathway, it is important to be aware that adjustment for a collider
will open the path by creating a non-causal association between its two causes. It should
also be emphasized that lack of a directed path from one variable to another is based on
the assumption of no causal effect linking one with the other. That a necessary subset
of variables S has been selected to prevent confounding can be verified by the following
algorithm:

1. Every unblocked backdoor path from exposure to outcome is intercepted by a variable
in S.

2. Every unblocked path from exposure to outcome induced by adjustment for the variables
in S (i.e., by adjustment for a collider or a causal effect of a collider) is intercepted by
another variable in S.

If the set of selected variables fulfills these conditions, this set is sufficient to control
for confounding. Obviously such a set is only practically useful if it only contains measured
variables. For an in-depth discussion, see for instance VanderWeele and Shpitser (2011).
From the DAG in Figure 7.1 it is seen that the set “Gender and Socioeconomic position”
and “Health awareness” or the set containing just “Gender and Socioeconomic position”
are both sufficient to control for confounding of the Physical activity - Type 2 diabetes
relationship. However, as health awareness will in most settings be unmeasured we will only
use gender and socioeconomic position to control for confounding.

Letting observed exposure be denoted by A, confounders by C, and outcome (i.e., event
time) by T the assumption of no-unmeasured confounders can be formalized mathematically
(Rosenbaum and Rubin, 1983) as

No unmeasured confounders: T (a) ⊥ A | C for all values of all possible exposure levels
a, where T (a) ⊥ A | C denotes that the counterfactual variable T (a) is independent of
A conditional on C.

While the assumption of no-unmeasured confounders is arguably the most well-known
assumption for deducing causal effects, it is not the only assumption that must be met
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in order to deduce causal effects from observational studies. Furthermore, the so-called
positivity and consistency assumptions must be satisfied. Mathematically these assumptions
can be stated as

Positivity: P (A = a|C = c) > 0 for all values of a and all values of c, that is all possible
values of the baseline variables. If exposure is continuous the probability is replaced by
a density.

Consistency: If A = a for a given person then Y (a) = Y for that person.

In the context of the type 2 diabetes example, the assumption of positivity implies
that for any combination of socioeconomic position and gender there is strictly positive
probability for each of the physical activity regimes. Note that the assumption does not
imply that the dataset used in the planed analysis must contain persons with all possible
combinations of baseline variables and exposures (which would become infeasible with many
baseline variables due to the curse of dimensionality); the assumption only implies that
there could have been a person with any combination of baseline variables and exposure.
For the type 2 diabetes example, this assumption would seem unproblematic to adopt. In
the context of the type 2 diabetes example, the assumption of consistency implies that a
person who was randomized to the same physical activity regimes as the person would have
chosen such regimes on his own if the trial had not existed will not change his survival as
a consequence of the trial. Intuitively, the assumption of consistency requires a sufficient
amount of overlap between the intervention (i.e., randomized trial) one is attempting to
deduce the causal effect of and the mechanisms giving rise to the dataset at hand. It is
often difficult to assess if the assumption of consistency is reasonable, but as a rule of
thumb it is less of a problem the more biomedical the underlying mechanisms for the causal
effect in question are, e.g., the effect of an antibiotics pill is hardly affected by who suggested
to take the pill; in contrast, the effect of exercise is vastly different depending on whether
the exercise is being forced upon you or is conducted voluntarily. Thus, in the context of
the type 2 diabetes example the assumption of consistency might be questionable.

Common for all three assumptions is that they are not testable by statistical means.
Therefore, the assumptions must be justified by content matter arguments. The development
of practically applicable ways of conducting sensitivity analysis assessing the consequences
of failure to meet one or more of the three assumptions is an active research area within
causal inference (Vanderweele, 2008; Vanderweele and Arah, 2011).

In the following section we will show how observational data on physical activity, gender,
socioeconomic position, and time to onset of type 2 diabetes can be used to mimic the
mentioned randomized trial and indeed estimate the causal effect of physical activity on
type 2 diabetes.

7.3 Analysis in the absence of feedback

For ease of presentation we will in this section assume that gender can be dropped from
the DAG in Figure 7.1 without violating the assumption of no-unmeasured confounders.
Then, as argued above, socioeconomic position (measured in three levels) will be sufficient
to control for confounding. We will furthermore assume that the consistency assumption
holds; that is assume that type 2 diabetes development does not depend on how or why a
specific level of physical activity was chosen. As any person, irrespective of the values for
the confounders, has a positive risk of developing type 2 diabetes the final assumption of
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TABLE 7.1
Estimates of the effect of physical activity and socioeconomic position on onset of type
2 diabetes using a Cox model. The estimates correspond to the ones in Stringhini et al.
(2012), but the estimates should only be taken as illustrative.

Hazard ratio 95% Confidence interval

Physical activity
Active Ref.

Inactive 1.33 (1.13; 1.56)
Socioeconomic position

Low Ref.
Middle 1.38 (1.17; 1.63)
High 1.55 (1.21; 1.97)

positivity is satisfied. Finally, it is assumed that censoring is independent; that is that the
unobserved event times for the censored part of the sample are not systematically different
from the observed event times in the sample. As we will only focus on the comparison of
rates, the issue of competing risks (see Chapter 6) can be ignored.

7.3.1 Causal interpretation of the classic Cox modeling approach

Given data on baseline confounders (socioeconomic position), physical activity, and time to
either onset of type 2 diabetes or censoring a classic Cox model can be fitted; see Chapter
1. Before interpreting the results, the fit of the Cox model should be carefully assessed. In
particular, it must be ensured that the assumptions of proportional hazards and absence
of interactions are satisfied. If not, the modeled should be modified accordingly. Table 7.1
below shows values for the effect of physical activity and socioeconomic position from a
standard Cox regression using time since inclusion in cohort as the underlying timescale.
The estimates are taken from Stringhini et al. (2012), which are based on the observational
Whitehall II cohort study; however, in the original analysis more confounders were included.
For the sake of clarity of presentation these additional confounders have been omitted from
Table 7.1. Consequently the numbers in Tables 7.1 and 7.2 should merely be taken as
illustrative.

Under the assumptions discussed in the previous paragraphs, the hazard ratio of 1.33,
which corresponds to the inactive vs. physically active group, can be given the following
causal interpretation: Imagine a randomized study as the one described in Section 7.2, but
only including persons with a specific socioeconomic position, say “Low,” then the hazard
for the group randomized to the inactive group would be 1.33 times as high as the group
randomized to the physically active group. Note that this interpretation holds irrespective of
which level of socioeconomic position was chosen as an inclusion criterion, which is an effect
of the absence of interactions in the Cox model, and irrespective of whether socioeconomic
position was included as an ordinary co-variate or as a strata variable. When the fraction
of onset of type 2 diabetes is small, say under 20%, the effect can also be phrased more
bluntly as: every time the physically active group experiences one case of type 2 diabetes
the inactive group will experience 1.33 cases of type 2 diabetes.

In conclusion, hazard ratios obtained using classic the Cox modeling approach can, under
additional assumptions of no-unmeasured confounders, positivity, and consistency, be given
the causal interpretation as the effects one would see in an ideal randomized trial (i.e., a
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TABLE 7.2
Cross-tabulation of socioeconomic position and physical activity in both the observed pop-
ulation (upper half) and the pseudo-population (lower half) constructed by weighting each
observation by the probability of being in the activity group that observation is in.

Socioeconomic position
Low Middle High

Observed population, Col percentage (number)
Physical activity Active 57% (637) 81% (2,680) 88% (2490)

Inactive 43% (477) 19% (612) 12% (341)
Pseudo-population, Weight (implied number)
Physical activity Active 1.8 (1,114) 1.2 (3,292) 1.1 (2,831)

Inactive 2.3 (1,114) 5.3 (3,292) 8.3 (2,831)

randomized trial without selection bias, misclassification, loss to follow-up, etc.) conducted
within a specific subpopulation defined by the confounders. It should be noted that the
validity of the assumption of no unmeasured confounders is untestable and often violated.

7.3.2 Mimicking an actual randomized trial

If one is interested in mimicking a more traditional randomized trial, that is a randomized
trial which enrolls people with all socioeconomic positions and produces an overall (i.e.,
unconditional) hazard ratio for the effect, the classic (Cox) modeling approach does not
suffice as it only delivers effect measures conditional on having a specific socioeconomic
position. Instead so-called inverse probability of treatment estimation (IPTW) can be em-
ployed (Robins et al., 2000). Here the original observations are re-weighted to create a
pseudo-population, in which the randomized trial has been mimicked. Note that if the out-
come was not a survival time, but a simple continuous variable, which could be modeled by
a linear model, regression techniques and inverse probability of treatment estimation would
yield the same result.

Consider the type 2 diabetes example again. Table 7.2 below shows that among per-
sons with the lowest socioeconomic position, physical inactivity was much more common
than among persons with the highest socioeconomic position. In a large randomized study
such imbalances would not occur because of randomization. Due to the assumptions of
no-unmeasured confounding and consistency, the few persons in the high socioeconomic
position and inactive group are assumed to be representative of what would have happened
if we had randomized all high socioeconomic position persons to this activity regime. The
randomized study can therefore be mimicked by letting these few persons in the high-
socioeconomic position and inactive group count for all the other persons who would also
have been in this group in a randomized trial. This can be obtained by letting each ob-
servation count as one divided by the probability of being in the exposure group that the
observation is actually in conditional on baseline variables. The lower half of Table 7.2 il-
lustrates this; for instance for active/low socioeconomic position, the weight is computed
as 1/0.43 = 2.33 and the implied group size is 2.33 ∗ 477 = 1, 111 or in fact 1,114 if no
rounding had been done in the intermediate calculations. The numbers in Table 7.2 are
obtained from Stringhini et al. (2012), but since important confounding has been omitted
the table should only be treated as an illustration.

Once the pseudo-population has been created, the causal effect of physical activity can
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be estimated by for instance a Cox model including only physical activity as explanatory
variable, but fitted to the pseudo-population (in practice this is done by weighting the anal-
ysis with the weights given in Table 7.2). Since the same observations are being re-used in
the pseudo-population, one must employ robust standard errors, which will provide con-
servative confidence intervals (Robins et al., 2000). The resulting hazard ratios correspond
to the ones that would be found in a randomized trial with recruitment from the general
population, where persons were randomly assigned to the two activity groups assuming that
the distribution of baseline variables for the persons constituting the used dataset is the
same as in the general population.

If there are several baseline confounders the weights cannot be computed by simple
counting methods as is done in Table 7.2 since the groups defined by combining several
baseline confounders will likely be too small. Instead a model for the exposure must be fitted
and probabilities extracted from the model (typically by using predict functionality in the
employed software). In the type 2 diabetes example, a logistic regression could be used to
model how physical activity depends on socioeconomic position, gender, and perhaps other
relevant confounders. The appendix of this chapter provides R code for both computing
weights and conducting the weighted analysis.

Fitting a model including only the exposure, but to a pseudo-population constructed by
weighting instead of the original dataset is known as a Marginal Structural Model (MSM)
estimated by inverse probability of treatment weighting (Robins et al., 2000). Formally,
MSMs are models in which the counterfactual variables are the ones being modeled instead
of the observed variables. Thus in the type 2 diabetes example, it would be a model for the
counterfactual time to onset of type 2 diabetes T (k):

lim
dt→0

P (T (k) ∈]t; t+ dt] | T (k) > t)/dt = λ0(t) exp{bk},

where λ0(t) is an unspecified baseline hazard, b1 = 0 by assumption, and b2 denotes the
causal log-hazard ratio for being physically active. Thus, when employing MSMs, confound-
ing is addressed not by including potential confounders in the model directly, but instead by
fitting the model to a pseudo-population obtained by re-weighting the original dataset such
that there is no association between confounders and exposure in the pseudo-population.

7.4 Analysis with exposure-confounder feedback

In the preceding section it was explored how to draw causal conclusions from survival data
when both exposure and confounders were fixed from the baseline time point onwards.
However, survival data by definition includes a time period from the baseline time point to
the event time of interest. Thus, there is ample room for the exposure and other variables
to change and even affect one another over this time interval; in the following this will be
referred to as “feedback.”

In this section we address (a) how to even define causal effects when the exposure is
allowed to change over time and (b) how to employ these concepts in practice. Assessing
causal effects in the presence of feedback is currently at the forefront of research in causal
inference (Gran et al., 2010; Hernan et al., 2008; Lu, 2005). It will therefore not be possible
to cover all the techniques suggested in the literature. Instead this section will consider one
specific scientific problem, namely the use of highly active antiretroviral therapy (HAART)
to prevent HIV progressing to AIDS. An integral part of HAART is to monitor HIV patients
in order to initiate and adjust treatment in response to patient development; there is in other
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words feedback between treatment and other variables over time. Thus, causal conclusions
must be drawn in the presence of feedback. Indeed, the causal relationship between HAART
and HIV progression has been a key example of feedback mechanisms in the causal inference
literature (Hernan et al., 2000; Gran et al., 2010).

It should be noted that Chapter 1 considers models with time-dependent covariates,
which at first glance would seem appropriate for dealing with feedback. However, the models
from Chapter 1 do not provide any definition of causal effects in the presence of feedback
(that is the effect estimates obtained are not directly interpretable as expected effects in
any randomized study). Why this is the case will be further explained in Section 7.4.3.
Accordingly these models are not well suited to draw causal conclusions in the presence of
feedback (Hernan et al., 2000).

7.4.1 The medical background of the HAART example

In this section we give a very brief introduction to how and why HAART works to prevent
HIV from progressing to AIDS. For a more in-depth discussion of the medical aspects of
HAART, see, e.g., Ledergerber et al. (1999).

HAART is a combination of at least three drugs, which has been shown in several studies
to substantially reduce disease progression in HIV-infected patients. If left untreated, the
HIV infection will gradually reduce the effectiveness of the patient’s immune system, which
will be reflected in decreasing CD4 counts. HAART halts disease progression and thus
increases CD4 counts. For ethical reasons no placebo-controlled randomized trial of HAART
has been conducted and the trials involving HAART have all had follow-up of a few years
or less (Sterne et al., 2005) despite the fact the therapy must be taken for life. Thus, full
treatment effect and long-term effects must be obtained form observational studies.

Since HAART must be taken for life, one does not wish to initiate treatment too soon
since this will lengthen time on HAART and therefore increase risk of developing resistance
to the therapy and lengthen the time the patient must tolerate the side effects of the
treatment. Simultaneously, one must not initiate HAART too late since this increases the
risk of the disease progressing to AIDS. To balance these opposite aims, the CD4 count of
the patient is being regularly monitored to assess when to initiate HAART. Consequently,
CD4 count is a time-dependent confounder for the effect of HAART, because patients with
lower counts are more likely to be treated. CD4 count is also affected by HAART, and is
thus intermediate on the causal pathway from such treatment to AIDS or death. In other
words, there is feedback between CD4 count and treatment. Figure 7.2 below illustrates the
causal structure.

7.4.2 Defining causal effects in the presence of feedback

In order to give a meaningful definition of causal effects in the presence of feedback one
must try to imagine which randomized trial one would ideally have liked to perform. In
the HIV example the goal of such an imaginary randomized trial would be to find the best
treatment strategy. A treatment strategy is a set of rules which for each time point (i.e.,
doctor visit), and using only past and present values of treatment and CD4 count, decides
whether or not treatment should be taken from this time point to the next. Examples of
such a treatment strategy are the following: “First time CD4 count drops below 350 initiate
HAART treatment and continue irrespectively of future CD4 counts” and “Give HAART
whenever CD4 count is below 350.” An ideal randomized trial would start by defining a
number of such treatment strategies and subsequently recruit still healthy HIV patients
(i.e., patients with a CD4 count above some predefined level, e.g., 500). These patients
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FIGURE 7.2
DAG depicting the causal relationship between the first two time periods after a patient
has been diagnosed with HIV.

would then randomly be assigned to one of the treatment strategies and the causal effect
assessed by comparing AIDS-free survival time between the groups.

Thus, feedback has been incorporated in the definition of causal effects by replacing
the simple treatment group with a dynamic strategy, which adapts in the light of patient
response. Note that this definition of causal effects closely mimics the choices faced by
doctors when treating actual patients.

The above definition of causal effect in the presence of feedback can be formalized
using counterfactual variables by first defining ā as a treatment strategy. The treatment
strategy defines whether treatment should be given at each time point, thus ā = (a1, a2, ...)
where, e.g., a2 denotes the treatment decision taken at time 2. Thus, a2 can depend on
all past treatments (i.e., a1) as well as past and present CD4 counts and baseline variables
(e.g., sex and age). For each treatment strategy, a corresponding counterfactual AIDS-free
survival time can be defined, which will be denoted T (ā). The comparisons of the different
counterfactual AIDS-free survival times can for instance be done using a Cox model leading
to causal hazard ratios for the different treatment strategies as explained below.

7.4.3 Estimating causal effects from observational data in the presence
of feedback

Looking at Figure 7.2 it is observed that the feedback between treatment and CD4 counts
implies that time period 2 CD4 count is on the causal pathway from period 1 treatment to
outcome; it is a so-called mediator of the effect from treatment at time period 1 to outcome.
However, the same variable, that is CD4 count at time period 2, is also a confounder for the
relationship between treatment at time period 2 and the outcome. Using standard regression
techniques one could either include CD4 count as a time-dependent confounder, but this
would block the effect of treatment at time period 1 and therefore lead to a bias, or not
include the variable CD4 count, but this would make the relationship between treatment
at time period 2 and the outcome confounded and therefore also lead to bias. It is this
dual role for the same variable as both mediator and confounder that prevents standard
regression-based techniques, including survival models with time-dependent covariates, from
being able to estimate causal effects in the presence of feedback.

To deal with this type of feedback (which is sometimes referred to as “exposure-
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dependent confounding”) Robins et al. in their seminal paper (Robins et al., 2000) in-
troduced Marginal Structural Models. As discussed in the preceding sections, MSMs are
fitted using IPTW techniques. Intuitively, the IPTW techniques work by constructing a
pseudo-population through weighting in which the confounder, e.g., CD4 count, does not
predict treatment and is therefore no longer a confounder. However, the drawback is that
weights must be estimated and computed for each time period, which can lead to unstable
weights in particular for individuals with unusual covariate histories.

An alternative, see e.g., Gran et al. (2010), approach is to look at a given treatment
strategy, say ā, directly and find the individuals who, for at least some time period, by
chance followed this particular treatment strategy. All these little stretches of person time
can then be combined using standard survival analysis tools to a full picture of the distri-
bution of the counterfactual event time T (ā). Finally, different treatment strategies can be
compared using for instance Cox models and causal hazard ratios obtained. The drawback
of this approach is that it is only suited for fairly simple treatment strategies; in partic-
ular strategies such as “Once CD4 count drop below 350 initiate treatment and continue
indefinitely.” More complex treatment strategies for instance involving multiple treatment
initiations and discontinuations cannot be assessed as it is not likely that a suitable number
of people would follow such strategies purely by chance not even for short time intervals.

In the rest of this section the second approach will be explored in more detail. As will
become apparent, this approach can be thought of as literally constructing a number of
mini trials from the observational data, which hopefully should provide a more intuitive
understanding of the approach as a complement to the more technical mathematics. The
exploration will closely follow the study of HAART treatment to prevent HIV progression
by Gran et al. (2010). By initially focusing on the more intuitively understandable mini
trials approach, it should hopefully also be easier for the interested reader to understand
the more technical MSM approach at a later stage. Whilst this section will not go into
further detail with the MSM-based approach, this should not in any way be taken as an
indication of this being a less useful model strategy. It is merely a consequence of the fact
that the field of causal inference in the presence of feedback is currently so fast-moving
that a complete coverage is outside the scope of this chapter. For excellent descriptions
of MSM-based techniques, see Robins et al. (2000); Robins and Hernn (2009); Rotnizky
(2009); Bekaert et al. (2010); Vansteelandt et al. (2009); Sterne et al. (2005) and the many
references therein.

Neither the mini trials approach nor the MSM approach can deduce causal effects in
the presence of feedback using just the simple assumptions discussed in Section 7.2. The
necessary generalizations are the focus of the next section.

7.4.4 Assumptions for drawing causal conclusions in the presence of
feedback

Faced with feedback between exposure and confounders, the assumptions from Section 7.2
no longer suffice to allow for a causal interpretation of a statistical analysis. Instead, the
assumptions must be generalized as follows (Robins and Hernn, 2009).
No unmeasured confounders (extended): At each time point there are no unmea-

sured confounders between treatment at this time point and the final outcome. Note
that current values of time varying confounders and past treatment are all included as
measured confounders when formulating this assumption. Mathematically the assump-
tion can be written as
T (ā) ⊥ At | (At−1, ..., A1) = (at−1, ..., a1), (Lt, ..., L1) = (lt, ..., l1)
for all regimes ā and all trajectories l1, l2, ....

Positivity (extended): Conditional on any achievable trajectory for treatment and con-
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founders up to time point t, i.e., any values of (at−1, ..., a1) and (lt, ..., l1) which have
positive probability, then all values of treatment at time point t, i.e., At, have positive
probability. Mathematically this can be written as

If P ((At−1, ..., A1) = (at−1, ..., a1), (Lt, ..., L1) = (lt, ..., l1)) �= 0 then it must hold that
P (At = at | (At−1, ..., A1) = (at−1, ..., a1), (Lt, ..., L1) = (lt, ..., l1)) > 0 for all values of
at.

Consistency (extended): If Ā = ā for a particular individual, then it must also hold that
T (ā) = T for that person.

While these assumptions mathematically are much more involved than the corresponding
assumptions in the simple setup without feedback, see Section7.2, they can in fact be thought
of as imposing the simple assumptions to each time point, where past treatment and past
and current confounders are included in the set of measured confounders.

In the HAART example the extended assumption of no unmeasured confounders cor-
responds to assuming that doctors at time point t only look at baseline variables, past
HAART treatment and current and past CD4 counts when deciding whether or not to
prescribe HAART at time point t. Critically (and perhaps somewhat questionable), it is
assumed that doctors do not take other time-varying measurements, e.g., general patient
well-being, into account. Or to be precise; that none of these other time-varying measure-
ments are predictive for AIDS-free survival. In the context of the HAART example, the
implication of the extended assumption of positivity is that no matter which history of
CD4 counts and HAART a given patient has, all treatment options are being actively con-
sidered and could be chosen. If all doctors had followed very strict rules, e.g., “when CD4 is
below 400 give HAART,” this assumption could not have been met. However, from the data
it does not appear as if such strict rules have been followed (Sterne et al., 2005). The final
assumption of extended consistency implies that it does not matter for AIDS-free survival
how a given treatment came about; that is, it does not matter for AIDS-free survival if a
treatment was given a part of predefined plan or made up along the way if in effect the
same treatment was given. Since progression to AIDS or death is very much a biomedical
process, the extended assumption of consistency would seem justifiable.

7.4.5 Implementing the mini trials approach

In Gran et al. (2010) the goal is to estimate the overall causal effect of HAART; i.e., to
compare HAART with no treatment at all. Thus, the two considered treatment strategies
are very simple either ā = (0, 0, ...) or ā = (1, 1, ...). The analysis is based on the SWISS
Cohort Study, which is an ongoing multi-center research project following up HIV-infected
adults aged 16 or older (Ledergerber et al., 1999). Patients have scheduled doctor appoint-
ments every 6 months, with additional laboratory measurements taken every 3 months,
but treatment initiation can take place at any time. The analysis in Gran et al. considers
each month as a time period and uses last observation carried forward for months without
additional measurements. In total, 2,161 individuals contributed to the data used in the
analysis; see the paper for further details.

The key idea in the mini trials approach is to imagine that a new trial was initiated
each month. To illustrate this approach, consider month t. All persons who were not taking
HAART in month t−1 are included in the mini trial starting at month t. Persons initiating
HAART at month k will constitute the treatment group for this mini trial, while persons not
initiating HAART at month k will constitute the control group. The treatment group will
be followed to either AIDS/death or end of follow-up. The control group will be followed to
AIDS/death, end of follow-up, or treatment initiation. Thus, persons in the control group
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FIGURE 7.3
Illustration of the mini trials approach. Full lines correspond to time spent in the control
group, while dashed lines correspond to treatment group. Stars denote onset of type 2
diabetes, vertical lines denote censoring, and triangles denote artificial censoring.

of the mini trial started at month t will be artificially censored if they initiate HAART at a
later stage. Figure 7.3 illustrates the different types of individuals in the mini trials starting
at month t.

Obviously, a person in the control group of the mini trial starting at month t is also
eligible to participate in the mini trial starting at month t+ 1. Thus, the same person can
contribute person-months to many different control groups from different mini trials at the
same time. However, if that person initiates HAART he will be artificially censored in all
control groups he is a part of and subsequently only contribute person-months to a single
treatment group. In practical terms each person in each mini trial will produce a row in
the extended pseudo-dataset for each month that person is under risk in this trial. Each
row contains information about treatment/control group status, the originating mini trial,
current and past CD4 count, AIDS or death in that month, as well as baseline information
(age, sex, etc.).

The artificial censoring occurring if a person from a control group initiates HAART is
by no means an independent censoring. On the contrary initiation of HAART is likely a
consequence of disease progression. Accordingly, persons still in the control groups must be
weighted to compensate for the selection happening through the dependent censoring; this
is know as “inverse probability of censoring techniques” (Robins et al., 2000). In practice
this is done by fitting a survival model. In Gran et al. the Aalen additive hazard model is
employed, to the censoring process (both types of censoring are considered as one, but one
could equally well have considered the artificial censoring separately). That is use censoring
as the event of interest in a survival model conditional on current and last month’s CD4
count, treatment status, and baseline variables. In Gran et al. models for probability of
censoring are fitted to each mini trial separately, but these models could have been combined.
Next, the model for censoring can be used to obtain estimates of the probability of not being
censored up until specific month of observation for each person in the extended dataset. Each
month of observation is now weighted by the inverse of the probability of not being censored
before that month. The R package “timereg” contains an implementation of Aalen’s additive
hazard model, which can be used to obtain the required probabilities. If a Cox model is



148 Handbook of Survival Analysis

TABLE 7.3
Estimated AIDS/death hazard ratios for HAART vs. no treatment overall and for sub-
groups. Values are taken from Gran et al. (2010).

Hazard ratio (95% confidence interval)

Overall effect 0.165 (0.079; 0.343)
Effects stratified by CD4 count at treatment start
CD4 ≥ 200 0.402 (0.241; 0.684)
CD4 < 200 0.066 (0.019; 0.229)

used to model the censoring mechanism, most statistical software packages will be able to
compute the required probabilities.

At this point the extended dataset contains 1,201,315 person-months each represented as
a single row in the extended dataset. Each row contains information about treatment/control
group status, the originating mini trial, current and past CD4 count, AIDS or death in
that month, baseline information (age, sex, etc.), and a weight to account for dependent
censoring. The causal effect of HAART vs. no treatment can now be estimated by comparing
control groups with treatment groups using a weighted Cox model stratified on mini trials
and conditioning on baseline variable, CD4 count in the month of the mini trial, and 3
months before the mini trial. The actual analysis in Gran et al. included a few additional
variables, but these have been omitted in this discussion for clarity of presentation. The
theoretical underpinning for using the stratified Cox model to combine effect estimates
from the different mini trials is that it in effect corresponds to using composite likelihood
inference; see Gran et al. for further details.

The stratified and weighted Cox model can be estimated in any software package, which
can handle the relatively large datasets re-sulting from the re-use of the same person in
many mini trials. Confidence intervals can be obtained using jackknife estimated standard
errors. Table 7.3 below presents selected results from the analysis.

The estimated overall effect hazard ratio of 0.165 (95% confidence interval 0.079 to
0.343) can be interpreted as the effect one would find in an ideal randomized trial where
HIV patients were randomized to either HAART or no-treatment as soon as they entered
the trial. Thus HAART provides a significant (both clinical and statistical) improvement in
AIDS-free survival. If the ideal randomized trial instead had as an inclusion the criterion
that CD4 count should be below 200, the effect of HAART increases even further to a
hazard ratio of 0.066. However, delaying the initiation of HAART until CD4 count is below
200 might still be sub-optimal compared to an earlier initiation.

This causal interpretation hinges on the three assumptions of no unmeasured confound-
ing, consistency and positivity discussed Section 7.4.4 but also on the correctness of the em-
ployed models. The three basic assumptions from Section 7.4.4 cannot be formally tested,
but should be critically discussed using subject matter knowledge. In contrast the correct-
ness of the employed models (e.g., the Aalen model for the censoring and the Cox model
for the AIDS-free survival) can, and should be assessed using traditional model diagnostics;
see e.g., Chapters 1, 3, and 13.

Whilst the analysis in Gran et al. clearly demonstrates the usefulness of the mini trials
approach as well as the substantial therapeutic value of HAART, it does not provide any
guidance to when it is most optimal to initiate HAART; the study merely establishes that
it is always better to initiate HAART than to do nothing. Instead the mini trials approach
could have been used to compare more complex treatment strategies, e.g., “Initiate HAART
when the CD4 count first drop below 350.” This could be achieved by redefining the treat-
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ment group in each mini trial accordingly. Indeed determining optimal treatment strategies
in the presence of feedback is currently being very actively researched in the causal inference
community; see for instance Hernan et al. (2006); Robins et al. (2008); van der Laan and
Petersen (2007); Cain et al. (2010).

7.5 Appendix: R code

This appendix explains how to compute the weights used in IPTW for a binary exposure
and how to use these weights to estimate a causal hazard ratio, i.e., fitting a MSM. The
exploration follows the type 2 diabetes example and is an extension of the weights presented
in Table 7.2. Assume that data is in the R data frame myData, which contains the following
variables.

phys Binary exposure variable (0: inactive, 1: active).

SEP Socioeconomic position (1: low, 2: middle, 3: high).

Gender (0: female, 1: male).

onset Time to onset of type 2 diabetes or censoring (years).

event Indicator for type 2 diabetes (0: censoring, 1: otherwise).

Initially a logistic regression is fitted with exposure as dependent variable and including
all confounders:

fitExp <- glm(phys $\sim$ factor(SEP) + factor(Gender),

data=myData, family="binomial")

At this stage the model fit should be critically evaluated by the usual techniques for
logistic regressions. In the following it is assumed that the model fit is deemed acceptable.
The required weights can now be obtained by first computing probabilities of having the
exposure each person actually has.

temp <- predict(fitExp, type="response")

prob <- (myData$phys==1)*temp + (myData$phys==0)*(1-temp)

myData$W <- 1/prob

Note that the predict-function only supplies probabilities of being in the active group,
which is why the second line is required. Finally, the causal hazard ratio can be obtained
by fitting a Cox model including only exposure as a covariate, but weighted by the just
computed weights.

library(survival)

fitCox <- coxph(Surv(onset, event) $\sim$ factor(phys),

data=myData, weights=myData$W, robust=T)

summary(fitCox)
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Competing risks occur in many medical studies. In this type of data an individual may
fail from one of several causes. The investigator is interested in the distribution of the time
to failure from one of these causes in the presence of all other causes. A common example
of competing risks is one where a patient may die from one of several causes such as cancer,
heart disease, complications of diabetes, and so forth. Another example of competing risks
is found in defining failure as being either the result of the disease progressing or the toxicity
of the treatment. A very special case of competing risks is the right-censored data described
in Part I.

In competing risks we assume that there are two potential failure times: X1 and X2.
Here we assume two competing risks, one of interest and the second of all other failure
causes. We cannot observe (X1, X2) but rather we observe T = min(X1, X2), the failure
time and δ = 1 if X1 < X2 (Failure from cause 1) or 2 if X2 < X1 (Failure from cause
2). Patients may still be right censored, which occurs when observation on T stops at some
censoring time. For competing risks data we cannot tell if (X1, X2) are independent or not.
In fact Langberg et al. (1978) show that for any pair (X1, X2) there is an independent
pair of random variables (X∗

1 , X
∗
2 ) so that (X1, X2) and (X∗

1 , X
∗
2 ) have the same observable

distributions for (T, δ).
Competing risks can also be modeled using a multistate model. For this model, discussed

in Chapter 20, there are k absorbing states, one for each failure model. No assumptions about
potential failure times is needed and the Markov models discussed in Chapter 20 can be
applied.

The key parameters in competing risks theory depend on the inference desired. Of in-
terest is the crude hazard rate for a given cause. This quantity is defined as

h1(t) = lim
Δt→0

Pr[t < T ≤ t+Δt, δ = 1|T ≥ t]

Δt
.

Note that for the crude rate we are looking at how fast individuals are failing from cause
1 among those individuals who could fail from any cause at time t. This is an event rate
set in the real world where an individual could fail from any of the causes. An alternative
to the crude hazard rate is the crude probability of the event or the cumulative incidence
function. This probability is given by

C1(t) = Pr[T ≤ t, δ = 1].

Note that there is no function of h1(t) which returns the cumulative incidence function.
Here the cumulative incidence for cause 1 is the probability that an individual fails from
cause 1 at time t in the presence of all other competing risks. For two competing risks, one
can show that C1(t)+C2(t)+S(t) = 1 where S(t) is the survival function of the time T and
is the probability that neither competing risk has occurred by time t. Note that opposed
to the usual survival models the crude hazard rates and the cumulative incidence functions
have no easily recognized mathematical relationship. Also note that C1(t) is not a proper
distribution function since lim

t→∞C1(t) �= 1. C1(t) is called for this reason a sub-distribution

function.
The cumulative incidence function for cause 1 can be written as

C1(t) =

∫ t

0

h1(x)S(x)dx

where h1(t) is the hazard rate of cause 1. In many applications it is useful to define the
so-called sub-distributional hazard by

λ1(t) = −d ln[1− C1(t)]

dt
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and use this quantity in a Cox-like analysis instead of the crude hazard rates. This approach
gives Fine and Gray’s (1999) model.

In this part we examine models for the crude probabilities. These probabilities are for
individuals in the real world who are at risk for failure from any of the competing risks.
There is a body of literature (see Moeschberger and David (1978), for example) that deals
with “partial crude” probabilities and rates. For partial crude probabilities we are trying
to make some inference about the failure rate in a competing risks experiment conducted
in a counter-factual world where some of the competing risks cannot occur. An example
of historical interest of this type of inference is the pioneering work of Bernoulli (1766)
who was interested in looking at death rates in London and if small pox, then the leading
cause of death, could be completely prevented. Details of these calculations can be found
in Moeschberger and David’s (1978) monograph.

In this part we examine a number of techniques for regression modeling for competing
risks data. Chapter 8, by Beyersmann and Scheike, examines classical approaches to the
regression problem. They examine and compare regression modeling based on a Cox model
for the crude hazard rate h1(t) and models based on the sub-distributional hazard rate
λ1(t). They show that these two approaches may give different regression coefficients which
leads to different conclusions about the covariates importance. The next chapter by Chen
et al. repeats the analysis methods in Chapter 8 using Bayesian methods.

In Chapters 10 and 11 we present two relatively recent alternatives to the Cox regression-
like models of Chapters 8 and 9. In Chapter 10 Logan and Wang introduce pseudo-value
regression models. These models have applications to competing risks, overall survival,
mean survival and multistate models. They are based on the pseudo-values from an unbiased
estimator of some parameter of interest. The pseudo-value for the jth individual to estimate
θ based on an unbiased estimator θ̂ are defined as nθ̂ − (n − 1)θ̂(−j) where θ̂(−j) is the

estimator θ̂ with the jth observation removed. These pseudo-observations, usually computed
on a grid of time points, are then used in a Generalized Estimating Equation regression
model. For competing risks the statistic used for θ̂ is the univariate cumulative incidence
function. This approach gives values in most cases close to the Fine and Gray models.

The next chapter by Grøn and Gerds examines the so-called binomial model. This model
is based on the fact that at a series of event times we have a binomial response, namely:
the competing risk has either occurred at this time or some other competing risks have
occurred. We could use almost any model for these binomial probabilities such as a logistic
model. In the binomial, set-up models for this function are fit to the data at these time
points. An inverse of the probability of censoring weighted (IPCW) estimating equations is
used to estimate parameters.

Chapter 12 by Zhang et al. presents a series of illustrations on datasets drawn from the
large dataset of the Center for International Blood and Marrow Transplantation (CIBMTR)
is presented. The CIBMTR is one of the leading areas of research into hematopoietic stem
cell transplantation. In this chapter regression models for both overall survival and com-
peting risks probabilities are presented. The authors present some new results which show
how to construct estimates of an adjusted survival or cumulative incidence function. These
are summary curves that present an estimate of survival for an average patient with an
average set of covariates. The chapter also deals in detail with computation methods for
this regression model and estimated survival curves.
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8.1 Introduction

Analysing time until death is the archetypical example of a survival analysis, hence the
name. In practice, however, time-to-event endpoints are often composites. Common ex-
amples in oncology include progression-free survival, disease-free survival and relapse-free
survival (Mathoulin-Pelissier et al., 2008). Relapse-free survival is the time until relapse or
death, whatever occurs first. Death can also be considered to be a composite, if we distin-
guish between disease-specific death, say, and death from other causes (Cuzick, 2008). In
other words, the “survival time” is typically the time until the first of a number of possible
events. It is often tacitly understood that sooner or later every individual experiences at
least one of these events. Then the distribution of the survival time will approach one as
time progresses. For instance, the cumulative event probabilities of disease-specific death
and of death from other causes, respectively, add up to the cumulative all-cause mortality
distribution. The latter will ultimately approach one.

Competing risks are the single components of such a composite time-to-event endpoint.
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A competing risks model as discussed in this chapter considers time-until-first-event and
type-of-first-event (Putter et al., 2007). A competing risks analysis therefore provides for
more specific results, e.g., in that it allows to study a treatment effect on relapse (but not
death) and the treatment effect on death without prior relapse.

Because survival data are often incompletely observed as a consequence of left trunca-
tion and right censoring, survival analysis is based on hazards. The concept of hazards is
amenable to competing risks. There will now be as many hazards — often called “cause-
specific or event-specific hazards” — as there are competing risks. The sum of all cause-
specific hazards equals the usual hazard corresponding to the time until any first event.

It will be a key theme of the present chapter that virtually any regression model for
a “usual” survival hazard can straightforwardly be used for the cause-specific hazards,
too. However, interpretation of the results in terms of probabilities will be complicated by
their dependence on all cause-specific hazards. This is so, because the sum of all cause-
specific hazards equals the all-cause survival hazard, which in turn determines the survival
distribution. As a consequence, regression models of the cumulative event probabilities of a
competing risk have emerged since the late 1990s.

A classical textbook reference for competing risks in general and for Cox regression of
the cause-specific hazards is the first edition of Kalbfleisch and Prentice (2002) from 1980. A
rigorous mathematical treatment of semiparametric multiplicative models and nonparamet-
ric additive models for the cause-specific hazards using counting process theory is contained
in Andersen et al. (1993). Applied texts include Andersen et al. (2002), Putter et al. (2007)
and Beyersmann et al. (2012), the latter two putting an emphasis on using R. The overview
paper Andersen and Perme (2008) includes a discussion on inference for cumulative event
probabilities of a competing risk.

8.2 The competing risks multistate model

8.2.1 The multistate model

We disregard covariates for the time being. Consider competing risks data arising from a
multistate model as depicted in Figure 8.1 for two competing risks. Boxes in the figure
indicate states which an individual may occupy. At time 0, all individuals are in the initial

0Initial state ��������� 1

��������� 2

Event of type 1

Event of type 2

α01(t)

α02(t)

FIGURE 8.1
Competing risks multistate model for two competing risks with cause-specific hazards
α0j(t), j = 1, 2.
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state 0. Events are modelled as transitions between the states. A competing risks model
only models transitions out of the initial state, indicated by the arrows in the figure. An
individual’s event time can be envisaged as the waiting time in state 0. Occurrence of a
competing risk of type j is modeled by making a transition from 0 to j at this time.

More formally, consider the competing risks process (Xt)t≥0, with state space
{0, 1, 2, . . . J}. The competing risks process moves out of the initial state 0, P (X0 = 0) = 1,
at time T ,

T = inf{t > 0 |Xt �= 0}.
As usual, we assume (Xt)t≥0 to be right-continuous. The competing risks process is then
in one of the competing event states 1, 2, . . . J at time T . The type of the first event, often
called “cause of failure,” therefore is

XT ∈ {1, 2, . . . J},

the state the process enters at time T .
The stochastic behaviour of the competing risks process is completely determined by

the cause-specific hazards

α0j(t)dt = P (T ∈ dt,XT = j |T ≥ t), j = 1, 2, . . . J,

which we assume to exist. Here we have written dt both for the length of the infinitesimal
interval [t, t + dt) and the interval itself. We also write A0j(t) for the cumulative cause-

specific hazards, A0j(t) =
∫ t

0
α0j(u)du, j = 1, 2.

The cause-specific hazards can be thought of as momentary forces of transition, moving
along the arrows in Figure 8.1. They generate competing risks data as follows (Gill and
Johansen, 1990; Allignol et al., 2011b). The sum of all cause-specific hazards yields the
usual all-cause survival hazard α0·(t) corresponding to the distribution of T ,

α0·(t) =
J∑

j=1

α0j(t), A0·(t) =
J∑

j=1

A0j(t).

Say, T = t0. Then the competing event type is j with probability P (Xt0 = j|T = t0) =
α0j(t0)/α0·(t0).

The survival function of T is P (T > t) = exp(−A0·(t)) and the cumulative event prob-
abilities of the competing risks — often called “cumulative incidence functions”— are

Fj(t) = P (T ≤ t,XT = j) =

∫ t

0

P (T > u−)α0j(u) du, j = 1, 2, . . . J.

We note that P (T > t) +
∑J

j=1 Fj(t) = 1. Both the survival function and, via P (T > u−),
the cumulative incidence functions depend on all cause-specific hazards.

8.2.2 Advantages over the latent failure time model

Competing risks data are sometimes considered to arise from risk-specific latent times.
Restricting ourselves to two competing risks for ease of presentation, the latent failure time
model postulates the existence of random variables T (1), T (2) ∈ [0,∞). The connection to
the multistate data is

T = min
(
T (1), T (2)

)
and XT = 1 ⇐⇒ T (1) < T (2).
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The times T (1), T (2) are latent, because, say, T (2) in general remains unobserved, if XT = 1.
This is unlike the data (T,XT ) arising from the multistate model, which are observable save
for left truncation and right censoring.

One difficulty of the additional latent failure time structure is that one has to specify
the dependence of T (1) and T (2), which, however, is empirically non-identifiable, see, e.g.,
Chapter 17 of Crowder (2012) and the references therein.

We do not use the latent failure time model because nothing is gained from superim-
posing this additional structure, as, in particular, Aalen (1987) forcefully argues. As we will
see below, the (cumulative) cause-specific hazards are empirically identifiable. Knowledge
of these does suffice because they generate the competing risks data (T,XT ) as described
in Section 8.2.1.

Two remarks are in place before dropping the subject: Firstly, an analysis of α01(t), say,
coincides with an analysis of the hazard corresponding to the distribution of T (1), if one
assumes T (1) and T (2) to exist and to be independent. This is sometimes misinterpreted in
the sense that the aim of analysing α01(t) is to learn about the distribution of T (1). This is
not the case.

Secondly, there persists an attraction towards the latent failure time approach. The
reason probably lies in the fact that it suggests a way to answer “what if” questions.
The distribution of T (1) is often interpreted as the survival distribution in a hypothetical
world where the competing risk of type 2 no longer occurs. The value of such hypothetical
considerations has been questioned (Andersen and Keiding, 2012), but they are feasible
without the additional latent failure time structure simply by modifying the cause-specific
hazards, potentially equating them with zero.

Both such hypothetical consideration and the theory of competing risks are typically
traced back to Daniel Bernoulli’s 18th century argument in favour of vaccination against
smallpox; see, e.g., Section 3.3 of Beyersmann et al. (2012) or Appendix A of David and
Moeschberger (1978). Bernoulli did not use latent times but (time-constant) hazards and
he hypothesized that vaccination would equate the smallpox hazard with zero.

8.3 Nonparametric estimation

It is instructive to recapitulate nonparametric estimation in the presence of competing risks
before considering regression models. The appealingly simple Nelson-Aalen estimator of the
cumulative cause-specific hazards highlights in which sense competing risks act as censoring,
an issue which has led to quite some confusion. The nonparametric estimators also provide
a template for prediction based on regression models for the cause-specific hazards; the
approach will be to replace the Nelson-Aalen estimator by its model-based counterparts.

We consider n individuals under study. Their individual competing risks data are as-
sumed to be i.i.d. replicates of (Xt)t≥0, where observation of (Xt)t≥0 is subject to indepen-
dent right censoring/left truncation as in Andersen et al. (1993) and Aalen et al. (2008).
We aggregate the data over all individuals. In counting process notation, let

Y (t) = # Individuals observed to be in state 0 just before t,

N0j(t) = # Individuals with observed 0 → j-transition in [0, t], j = 1, 2, . . . J,

N0·(t) =
J∑

j=1

N0j(t) = # Individuals with an observed event in [0, t].
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We also write ΔN0j(t) for the increment N0j(t)−N0j(t−), i.e., the number of type j events

observed exactly at time t, and ΔN0·(t) =
∑J

j=1 ΔN0j(t).

The Nelson-Aalen estimator (Â01(t), Â02(t), . . . Â0J(t)) of the cumulative cause-specific
hazards has jth entry

Â0j(t) =
∑
s≤t

ΔN0j(s)

Y (s)
,

where the sum is taken over all observed event times s, s ≤ t. The Nelson-Aalen estimator
of the cumulative all-cause hazard is Â0·(t) =

∑J
j=1 Â0j(t).

Note that for computation of Â01(t), say, the numerator ΔN01(s) only counts observed
type 1 events, while the denominator Y (s) handles right-censored event times and observed
competing events of type j alike, j �= 1. This implies that for computing Â01(t) in some
statistical software package, we may code both the usual censoring events and observed
competing events other than type 1 as a censoring event.

However, these roles change when computing Â02(t), . . . Â0J(t). For Â02(t), only observed
type 2 events are counted in the numerator, while the denominator Y (s) handles right-
censored event times and observed competing events other than type 2 alike. Only the
usual censoring events would always be coded as a censoring event.

We will encounter this principle again when considering regression models for the cause-
specific hazards. A formal justification can be found in Chapter III of Andersen et al. (1993).

The usual Kaplan-Meier estimator of P (T > t) is a deterministic function of Â0·(t) and,
hence, of all cause-specific Nelson-Aalen estimators,

P̂ (T > t) =
∏
s≤t

(
1−ΔÂ0·(s)

)
,

where we have written ΔÂ0·(s) for the increment Â0·(s)− Â0·(s−).
The Aalen-Johansen estimator of the cumulative incidence functions can be derived from

the Kaplan-Meier estimator recalling that the cumulative incidence functions add up to the
all-cause distribution function. Considering the increments P̂ (T ≤ t) − P̂ (T < t), one sees
that

1− P̂ (T > t) =
∑
s≤t

P̂
(
T > s−

)
·ΔÂ0·(s).

The interpretation of P̂ (T > s−) ·ΔÂ0·(s) is that it estimates the probability to have an

event at time s. Using Â0·(t) =
∑J

j=1 Â0j(t) yields the Aalen-Johansen estimator of the
cumulative incidence functions,

P̂ (T ≤ t,XT = j) =
∑
s≤t

P̂
(
T > s−

)
·ΔÂ0j(s), j = 1, 2, . . . J.

The interpretation of the summands now is that they estimate the probability to have an
event of type j at time s. The Aalen-Johansen estimator can also be obtained by plugging the
Kaplan-Meier estimator and the Nelson-Aalen estimator into the representation of P (T ≤
t,XT = j) given at the end of Section 8.2.1.

A detailed discussion of the Nelson-Aalen, Kaplan-Meier and Aalen-Johansen estimators
is in Chapter IV of Andersen et al. (1993) and in Chapter 3 of Aalen et al. (2008).
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8.4 Data example (I)

We consider a random subsample of 1,000 patients from ONKO-KISS, a surveillance pro-
gram of the German National Reference Centre for Surveillance of Hospital-Acquired
Infections. The dataset is part of the R package compeir, which is available at
http://cran.r-project.org. The patients in the dataset have been treated by peripheral
blood stem-cell transplantation, which has become a successful therapy for severe hema-
tologic diseases. After transplantation, patients are neutropenic; that is, they have a low
count of white blood cells, which are the cells that primarily avert infections. Occurrence
of bloodstream infection during neutropenia is a severe complication.

The dataset contains information on the event time, i.e., a patient’s time of neutropenia
until occurrence of bloodstream infection, end of neutropenia or death, whatever occurs
first, and on the event type. Transplants are either autologous (cells are taken from the
patient’s own blood) or allogeneic.

The dataset contains 564 patients with an allogeneic transplant. Of these, 120 acquired
bloodstream infection. End of neutropenia, alive and without prior infection, was observed
for 428 patients. These numbers are 83 and 345, respectively, for the remaining 436 patients
with an autologous transplant. There were few cases of death without prior infection and
few censoring events.

Figure 8.2 displays the Nelson-Aalen estimates of the cumulative cause-specific hazards
within transplantation group. For ease of presentation, we have used a combined competing
endpoint “end of neutropenia, alive or dead, without prior bloodstream infection,” because
there were few such death cases. We have also omitted pointwise confidence intervals in
order not to further complicate the figure; Beyersmann et al. (2012) explain how to add
such confidence intervals in practice.

The figure illustrates that the cause-specific hazard for end of neutropenia is the major
hazard in both transplant groups. We also find that both cause-specific hazards are reduced
by allogeneic transplants, the major effect being on the hazard for end of neutropenia.
Thinking of the cause-specific hazards as momentary forces of transition, this means that
the all-cause “force” is reduced for patients undergoing allogeneic transplant, and that the
relative magnitude of the cause-specific forces changes in favour of infection. The interpreta-
tion is that events of any type are delayed for allogeneic transplants. During this prolonged
time of event-free neutropenia, patients are exposed to an only slightly reduced infection
hazard. As a consequence, there will eventually be more infections in the allogeneic group.

The figure also illustrates the importance to analyse all competing risks. For instance
in epidemiology, researchers sometimes only compute the infection incidence density or
incidence rate, i.e., an estimate of the cause-specific hazard of infection under the assump-
tion that the hazard is constant over time. Because of Figure 8.2 (right), such an analysis
would be incomplete and miss a key point if not complemented by an analysis of the other
competing risk.

Figure 8.3 displays the corresponding Aalen-Johansen estimates. The figure confirms
our previous conclusion that events of any type are delayed within the group of allogeneic
transplants, but that there will eventually be more infections for this group. We have again
omitted pointwise confidence intervals for ease of presentation and refer to Beyersmann
et al. (2012) for a practical textbook account.

One may ask whether we are over-interpreting the difference of the curves in the left
panel of Figure 8.3. Hieke et al. (2013) investigated this question in the full dataset and
found the early difference between the cumulative incidence functions to be significant based



Classical Regression Models for Competing Risks 163

FIGURE 8.2
Nelson-Aalen estimates of the cumulative cause-specific hazards within a transplantation
group.

on simultaneous confidence bands. They also discussed medical literature on why allogeneic
transplants are expected to increase the proportion of infected patients.

8.5 Regression models for the cause-specific hazards

The aim is to relate the cause-specific hazards to a vector of covariates Zi for individual i,
i = 1, . . . , n, known at time origin. A hazard regression model can also be formulated for
time-dependent covariates, but the interpretation often becomes more difficult, see, e.g.,
Chapters 4, 8, and 9 of Aalen et al. (2008). Results from regression models for all cause-
specific hazards and with only baseline covariates can be interpreted in terms of probabilities
and can, e.g., be used to predict cumulative incidence functions. In general, this is not
possible anymore with time-dependent covariates. A simple binary time-dependent covariate
can be modelled by introducing an additional transient state 0̃ into the multistate model of
Figure 8.1. Transitions between states 0 and 0̃ would reflect changes of the time-dependent
covariate. Occurrence of a competing risk would still be modelled by transitions into one
of the two absorbing states 1 and 2. A regression model including this time-dependent
covariate and for the cause-specific hazard of event j, j ∈ {1, 2}, would compare the hazard
of the 0̃ → j transition with the hazard of the 0 → j transition. However, probabilities
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FIGURE 8.3
Aalen-Johansen estimates of the cumulative incidence functions within a transplantation
group.

would also depend on the 0̃ ↔ 0 transitions, which are not modelled in this approach. The
problem persists in the absence of competing risks.

We restrict ourselves to baseline covariates for ease of presentation. Particular attention
to time-dependent covariates in the presence of competing risks has been given by Cortese
and Andersen (2010) and Beyersmann et al. (2012), Section 11.2.

We will also assume that covariates have cause-specific, i.e., different effects on the
cause-specific hazards. Models are also feasible where one covariate has a common effect
on all cause-specific hazards, while another covariate has different effects on these hazards.
However, these models are rarely used in practice for competing risks. They do lead to
more parsimonious models, which is one reason why they are attractive for more complex
multistate models. Readers are referred to Chapter VII of Andersen et al. (1993) for an
in-depth treatment and to Lunn and McNeil (1995) and Andersen and Keiding (2002) for
practical accounts.

Assuming cause-specific effects, virtually any hazard regression model can easily be fitted
to a cause-specific hazard by coding the other competing events as censoring, as stated
earlier. The data example in Section 8.4 illustrated that this approach should typically be
applied to each cause-specific hazard in turn, because one might otherwise miss important
aspects of the data.

Cox’s proportional hazards model is one of the most common choices with competing
risks and will be discussed in Section 8.5.1. A drawback of the model in the competing risks
setting is that assuming all cause-specific hazards to follow Cox models usually precludes
the all-cause hazard to comply with the proportional hazards assumption. If, as is common
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in oncology, one uses the Cox model to analyse both the composite time-to-event endpoint
and the competing risks, this may lead to inconsistencies. Klein (2006) therefore argued in
favour of Aalen’s additive hazard model. The reason is that the cause-specific hazards add
up to the all-cause hazard of the composite. We discuss the Aalen model in Section 8.5.2.

8.5.1 Cox’s proportional hazards model

Proportional cause-specific hazards models assume that

α0j;i(t;Zi) = α0j;0(t) · exp (β0j · Zi) , j = 1, 2, . . . J, i = 1, . . . , n,

where β0j is a 1 × p vector of regression coefficients, Zi is a p × 1 vector of covariates for
individual i, and α0j;0(t) is an unspecified, non-negative baseline hazard function. We also
write

A0j;0(t) =

∫ t

0

α0j;0(u)du and A0j;i(t;Zi) =

∫ t

0

α0j;i(u;Zi)du

for the respective cumulative cause-specific hazards.
Andersen and Borgan (1985) used counting processes and the results of Andersen and

Gill (1982) to study multivariate Cox models, including the present competing risks case;
see Andersen and Borgan (1985) for earlier references and Chapter VII.2 of Andersen et al.
(1993) for a textbook account. They derived a partial likelihood which is a product over
all observed event times, all individuals and all competing risk types. Assuming cause-
specific effects β0j , j = 1, 2, . . . J , the partial likelihood factors into J parts. The jth part
is algebraically identical to the partial likelihood that one obtains by treating observed
competing events of type ̃, ̃ ∈ {1, 2, . . . J} \ {j}, as censoring.

As a consequence, we can use any Cox routine of a statistical software package to fit
a Cox model to the jth cause-specific hazard by coding both the usual censoring events
and the other observed competing events as a censoring event. One analogously obtains the
Breslow estimator Â0j;0(t) of the cumulative cause-specific baseline hazard. Writing β̂0j for
the estimator of β0j obtained by maximizing the partial likelihood, the predicted cumulative
cause-specific for a covariate vector equal to z is

Â0j(t; z) = Â0j;0(t) · exp
(
β̂0j · z

)
.

We reiterate that a Cox analysis in the presence of competing risks remains incomplete
as long as this approach has not been applied to all competing risks in turn. Readers are
also warned that a Cox routine of a statistical software package may additionally return
Kaplan-Meier-type survival probabilities. This information, however, is typically without
use because probabilities will depend on all cause-specific hazards.

Survival probabilities and cumulative incidence functions may be predicted by replac-
ing the increments of the cause-specific Nelson-Aalen estimators in Section 8.3 with their
predicted counterparts. The predicted survival probability is

P̂ (T > t | z) =
∏
s≤t

⎛⎝1−
( J∑

j=1

ΔÂ0j(s; z)
)⎞⎠ ,

where as before Δ indicates an increment and the index s runs over all observed event
times s, s ≤ t. The predicted cumulative incidence functions are

P̂ (T ≤ t,XT = j | z) =
∑
s≤t

P̂ (T > s− | z) ·ΔÂ0j(t; z).
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These predictions have been implemented in SAS Macros (Rosthøj et al., 2004) and in
the R packages mstate (de Wreede et al., 2010, 2011) and riskRegression (Gerds et al.,
2012). One nice property of these predictions is that they ensure non-decreasing cumulative
hazards and that P̂ (T > t | z) +∑j P̂ (T ≤ t,XT = j | z) = 1.

Readers are referred to Chapter VII of Andersen et al. (1993) for a careful discussion of
the properties of multivariate Cox regression and subsequent prediction.

8.5.2 Aalen’s additive hazards model

Additive hazards models assume that

α0j;i(t;Zi) = α0j;0(t) + β0j(t) · Zi, j = 1, 2, . . . J, i = 1, . . . , n,

where β0j(t) is a 1×p vector of regression coefficient functions, Zi is a p×1 vector of covari-
ates for individual i, and α0j;0(t) is an unspecified, non-negative baseline hazard function.
The cumulative cause-specific hazards can then be computed as A0j;0(t) + ZiB0j(t) where

A0j;0(t) =

∫ t

0

α0j;0(u)du and B0j(t) =

∫ t

0

β0j(u)du.

This model has been introduced by Aalen (1980) and has been studied in further de-
tails in a large number of papers. The model can be fitted using the R-packages addreg1,
survival, or timereg.

In the context of the competing risks setting one important property of the model as
pointed out by for example Klein (2006) is that it is closed under addition. Therefore

if the cause-specific hazards are additive, the total hazard of dying
∑J

j=1 α0j;i(t;Zi) is
still additive. The standard least squares estimator of the cumulative hazards has the nice
property that if the covariates are the same for all causes then the estimator of the total
hazard for mortality is equivalent to the sum of the estimators of the cause specific hazards.
The model is very flexible but has the problem that the standard fitting procedures does
not enforce the condition that the cumulative hazard is non-decreasing.

Given the standard least-squares estimators of A0j;0(t) and B0j(t), that we denote as

Â0j;0(t) and B̂0j(t), we can predict the cumulative cause-specific hazards for a covariate
vector equal to z as

Â0j(t; z) = Â0j;0(t) + zB̂0j(t).

Subsequently this model can also be used to predict survival probabilities and cumulative
incidence functions by again replacing the increments of the cause-specific Nelson-Aalen es-
timators in Section 8.3 with their predicted counterparts. The predicted survival probability
then becomes

P̂ (T > t | z) =
∏
s≤t

⎛⎝1−
( J∑

j=1

ΔÂ0j(s; z)
)⎞⎠ .

The predicted cumulative incidence functions are

P̂ (T ≤ t,XT = j | z) =
∑
s≤t

P̂ (T > s− | z) ·ΔÂ0j(t; z).

These predictions have been implemented in addregmc (Aalen et al., 2001); see the same
web page as for addreg.

1www.med.uio.no/imb/english/research/groups/causal-inference-methods/software
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8.6 Data example (II)

We revisit the ONKO-KISS data of Section 8.4 and illustrate using standard Cox regres-
sion for the cause-specific hazards. Fitting separate Cox models to the competing risks
outcomes as described above, we find that allogeneic transplants decrease the cause-specific
hazard of bloodstream infection by an estimated hazard ratio of 0.77 (95% confidence in-
terval [0.58, 1.03]). The analysis of the competing cause-specific hazard finds that allogeneic
transplants decrease it by an estimated hazard ratio of 0.27 ([0.23, 0.31]).

The interpretation is as before: Allogeneic transplants decrease both cause-specific haz-
ards. Therefore, they also decrease the all-cause hazard and events of any type are delayed
in this group. However, the decrease as measured by the cause-specific hazard ratio is much
more pronounced for the hazard for end of neutropenia. Allogeneic transplants therefore
change the relative magnitude of the cause-specific hazards in favour of infection. As a
consequence, there are eventually more infections in this group.

Note that this reasoning has neglected the fact that the hazard for end of neutropenia
is also the major cause-specific hazard as illustrated in Figure 8.2. Computing the Breslow
estimators and subsequent predictions would capture this aspect. Briefly speaking, the very
same cause-specific hazard ratio is the more important the more pronounced the corre-
sponding cause-specific baseline hazard is. Readers are referred to Allignol et al. (2011b)
who discussed this aspect via simulations from the empirical law of baseline group data.

FIGURE 8.4
Aalen-Johansen estimates (dark-grey) as in Figure 8.3 and predicted cumulative incidence
functions (black) based on Cox models for the cause-specific hazards.
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The predicted cumulative incidence functions are compared with the Aalen-Johansen
estimates in Figure 8.4. We find that the fit is reasonable, although it is not perfect for the
cumulative incidence function for end of neutropenia. The reason is a time-varying effect
of allogeneic transplants on the cause-specific hazard for end of neutropenia, cf. Figure 8.2
(right), which is not captured by the present Cox model with time-invariant regression
coefficients.

8.7 Regression models for the cumulative incidence functions

The data example illustrated that a covariate effect on the cause-specific hazard scale does
not translate without further ado into an effect on the cumulative incidence functions scale.
This has motivated efforts to directly model the cumulative incidence functions. Gray (1988)
considered a K-sample test for cumulative incidence functions, which directly makes infer-
ence about the cumulative incidence functions. This work was later extended into a regres-
sion setting where the effects were further quantified in the Fine-Gray model (Fine and
Gray, 1999).

The Fine-Gray model assumes that the cumulative incidence for cause j and subject i
is given by

Fj(t;Zi) = 1− exp {−Λ0(t) · exp (β0j · Zi)} , i = 1, . . . , n,

where β0j is a 1 × p vector of regression coefficients, related to the j’th cause, Zi is a
p×1 vector of covariates for individual i, and Λ0(t) is an unspecified, non-decreasing baseline
with Λ0(0) = 0. This model has some resemblance with Cox’s regression and was motivated
as a Cox-type model for the subdistribution hazard that we get back to later.

We note that the β0j,k > 0 implies that the cumulative incidence increases with Zi,k,
and β0j,k < 0 implies that the cumulative incidence decreases with Zi,k. The interpretation
on the cumulative incidence scale is such that

log(− log(1− Fj(t;Zi))) = log(Λ0(t)) + β0j · Zi

and if we compare X = (x1, . . . , xp) with X̃ = (x1+1, x2, . . . , xp) we get a constant of β0j,1.
Clearly this is a somewhat indirect and difficult interpretation in terms of 1−Fj(t;Zi). The
advantage of the model is that it is a very flexible model that inherits many of the useful
properties of Cox’s regression model. The ability to make useful predictions and to capture
the main features of the cumulative incidence functions as well as being implemented in R
(package cmprsk) and Stata have made the Fine-Gray model the most popular approach in
practice. There has recently been considerable interest in providing the model with various
Goodness-of-fit procedures to validate the “proportionality” of the model (Scheike and
Zhang, 2008; Andersen and Perme, 2010).

More generally if interest is on accessing covariate effects directly on the cumulative
incidence function we can consider any link-function (with nice properties)

Fj(t;Zi) = h(Λ0(t), β0j , Zi) , i = 1, . . . , n,

and estimate a non-decreasing baseline Λ0(t) and regression coefficients β0j . The Fine-Gray
model is then given by the link hfg(a, b, z) = 1− exp(a exp(bz)).

Various other link functions, known from binary data, that aim at making the in-
terpretation of the regression coefficients easier have been suggested. Notably, one may
use the logistic link-function, hlogistic(a, b, z) = exp(a + bz)/(1 + exp(a + bz)), absolute,
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habsolute(a, b, z) = a + bz, or relative risk measures, hrelative(a, b, z) = a exp(bz), as de-
scribed and advocated in Fine (2001); Ambrogi et al. (2008); and Gerds et al. (2012).

We also note that the Fine and Gray model, although custom-made for one cumulative
incidence function, is often used to model all cumulative incidence functions, which will
typically imply that at least one of these models is misspecified, see, e.g., Section 5.3.4
in Beyersmann et al. (2012). In addition, when fitting models separately, the regression
models will not satisfy the natural constraint that P̂ (T > t | z)+∑j P̂ (T ≤ t,XT = j | z) =
1. Grambauer et al. (2010) found that a misspecified Fine and Gray analysis still has a
quantitative interpretation in that it informs on the plateau of the cumulative incidence
functions.

The direct regression models of this section are typically estimated using inverse proba-
bility of censoring weighted (IPCW) score equations or related techniques, for example the
subdistribution based approach, the pseudo-value approach, see Chapter 10, or the binomial
regression approach, see Chapter 11. The Fine-Gray model is typically best fitted using the
subdistribution hazard that we present briefly in the next section. Ruan and Gray (2008)
suggested a multiple imputation approach.

One key point that adds additional complexity to the estimation of these models is
the underlying IPCW model. The typical assumption is that the IPCW is independent
of covariates and then the censoring distribution can be estimated by a simple and non-
parametric Kaplan-Meier estimator, but if the censoring distribution depends on covariates
included in the model then one needs to correctly model this association. This point is often
forgotten in practical work.

The Fine-Gray model has been extended to handle left truncation in recent work
(Geskus, 2011; Zhang et al., 2011; Shen, 2011). Further methodological developments in-
clude stratified models (Zhou et al., 2011), frailties (Katsahian et al., 2006; Katsahian
and Boudreau, 2011; Dixon et al., 2011; Scheike et al., 2010), marginal modeling (Scheike
et al., 2010; Chen et al., 2008), time-dependent covariates (Beyersmann and Schumacher,
2008), parametric regression (Jeong and Fine, 2007), sample size calculation (Latouche and
Porcher, 2007) and joint modeling (Deslandes and Chevret, 2010). Fine (2001) considered
linear transformation models of the cumulative incidence function, covering both the Fine
and Gray model and a proportional odds model. Sun et al. (2006) proposed a combination
of Aalen’s additive hazards model and the Cox model for the subdistribution hazard.

8.7.1 Subdistribution hazard

We now briefly describe the subdistribution hazard that can be used for making estimating
equations for the parameters of the model. These estimating equations become an IPCW
version of a Cox type score equation.

The approach of Fine and Gray (1999) was to consider a “subdistribution time” until
occurrence of a certain competing risk, say, type 1,

T̃ = inf{t > 0 |Xt = 1}
which equals the real life event time T , if and only if XT = 1. Otherwise, the subdistribution
time equals infinity. Then, the distribution of the subdistribution time equals P (T ≤ t,XT =
1) for t ∈ [0,∞). Fine and Gray now suggested to fit a Cox model to the corresponding
subdistribution hazard λ(t),

λ(t) = − d

dt
log (1− P (T ≤ t,XT = 1)) =

P (T > t)

1− P (T ≤ t,XT = 1)
α01(t). (8.1)

Because P (T ≤ t,XT = 1) = 1 − exp(−
∫ t

0
λ(u) du), the result measures a direct effect on

the cumulative incidence function of type 1 events.
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The technical difficulty of the Fine and Gray model stems from the observed competing
events. Their subdistribution times equal infinity, such that their censored subdistribution
times equal the censoring times. Because observation often stops at the real life event time,
these censoring times are in general unknown. In other words, the risk sets associated with
the subdistribution hazard approach will be unknown for observed competing events after
their real life event times. The main technical achievement of Fine and Gray (1999) was to
approximate these risk sets by directly modeling the censoring distribution. They also used
empirical process arguments to study the asymptotic properties of the model. In practice,
one typically assumes random censoring, i.e., censoring does not depend on covariates, and
uses the Kaplan-Meier estimator of the censoring survival function.

To be specific, assume i.i.d. data (min(Ti, Ci), XTi
, Zi)i=1,...n with random censorship

following the survival function G(t) = P (C ≥ t). Consider the “complete data” processes
Ñi(t) = 1(Ti ≤ t,XTi = 1) of type 1 events with at-risk process Ỹi(t) = 1 − Ñi(t−). Note
that Ỹi is only the usual “complete data” at-risk process in the absence of competing risks.
These functions are in general unknown, but their products with an indicator function ri =
1(Ci ≥ min(Ti, t)) denoting knowledge of vital status are computable from the observable
data.

Writing Ĝ for the Kaplan-Meier estimator of G, Fine and Gray suggested to use the
weights wi(t) = ri(t)Ĝ(t)/Ĝ(min(t, Ti, Ci)) in the “complete data” score function,

U(β01) =
n∑

i=1

∫ ∞

0

(
Zi −

∑n
j=1 wj(s)Ỹj(s)Zj exp{β01Zj}∑n
j=1 wj(s)Ỹj(s) exp{β01Zj}

)
wi(s)dÑi(s). (8.2)

This score function reduces to a standard score function for the Cox model in the absence
of competing risks, i.e., if only type 1 events are feasible. However, if there are competing
risks, the reason to use (8.2) is that the “subdistribution risk set” 1(min(T̃i, Ci) ≥ t) is
in general unknown after Ti, if XTi �= 1 and Ti ≤ Ci. The rationale is that wj(t)Ỹj(t)
approximates this subdistribution risk set. Fine and Gray also derived an estimator of
the subdistribution baseline hazard along analogous lines. One considers the usual Breslow
estimator for complete subdistribution data (Ñi, Ỹi) and then introduces weights as above.

The interpretational difficulty of the subdistribution model also stems from the ob-
served competing events, because, conceptually, these are kept in the subdistribution risk
set after their real life event times. This has led to somewhat controversial views on the
subdistribution hazard concept. For instance, Pintilie (2007) and Lim et al. (2010) stressed
that keeping the observed competing events in the risk set accounts for or incorporates the
presence of competing risks. On the other hand, Andersen and Keiding (2012) argued that
regarding individuals at risk after the real life failure times compromises interpretability of
the subdistribution hazard as a hazard, i.e., as an instantaneous risk of failure.

8.8 Data example (III)

We begin with a Fine and Gray analysis of the cumulative incidence function of blood-
stream infection. Allogeneic transplants increase the risk of bloodstream infection by a
ratio of log(1−F1(t; allogeneic))/ log(1−F1(t; autologous)) at 1.09 ([0.83, 1.44]). The result
is obviously different from the Cox analyses of the cause-specific hazards as illustrated in
Table 8.1.

Interpreting the result, we first note that the Aalen-Johansen estimators in Figure 8.3
(left) cross, violating the proportional subdistribution hazards assumption. This can be
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TABLE 8.1
Results of the data analyses of Sections 8.6 and 8.8: The left panel displays cause-specific
hazard ratios. The Fine-Gray result is a subdistribution hazard ratio, logistic link yields an
odds ratio. The numbers in square brackets denote 95% confidence intervals.

Cox models for the Direct regression models for the
cause-specific hazards cumulative infection probability

infection competing event Fine-Gray logistic link

0.77 ([0.58, 1.03]) 0.27 ([0.23, 0.31]) 1.09 ([0.83, 1.44]) 1.07 ([0.78, 1.46])

formally validated by considering goodness-of-fit procedures, see for example Scheike and
Zhang (2008). As a consequence, the subdistribution hazard ratio must be interpreted as
a time-averaged effect on the scale of the cumulative incidence function (Claeskens and
Hjort, 2008). But how the time-average is constructed depends on for example the censoring
pattern, so this makes the interpretation difficult. The qualitative interpretation is that the
subdistribution hazard ratio of 1.09 reflects that the plateau of the cumulative incidence
function is increased for allogeneic transplants. Readers are referred to Beyersmann et al.
(2007) for an extensive analysis of the full ONKO-KISS dataset. We here note that censoring
was entirely administrative and did not depend on the type of transplant which is an
underlying assumption.

A Fine and Gray analysis of P (T ≤ t,XT = 1) and a Cox analysis of α01(t) sometimes
lead to comparable or numerically almost identical results, a fact which has led to some
confusion in its own right. Grambauer et al. (2010) found that the results are comparable
if a covariate has no effect on the other cause-specific hazards or if censoring is heavy.
The reason for the latter fact is that the difference between α01(t) and λ(t) is small for
early times; see (8.1). These findings also suggest an indirect and hence limited way to
quantitatively interpret the subdistribution hazard ratio.

Using the timereg or riskRegression packages of R we also fitted a logistic link model
to describe the effect of allogeneic transplants, and conclude that the allogeneic transplants
have a increased risk of infection with an odds ratio of 1.07 ([0.78, 1.46]).

The results from all regression models are tabulated in Table 8.1. Finally, we compared
the predicted cumulative incidence functions of bloodstream infection based on a Fine-Gray
model with the Aalen-Johansen estimates of Figure 8.3. Because of the model misspecifica-
tion discussed above, the predicted curves cannot capture the crossing of the Aalen-Johansen
estimates, but they do capture their plateaus.

8.9 Other regression approaches

We have focused on the two main regression approaches in competing risks. Because hazards
are the key quantities in survival analysis, it is both natural and straightforward to fit
hazard regression models to the cause-specific hazards. The data example illustrated that it
is via the cause-specific hazards that one understands how the cumulative event probabilities
evolve, but that there is also a need for direct regression models for the cumulative incidence
functions.
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FIGURE 8.5
Aalen-Johansen estimates (dark-grey) as in Figure 8.3 (left) and predicted cumulative inci-
dence functions (black) based on a Fine-Gray model for the outcome bloodstream infection.

There are further regression approaches. Larson and Dinse (1985) considered the de-
composition

P (T ≤ t,XT = j) = P (T ≤ t |XT = j)P (XT = j)

and suggested separate regression models for the two probabilities on the right-hand side of
the above display, see also Hernandez-Quintero et al. (2011) and the references therein. One
important technical difficulty of the approach is that P (XT = j) = limt→∞ P (T ≤ t,XT =
j) will not be identifiable with many survival data. Fine (1999) therefore considered

P (T ≤ min(t, τ), XT = j) = P (T ≤ t |T ≤ τ,XT = j)P (T ≤ τ,XT = j)

for a fixed time point τ inside the support of min(T,C); see also Shen (2012) and the
references therein. The interpretational difficulty is that this mixture approach considers a
lifetime distribution conditional on the failure cause, which is in general unknown before
the event (Andersen and Keiding, 2012).

In contrast, Nicolaie et al. (2010) considered so-called “vertical modeling” via the de-
composition

PT,XT = PTPXT |T ,

which follows the prospective algorithm of Section 8.2.1. Similar to the decomposition used
by Larson and Dinse, Nicolaie et al. used a standard survival model for PT and a multinomial
logistic regression model for the (conditional) distribution of the failure type. Because the
prospective point of view considers these probabilities conditional on the event time, the
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technical challenge is that such a model is needed as a function of time. In their data
analysis, Nicolaie et al. used splines for this purpose.

Further regression approaches include Allignol et al. (2011a) who used “temporal process
regression” (Fine et al., 2004) for the so-called conditional probability function of Pepe and
Mori (1993), which is defined for type 1 events as

P (T ≤ t,XT = 1 |T > t or {T ≤ t,XT = 1}) = P (Xt = 1 |Xt ∈ {0, 1}).

Pepe and Mori advocated this quantity, because it is a monotone increasing function, start-
ing at 0 and reaching 1, just like a distribution function. The interpretational difficulty is
that it is not the distribution function of an obvious random variable of the competing risks
setting. Andersen and Keiding (2012) argue that this function only becomes useful, if the
more complex illness-death multistate model applies.

We finally mention Fiocco et al. (2005) who started from Cox models as in Section 8.5.1
in situations with many regression parameters (many competing risks and/or many co-
variates) but relatively few events. The idea is to decompose the matrix of all regression
coefficients into two matrices. One matrix aggregates the covariates into prognostic scores
and is estimated based on all events. The other matrix contains the cause-specific effects of
the prognostic scores.

8.10 Further remarks

We have assumed that the data are replicates of (T,XT ), subject to independent left trun-
cation and right censoring. This implies that the event type is known for individuals with
an observed event time. Sometimes, only the time, but not the event type is known. If
these data are missing completely at random, they may be removed from the analysis.
Alternatively, one may introduce “event type unknown” as an additional competing risk,
which would preserve the risk sets. More sophisticated methods have been discussed by,
e.g., Nicolaie et al. (2011) and Lee et al. (2011); see also the references in these papers.

Earlier, we have referred to Andersen et al. (1993) for a careful mathematical treatment
of hazard regression models. The asymptotic distribution of predictions may then be studied
using the functional delta method, which can be used to derive pointwise confidence inter-
vals. Simultaneous confidence bands, however, are typically based on resampling methods,
see Martinussen and Scheike (2006) for a textbook account.
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Competing risks data are routinely encountered in various medical applications due to the
fact that patients may die from different causes. By now, there is a vast literature on the
development of models and methods for fitting and analyzing this type of survival data.
In this chapter, we provide a comprehensive overview of Bayesian analysis of competing
risks data. Specifically, several models for competing risks survival data are presented and
their properties are discussed. The posterior computation and Bayesian model compari-
son are developed. A real dataset from an AIDS study is used to illustrate the Bayesian
methodology.

179



180 Handbook of Survival Analysis

9.1 Introduction

Competing risks data arise in the medical research studies when the survival data include
failure time due to one of two or more terminating events or death from different causes.
Let T1 and T2 denote two failure times and let C denote the right censoring time. Figure 9.1
illustrates three types of bivariate survival data, where a dot represents a pair of observed
times and a line segment in the direction of either T1 or T2 indicates that either T1 or T2

is censored for that subject. For example, in 9.1 (a), for observation 1, T2 is observed while
T1 is censored; for observation 2, both T1 and T2 are observed; and for observation 4, both
T1 and T2 are censored.

Figure 9.1 (a) shows six observed data points of usual bivariate failure times. From this
plot, we see that these data points spread out in the whole first quadrant. Figure 9.1 (b)
illustrates three observed competing risks data points, which are realizations of (T1, T2, C).
We see from this plot that all three data points fall in the 45-degree straight line in the first
quadrant. For example, in Figure 9.1 (b), for observation 1, T2 is observed, i.e., T2 ≤ C,
while T1 > T2 and T1 cannot be observed in this case; for observation 2, both T1 and T2

are censored and in this case, T1 > C and T2 > C. Unlike the usual bivariate survival
data shown in Figure 9.1 (a), the competing risks data are observed only along the 45-
degree straight line and, therefore, the correlation between T1 and T2 is not identified for
the competing risks data (Tsiatis, 1975). Another related type of survival data is called
the “semi-competing risks data.” Semi-competing risks data arise when the survival data
include both the time to a nonterminating event and the time to a terminating event.
An illustration of semi-competing risks data is given in Figure 9.1 (c). From 9.1 (c), we
see that all observations lie in the upper wedge. A similar illustration was also given in
Jiang et al. (2003) to show bivariate semi-competing risks survival data. Due to the limited
space, we mainly focus on Bayesian analysis of competing risks data in this chapter. The
recent development on the Bayesian analysis of semi-competing risks data and the related
literature can be found in Zhang et al. (2012).

There is a rich literature on the frequentist approach for fitting and analyzing compet-
ing risks data. The multivariate model of failure times due to different causes was proposed
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FIGURE 9.1
Illustration of bivariate survival data without special association (a), competing risks data
(b), and semi-competing risks data (c).
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in Gail (1975). It was shown in Tsiatis (1975) that for any joint distribution of n failure
times there exists a joint distribution of n independent failure times such that the cumu-
lative incidence functions from the two joint distributions coincide, which implies that the
correlations between the failure times are not identifiable in the multivariate failure time
model. The cause-specific hazards model was introduced in Prentice et al. (1978) and the
mixture model with hazards function conditional on failure from a specific cause was de-
veloped in Larson and Dinse (1985). The subdistribution model with proportional hazards
assumption was discussed in Fine and Gray (1999) for assessing the covariates’ effect on the
cumulative incidence function of the cause of interest. Recent research on competing risks
data includes Fan (2008) for introducing a Bayesian nonparametric methodology based on
full likelihood for the proportional subdistribution hazard model and Elashoff et al. (2007,
2008) for jointly modeling the longitudinal measurements and survival data with competing
risks, where they extended respectively the cause-specific hazards model and the mixture
model for survival data, and used latent random variables to link together the sub-models
for longitudinal measurements and survival data. The literature on Bayesian analysis of
competing risks data is still sparse. The subdistribution model of Fine and Gray (1999)
for each cause specific risk was extended in Fan (2008) via Bayesian nonparametric meth-
ods. More recently, the Bayesian methods were developed in Hu et al. (2009); Huang et al.
(2011) for a joint analysis of longitudinal measurements and survival data with competing
risks, in which cause-specific hazards models were considered for modeling survival times.
As pointed out in Fine and Gray (1999) one of the nice properties of the subdistribution
model is that the effect of a covariate on the marginal probability function can be directly
assessed. However, the subdistribution model of Fine and Gray (1999) cannot be compared
to other models as the competing risks for other causes are not estimated in their model.
Due to this reason, Ge and Chen (2012) extended the model of Fine and Gray (1999) to
develop a fully specified subdistribution model, in which a subdistribution model is for the
primary cause of death and conditional distributions are for other causes of death.

The rest of this chapter is organized as follows. In Section 9.2, we present several models
for competing risks data. The priors and posteriors, the posterior computation, and Bayesian
model comparison criteria are discussed in Section 9.3. The detailed analysis of a real dataset
from an AIDS study is carried out in Section 9.4. We conclude this chapter with a brief
discussion and future research in Section 9.5.

9.2 The models for competing risks survival data

In this section, we present several models and examine their properties for survival data
with competing risks. The models discussed below include the multivariate time to failure
model, the cause-specific hazards model, the mixture model, the subdistribution model, and
the fully specified subdistribution model.

9.2.1 Multivariate time to failure model

A multivariate time to failure model was introduced in Gail (1975). Denote Tj as the random
variable of time to failure from cause j, J as the total number of causes, and δ as the cause
indicator with δ = j indicating the observation is failed from cause j and δ = 0 indicating
the observation is censored for j = 1, 2, . . . , J . The joint survival function of T1, T2, . . . , TJ
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is defined by

S(t1, t2, . . . , tJ) = Pr(T1 > t1, T2 > t2, . . . , TJ > tJ).

The sub-survival function for cause j is defined by

Sj(tj) = Pr(Tj > tj , δ = j)

=

∫ ∞

tj

∫ ∞

uj

. . .

∫ ∞

uj

(−1)J
∂JS(u1, u2, . . . , uJ)

∂u1 . . . ∂uJ
du1 . . . duj−1duj+1 . . . duJduj .

(9.1)

We note that Sj(0) = Pr(δ = j), which is not necessarily equal to 1. Let T =
min{T1, T2, . . . , TJ}, then δ = j when T = Tj . The overall survival function of T > t
is

ST (t) = Pr(T1 > t, T2 > t, . . . , TJ > t) = S(t, t, . . . , t).

Tsiatis (1975) proved in a theorem that for any joint distribution of time to failure
variables from J causes, there exists a joint distribution of J independent time to failure
variables such that the sub-survival functions for any cause j from the two joint distributions
coincide. This theorem implies that the correlation between time to failure variables from
different causes is not identifiable in the multivariate time to failure model.

For a simple illustration, assume T1 and T2 are the time to failure variables due to two
different causes for a patient. As shown in Figure 9.2, only the earlier failure time can be
observed, and in this case T1 is observed for failure from cause 1 while T2 can never be
observed. Thus, the correlation between T1 and T2 is not identifiable.

An example applying the theorems in Tsiatis (1975) is also shown here. Assume that
the joint survival function of two dependent time to failure variables T1 and T2 has the form

S(t1, t2) = exp(−λt1 − µt2 − ϑt1t2),

Time
0 5 10 15

T1 (observed)

T2 (not observed)

FIGURE 9.2
Simple illustration of failure times of two causes for one patient.



Bayesian Regression Models for Competing Risks 183

with λ > 0, µ > 0, and ϑ > 0. The marginal survival function of Tj for cause j is MSj(tj) =
Pr(Tj > tj) for j = 1, 2. Thus, for cause 1 and cause 2, the marginal survival functions are
given by MS1(t1) = exp(−λt1) and MS2(t2) = exp(−µt2). The joint density function of T1

and T2 is given by

f(t1, t2) = (ϑ2t1t2 + λϑt1 + µϑt2 + λµ− ϑ) exp(−λt1 − µt2 − ϑt1t2).

From (9.1), the sub-survival functions for the two causes can be obtained as follows:

S1(t1) = exp
{ (λ+ µ)2

4ϑ

}[1
2
exp
{
− ϑ(t1 +

λ+ µ

2ϑ
)2
}

+

√
π(λ− µ)

2
√
ϑ

{
1− Φ

(√
2ϑ
(
t1 +

λ+ µ

2ϑ

))}]
and

S2(t2) = exp
{ (λ+ µ)2

4ϑ

}[1
2
exp
{
− ϑ(t2 +

λ+ µ

2ϑ
)2
}

+

√
π(µ− λ)

2
√
ϑ

{
1− Φ

(√
2ϑ
(
t2 +

λ+ µ

2ϑ

))}]
,

where Φ(·) denotes the standard normal cumulative distribution function.
Using the theorems and formulas in Tsiatis (1975), the marginal survival functions of

the corresponding independent time to failure variables TI1 and TI2 are

MSI1(t1) = Pr(TI1 > t1) = exp
{∫ t1

0

S′1(u)
S1(u) + S2(u)

du
}

= exp
(
− λt1 −

1

2
ϑt21

)
and

MSI2(t2) = Pr(TI2 > t2) = exp
{∫ t2

0

S′2(u)
S1(u) + S2(u)

du
}

= exp
(
− µt2 −

1

2
ϑt22

)
,

where S′j(u) = dSj(u)/du, j = 1, 2. Letting fIj(t) be the marginal density function of TIj

at t, the joint density function of TI1 and TI2 is given by

fI(t1, t2) = fI1(t1)fI2(t2)

= (ϑt1 + λ) exp
(
− λt1 −

1

2
ϑt21

)
(ϑt2 + µ) exp

(
− µt2 −

1

2
ϑt22

)
.

After some algebra, it can be shown that the sub-survival function of TIj is exactly the
same as the sub-survival function of Tj for j = 1, 2. More general results on necessary and
sufficient conditions for the existence of a set of independent random variables with the
same joint distribution of the times to failure are given in Langberg et al. (1978).

9.2.2 Cause-specific hazards model

The cause-specific hazards model (CS model) was discussed in Gaynor et al. (1993). For
j = 1, . . . , J , the cause-specific hazard function for cause j is defined by

hCj(t) = lim
Δt→0

{
Pr(t ≤ T < t+Δt, δ = j|T ≥ t)

Δt

}
.
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The overall survival function of T > t is

ST (t) = Pr(T > t) = exp
{
−

J∑
j=1

∫ t

0

hCj(u)du
}
.

The cumulative incidence function and the sub-survival function for cause j are given
by Fj(t) = Pr(T ≤ t, δ = j) =

∫ t

0
hCj(u)S(u)du and Sj(t) = Pr(T > t, δ = j) =∫∞

t
hCj(u)S(u)du. The probability of failing from cause j is Fj(∞) for j = 1, . . . , J .
Let x be the p× 1 vector of covariates and also let βj and hCj0(t) be the vector of the

regression coefficients without an intercept and the cause-specific baseline hazard function
at t for cause j, respectively. Assume the Cox proportional hazards structure for hCj(t),
i.e.,

hCj(t|x) = hCj0(t) exp(x
′βj).

Suppose that there are n observations with the vector of observed time t = (t1, . . . , tn)
′, the

n×p matrix of covariates X = (x1, . . . ,xn)
′, the vector of cause indicator δ = (δ1, . . . , δn)

′,
and δi takes a value between 0 and J with 0 denoting a censored observation. Let

Dobs = (t, δ, X) (9.2)

denote the observed data. Assuming that there are two causes of failure in total, i.e., J = 2,
the likelihood function given Dobs is

LC(β1,β2, hC10, hC20|Dobs)

=
n∏

i=1

{
hC10(ti) exp(x

′
iβ1)

}1{δi=1}
exp
{
−HC10(ti) exp(x

′
iβ1)

}
×
{
hC20(ti) exp(x

′
iβ2)

}1{δi=2}
exp
{
−HC20(ti) exp(x

′
iβ2)

}
, (9.3)

where HCj0(ti) =
∫ ti
0

hCj0(u)du for j = 1, 2 and 1{A} is the indicator function such that
1{A} = 1 if A is true and 0 if A is not true. It is observed that the regression coefficients
for the two causes are separated symmetrically in (9.3), and that for estimating each βj ,
failed observations from the other cause play the same role as censored observations. Hence,
inference for the cause-specific hazards model with the proportional hazards assumption
can be made by applying the Cox model to each cause, respectively, treating deaths from
other causes as censored.

9.2.3 Mixture model

The use of the mixture model (M model) to analyze the survival data with competing risks
was discussed in Larson and Dinse (1985). Assume the total number of failure from a specific
cause follows a multinomial distribution, and the probabilities of failing from the J possible
causes satisfy p1 + p2 + · · ·+ pJ = 1. Define the hazard function conditional on failure from
cause j by

hMj(t) = lim
Δt→0

{
Pr(t ≤ T < t+Δt|δ = j, T ≥ t)

Δt

}
. (9.4)

The cumulative incidence function and the sub-survival function for cause j are given by

Fj(t) = pj

(
1− exp

{
−
∫ t

0
hMj(u)du

})
and Sj(t) = pj exp

{
−
∫ t

0
hMj(u)du

}
, and the

overall survival function of T > t is

ST (t) =

J∑
j=1

pj exp
{
−
∫ t

0

hMj(u)du
}
.
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Let hMj0(t) be the conditional baseline hazard function at t for cause j. Assume the Cox
proportional hazards structure for hMj(t) with the vector of covariates x and the vector of
the regression coefficients βj by

hMj(t|x) = hMj0(t) exp(x
′βj).

When J = 2, we obtain the likelihood function given Dobs in (9.2) under the M model as
follows:

LM (β1,β2, hM10, hM20,p1|Dobs)

=
n∏

i=1

[
p1ihM10(ti) exp(x

′
iβ1) exp

{
−HM10(ti) exp(x

′
iβ1)

}]1{δi=1}

×
[
(1− p1i)hM20(ti) exp(x

′
iβ2) exp

{
−HM20(ti) exp(x

′
iβ2)

}]1{δi=2}

×
[
p1i exp

{
−HM10(ti) exp(x

′
iβ1)

}
+ (1− p1i) exp

{
−HM20(ti) exp(x

′
iβ2)

}]1{δi=0}
, (9.5)

where p1 = (p11, . . . , p1n)
′ and HMj0(ti) =

∫ ti
0

hMj0(u)du for j = 1, 2. In practice, the
logistic regression model is often used for p1i in (9.5). Specifically, we assume

p1i = p(φ|zi) =
exp(z′iφ)

1 + exp(z′iφ)
, (9.6)

where zi is the q × 1 vector of covariates and φ is the vector of regression coefficients
including an intercept. Notice that (9.6) can be easily extended to the general case with J
causes.

9.2.4 Subdistribution model

The concept of “subdistribution hazard” was introduced and the subdistribution model (S
model) for the cause of interest only was developed in Gray (1988) and Fine and Gray
(1999). Assume cause 1 is the cause of interest. The subdistribution hazard for cause 1 is
defined by

hS1(t) = lim
�t→0

{
Pr(t ≤ T ≤ t+�t, δ = 1|T ≥ t ∪ (T ≤ t ∩ δ �= 1))

�t

}
=

∂F1(t)/∂t

1− F1(t)
, (9.7)

where F1(t) = Pr(T ≤ t, δ = 1). As discussed in Fine and Gray (1999), a regression model
of (9.7) is developed by assuming the Cox proportional hazards structure for hS1(t) with the
vector of covariates x, the vector of the regression coefficients β1, and the subdistribution
baseline hazard function hS10(t) as

hS1(t|x) = hS10(t) exp(x
′β1) (9.8)

and

F1(t|x) = 1− exp
{
−
∫ t

0

hS10(u) exp(x
′β1)du

}
. (9.9)
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Fine and Gray (1999) pointed out that the covariates’ effect on the cumulative incidence
function for the cause of interest can be directly assessed through the corresponding vector of
regression coefficients in the subdistribution model due to the proportional hazards structure
of (9.8).

For the observed data Dobs in (9.2), assume that δi ≥ 1 for i = 1, . . . , n, i.e., all failure
times are completely observed. Then, for J = 2, the partial likelihood of β1 for cause 1
(Fine and Gray, 1999) is given by

Lp(β1|Dobs) =
n∏

i=1

[ exp(x′iβ1)∑
j∈R∗

i
exp(x′jβ1)

]1{δi=1}
, (9.10)

where R∗i is defined as a special risk set at failure time ti by

R∗i =
{
j : (tj ≥ ti) ∪ (tj ≤ ti ∩ δj �= 1)

}
. (9.11)

Note that the risk set R∗i is quite different than the risk set of Ri =
{
j : tj ≥ ti

}
defined

in Cox’s partial likelihood (Cox, 1972, 1975) because the patients who failed from cause 2
before ti are included in R∗i while not in Ri. Since the distribution of time to failure due
to cause 2 is not specified in this model, the full likelihood function given the n complete
observations cannot be constructed.

9.2.5 Connections between the CS, M, and S models

Although the hazard functions of the CS, M, and S models are quite different, there are
certain connections between these models. We formally state the results in the following
two propositions.

Proposition 1 The CS model is equivalent to the M model if for cause j, the cause-specific
hazard function in the CS model equals to the multiplication of the conditional hazard func-
tion and the probability of failing from cause j in the mixture model, i.e.,

hCj(t|x) = pj(φ|z)hMj(t|x), (9.12)

where pj(φ|z) = exp(z′φj)/{1 +
∑J−1

k=1 exp(z
′φk)}, for j = 1, . . . , J , with φ =

(φ′1, . . . ,φ
′
J−1)

′ and φJ = 0.

Proposition 2 Assume cause 1 is the cause of interest. Then for cause 1, the S model is
equivalent to the CS model if

hS1(t|x) =
hC1(t|x) exp

{
−∑J

j=1 HCj(t|x)
}

1−
∫ t

0
hC1(u|x) exp

{
−∑J

j=1 HCj(u|x)
}
du

. (9.13)

The proofs of the above two propositions follow from some straightforward algebra and
the details of the proofs are omitted here for brevity. From these propositions, we see
that (i) if (9.12) is assumed for hCj(t|x), then the C model does not have a proportional
hazards structure for the cause-specific hazard function; and (ii) if (9.13) is assumed, then
the proportional hazards structure is no longer to hold for hS1(t|x) under the S model. In
other words, if one of these three models is “true,” the other two models do not have the
proportional hazards structure.
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9.2.6 Fully specified subdistribution model

The fully specified subdistribution model was developed in Ge and Chen (2012). For the
sake of simplicity, assume there are two causes of failure. The extension for more than two
causes can be found in Ge and Chen (2012). Assume cause 1 is the cause of interest. Let
T ∗j = Tj ×1{δ = j}+∞×1{δ �= j}, j = 1, 2, and let T ∗ = min{T ∗1 , T ∗2 }, which is essentially
the time to failure. The cumulative incidence functions of T ∗ for the two causes are

F1(t) = Pr(T ∗ ≤ t, δ = 1) = Pr(T1 ≤ t, δ = 1) (9.14)

and

F2(t) = Pr(T ∗ ≤ t, δ = 2) = M2(t)Pr(δ = 2), (9.15)

where M2(t) is the cumulative incidence function conditional on failure from cause 2 defined
by M2(t) = Pr(T2 ≤ t|δ = 2). Note that in (9.14) and (9.15), the correlation between T1

and T2 is not directly modeled, which is not identifiable as shown in Tsiatis (1975). Instead,
F1(t) and F2(t) are related to each other naturally via

Pr(δ = 2) = 1− Pr(δ = 1) = 1− F1(∞). (9.16)

Using the subdistribution hazard in (9.7) for cause 1, we have F1(t) = 1 − exp
{

−∫ t

0
h1(u)du

}
. Notice that the subdistribution cumulative hazard function H1(t) =∫ t

0
h1(u)du is not a proper cumulative hazard function since lim

t→∞H1(t) = − log
[
1 −

lim
t→∞F1(t)

]
< ∞. Using the conditional hazard in (9.4) for cause 2, we have M2(t) =

1− exp
{
−
∫ t

0
h2(u)du

}
. From (9.15), we see that

lim
t→∞M2(t) =

lim
t→∞Pr(T ∗ ≤ t, δ = 2)

Pr(δ = 2)
= 1,

which implies that M2(t) is a proper cumulative distribution function. Consequently, we

have
∫∞
0

h2(u)du = ∞, which indicates that
∫ t

0
h2(u)du is a proper cumulative hazard

function.
Let h10(t) be the subdistribution baseline hazard function with the corresponding subdis-

tribution cumulative baseline hazard H10(t) =
∫ t

0
h10(u)du satisfying lim

t→∞H10(t) < ∞, and

let h20(t) be the conditional baseline hazard function with the corresponding conditional

cumulative baseline hazard H20(t) =
∫ t

0
h20(u)du. Assume the Cox proportional hazards

structure for h1(t) and h2(t) with the vector of covariates x and the vector of the regression
coefficients β1 and β2 by

h1(t|x) = h10(t) exp(x
′β1) and h2(t|x) = h20(t) exp(x

′β2).

Hence, we have

F1(t|x) = 1− exp
{
−H10(t) exp(x

′β1)
}

(9.17)

and

M2(t|x) = 1− exp
{
−H20(t) exp(x

′β2)
}
. (9.18)
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The model defined by (9.17) and (9.18) is called the “fully specified subdistribution (FS)”
model (Ge and Chen, 2012). Under the FS model, the likelihood function given Dobs in
(9.2) can be written as follows:

LFS(β1,β2, h10, h20|Dobs)

=
n∏

i=1

[
h10(ti) exp(x

′β1) exp
{
−H10(ti) exp(x

′β1)
}]1{δi=1}

×
[
h20(ti) exp(x

′β2) exp
{
−H20(ti) exp(x

′β2)−H10(∞) exp(x′β1)
}]1{δi=2}

×
[
exp
{
−H10(ti) exp(x

′β1)
}

−
(
1− exp

{
−H20(ti) exp(x

′β2)
})

exp
{
−H10(∞) exp(x′β1)

}]1{δi=0}
. (9.19)

The FS model is not only a natural extension of the subdistribution model of Fine and
Gray (1999) but also provides justifications of Fine and Gray’s partial likelihood in (9.10)
and (9.11) under certain conditions. Assume that all n failure times are completely observed.
Let yi = ti when δi = 1, and yi = ∞ when δi �= 1. Write 0 = y(0) < y(1) < · · · < y(D1) <
y(D1+1) = · · · = y(n) = ∞, where D1 is the number of distinct failure times due to cause 1.
Also the part of the likelihood function in (9.19) involving β1 is denoted by

LFS1(β1, h10|Dobs) =
n∏

i=1

[
h10(y(i)) exp(x

′β1)
]
exp
{
−H10(y(i)) exp(x

′β1)
}
. (9.20)

With the n completely observed failure times, Ge and Chen (2012) showed that (i) assuming
that the subdistribution baseline hazard rate h10 is zero after the last failure time due
to cause 1, the partial likelihood function in (9.10) and (9.11) can be attained by the
profile likelihood approach, i.e., plugging in the profile maximum likelihood estimator of
h10 in the likelihood function in (9.20); and (ii) assuming that h10(t) is zero after the last
failure time due to cause 1 and the prior of h10(t) is degenerate at 0 everywhere except
at yi’s when δi = 1, the partial likelihood function in (9.10) and (9.11) is proportional
to the marginal posterior density of β1 under the independent Jeffreys type priors for
h10(y(1)), . . . , h10(y(D1)). In addition, with the development of the FS model, formal model
comparisons between the CS model, the M model, and the FS model can be carried out
via Bayesian deviance information criterion (DIC) and logarithm of the pseudomarginal
likelihood (LPML). Furthermore, the FS model also facilitates an efficient implementation
of the Gibbs sampling algorithm. These two issues are further discussed in the subsequent
section.

9.3 Bayesian inference

In this section, we first specify the models for baseline hazard functions and priors for all
model parameters in order to carry out Bayesian inference for the CS, M, and FS models. We
then present the posterior distributions for these three models, develop Markov chain Monte
Carlo (MCMC) sampling algorithms to sample from the respective posterior distributions,
and discuss Bayesian model comparison criteria. To ease the exposition, we assume J = 2
throughout the rest of the chapter.
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9.3.1 Priors and posteriors

We assume piecewise constant hazard models for the baseline hazard functions hCj0(t) (CS
model), hMj0(t) (M model), and hj0 (FS model) for j = 1, 2. We first construct Kj + 1
partitions of the time axis as follows: 0 = sj0 < sj1 < · · · < sjKj < sj,Kj+1 = ∞ for j = 1, 2.
We choose sjKj to be sufficiently large so that there are no failure times beyond sjKj . For
the CS model, we assume that the baseline hazard functions have the following form

hCj0(t) = λCjk, sj,k−1 < t ≤ sjk, k = 1, . . . ,Kj ,
hCj0(t) = λCjKj

, t > sjKj

(9.21)

for j = 1, 2. Similarly, for the M model, we assume

hMj0(t) = λMjk, sj,k−1 < t ≤ sjk, k = 1, . . . ,Kj ,
hMj0(t) = λMjKj

, t > sjKj

(9.22)

for j = 1, 2. For the FS model, the baseline hazard functions are assumed to take the form

h10(t) = λ1k, s1,k−1 < t ≤ s1k, k = 1, 2, . . . ,K1,
h10(t) = λ1,K1+1 exp{−(t− s1K1

)}, t > s1K1
;

h20(t) = λ2k, s2,k−1 < t ≤ s2k, k = 1, 2, . . . ,K2,
h20(t) = λ2K2

, t > s2K2
.

(9.23)

Note that the hazard functions hCj0(t) and hMj0(t) defined by (9.21) and (9.22) yield the
proper cumulative hazard functions, respectively, while the hazard functions h10(t) and
h20(t) in (9.23) lead to an improper cumulative hazard function for cause 1 and a proper
cumulative hazard function for cause 2.

Let θC = (β′1,β
′
2,λ

′
C)
′, where λC = (λC11, . . . , λC1K1 , λC21, . . . , λC2K2)

′, θM =
(β′1,β

′
2,φ,λ

′
M )′, where λM = (λM11, . . . , λM1K1 , λM21, . . . , λM2K2)

′, and θFS =
(β′1,β

′
2,λ

′
FS)

′, where λFS = (λ11, . . . , λ1,K1
, λ1,K1+1, λ21, . . . , λ2K2

)′. We assume indepen-
dent improper uniform priors for β1, β2, and φ and Jeffreys’s priors for each of λCjk, λMjk,
λ1k, and λ2k except for λ1,K1+1. For λ1,K1+1, we assume a Gamma prior given by

π(λ1,K1+1) ∝ λa−1
1,K1+1 exp(−bλ1,K1+1), (9.24)

where a > 0 and b ≥ 0 are prespecified hyperparameters. Thus, we have

π(θC) ∝
∏2

j=1

∏Kj

k=1
1

λCjk
,

π(θM ) ∝∏2
j=1

∏Kj

k=1
1

λMjk
,

π(θFS) ∝
[∏2

j=1

∏Kj

k=1
1

λjk

]
π(λ1,K1+1),

(9.25)

where π(λ1,K1+1) is given by (9.24). Using (9.25), the posterior distributions of θC , θM ,
and θFS can be written as

π(θC |Dobs) ∝ LC(β1,β2, hC10, hC20|Dobs)

2∏
j=1

Kj∏
k=1

1

λCjk
,

π(θM |Dobs) ∝ LM (β1,β2, hM10, hM20,p1|Dobs)

2∏
j=1

Kj∏
k=1

1

λMjk
, (9.26)

π(θFS |Dobs) ∝ LFS(β1,β2, h10, h20|Dobs)
[ 2∏
j=1

Kj∏
k=1

1

λjk

]
π(λ1,K1+1),
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where LC(β1,β2, hC10, hC20|Dobs), LM (β1,β2, hM10, hM20,p1|Dobs), and LFS(β1,β2,
h10, h20|Dobs) are given in (9.3), 9.5), and (9.19), respectively.

Although the improper priors are specified for θC , θM , and θFS , the posterior distribu-
tions in (9.26) can still be proper under some mild conditions. Let νjik = 1 if the ith subject
failed or was censored in the kth interval (sj,k−1, sjk], and 0 otherwise for k = 1, 2, . . . ,Kj+1,
and i = 1, 2, . . . , n, where sj,Kj+1 = ∞, for j = 1, 2. Also let Xj be a matrix with its ith

row equal to 1{δi = j}(νji1, . . . , νjiKj ,x
′
i) for j = 1, 2 and i = 1, . . . , n and let XM be a

matrix with its ith row equal to (1−2×1{δi = 1})x′i for i = 1, . . . , n. Following the proof of
Theorem 4 in Ge and Chen (2012), we can show that for the CS model and the FS model,
the posterior distributions π(θC |Dobs) and π(θFS |Dobs) in (9.26) are proper if (i) when
δi > 0, ti > 0 and (ii) X1 and X2 are of full rank. For the M model, again following the
proof of Theorem 4 in Ge and Chen (2012) and using the results established in Chen and
Shao (2001), we can show that the posterior distribution π(θM |Dobs) is proper if (i) when
δi > 0, ti > 0, (ii) X1 and X2 are of full rank, (iii) XM is of full rank, and (iv) there exists
a positive vector a = (a1, . . . , an)

′ ∈ Rn, i.e., each component ai > 0, such that X ′
Ma = 0.

9.3.2 Computational development

Due to the complexity of (9.26), it is not possible to carry out an analytical evaluation of
these posterior distributions. Thus, we develop the Gibbs sampling algorithm for each of
these three posterior distributions. Let [A|B] denote the conditional distribution of A given
B. For the CS model, the implementation of Gibbs sampling is straightforward. We sample
from [β1,β2|λC , Dobs] and [λC |β′1,β′2, Dobs] in turns. It is easy to show that the conditional
density of (β1,β2) is log-concave in each regression coefficient. Thus, we can use the adap-
tive rejection algorithm of Gilks and Wild (1992) to sample β1 and β2. The conditional
distribution of λCjk follows a gamma distribution and sampling λCjk is straightforward.

For the M model, when δi = 0, we need to introduce a latent variable δ∗i , which follows
a Bernoulli distribution (since we consider J = 2) with the probability

Pr(δ∗i = 1|β1,β2,φ,λM ,xi)

=p(φ|xi) exp
{
−HM10(ti) exp(x

′
iβ1)

}[
p(φ|xi) exp

{
−HM10(ti) exp(x

′
iβ1)

}
+ {1− p(φ|xi)} exp

{
−HM20(ti) exp(x

′
iβ2)

}]−1

, (9.27)

where p(φ|xi) is defined by (9.6). Let δ∗ = (δ∗i : δi = 0, 1 ≤ i ≤ n). The Gibbs
sampling algorithm requires to sample from the following distributions in turns: (i)
[β1,β2, δ

∗|φ,λM , Dobs], (ii) [φ|β1,β2, δ
∗,λM , Dobs], and (iii) [λM |β1,β2, δ

∗,φ, Dobs]. For
(ii), it is easy to show that the conditional density of φ is log-concave in each component of
φ and thus we can use the adaptive rejection algorithm (Gilks and Wild, 1992) to sample
from this conditional distribution. For (iii), the conditional distribution of λMjk follows a
gamma distribution and hence, sampling λMjk is straightforward. For (i), observe that

[β1,β2, δ
∗|φ,λM , Dobs] = [β1,β2|φ,λM , Dobs][δ

∗|β1,β2,φ,λM , Dobs]. (9.28)

In (9.28), we collapse out δ∗ in the conditional distribution [β1,β2, δ
∗|φ,λM , Dobs]. We

can show that the conditional density of [β1,β2|φ,λM , Dobs] is log-concave, which can be
sampled via the adaptive rejection algorithm (Gilks and Wild, 1992). Again, sampling δ∗

from (9.27) is straightforward. This approach is called the “collapsed Gibbs sampler” (Liu,
1994; Chen et al., 2000), which yields a much more efficient sampling algorithm. For the
FS model, an efficient Gibbs sampling algorithm via the introduction of two sets of latent
variables and the collapsed Gibbs method was developed in Ge and Chen (2012). Thus, the
detail is omitted here for brevity.
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9.3.3 Bayesian model comparison

To determine which of the CS, M, and FS models fit the data better and the values of
Kj ’s, we consider Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) and
Logarithm of the Pseudomarginal Likelihood (LPML) (Ibrahim et al., 2001). Let θ denote
the collection of model parameters. DIC is defined as

DIC = Dev(θ̂) + 2pD, (9.29)

where Dev(θ) is a deviance function, pD = Dev − Dev(θ̂), and Dev and θ̂ are the
posterior means of Dev(θ) and θ. The DIC in (9.29) is a Bayesian measure of pre-
dictive model performance, decomposed into a measure of fit and a measure of model
complexity (pD). The smaller the DIC value the better the model will predict new ob-
servations generated in the same way as the data. For the CS model, θ = θC and
Dev(θC) = −2 logLC(β1,β2, hC10, hC20|Dobs). From (9.3), we have

Dev(θC) =− 2 logLC(β1,β2, hC10, hC20|Dobs)

=− 2
n∑

i=1

[
log
{
hC10(ti) exp(x

′
iβ1)

}1{δi=1}
−HC10(ti) exp(x

′
iβ1)

]
− 2

n∑
i=1

[
log
{
hC20(ti) exp(x

′
iβ2)

}1{δi=2}
−HC20(ti) exp(x

′
iβ2)

]
≡ Dev1(θC) + Dev2(θC). (9.30)

Using (9.30), we see that under the CS model, DIC=DIC1+DIC2, where DICj is the
DIC defined for the Cox regression model for the survival data with 1{δi = j} as the
death indicator while treating other causes of death as censored. For the M and FS
models, we simply let θ = θM and θ = θFS and define the deviance as Dev(θM ) =
−2 logLM (β1,β2, hM10, hM20,p1|Dobs) and Dev(θFS) = −2 logLFS(β1,β2, h10, h20|Dobs).

The LPML is given by

LPML =

n∑
i=1

log(CPOi), (9.31)

where the Conditional Predictive Ordinate (CPO),

CPOi = f(ti|xi, δi, D
(i)) =

∫
f(ti|θ,xi, δi)π(θ|D(i))dθ, (9.32)

f(ti|θ,xi, δi) denotes the density or the survival probability based on the value of
δi, D(i) is the data with the ith observation deleted, and π(θ|D(i)) is the pos-
terior distribution based on the data D(i). The larger the LPML value the bet-
ter the model fits the data. According to Gelfand and Dey (1994), LPML im-
plicitly includes a similar dimensional penalty as AIC asymptotically. For the

CS model, θ = θC and f(ti|θC ,xi, δi) =
{
hC10(ti) exp(x

′
iβ1)

}1{δi=1}
exp
{

−
HC10(ti) exp(x

′
iβ1)

}{
hC20(ti) exp(x

′
iβ2)

}1{δi=2}
exp
{
−HC20(ti) exp(x

′
iβ2)

}
. Similarly to

DIC, when the independent priors are specified for (β1, λC11, . . . , λC1K1
) and

(β2, λC21, . . . , λC2K2
), we have LPML = LPML1 + LPML2, where LPMLj is the LPML

defined for the Cox regression model for the survival data with 1{δi = j} as the death
indicator while treating other causes of death as censored. For the M and FS models,
f(ti|θ,xi, δi) is defined in the same way as for the CS model and the detail is omitted here
for brevity.
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9.4 Application to an AIDS study

A dataset with 329 homosexual men from the Amsterdam Cohort Studies on HIV infection
and AIDS is analyzed. In the process of HIV infection, syncytium inducing (SI) HIV phe-
notype appears in many individuals. It is known that the appearance of this SI phenotype
impairs AIDS prognosis. In the analysis of the time from HIV infection to SI appearance
before AIDS diagnosis, AIDS plays a role of a competing event. The dataset is in the public
domain and is available in the R package mstate (AIDSSI dataset) (de Wreede et al., 2011).
A detailed description of this dataset can be found in Putter et al. (2007). Reduced sus-
ceptibility to HIV infection and delayed AIDS progression is related to the deletion of the
CCR5 genotype. Subjects without the deletion are coded as WW (reference category) and
subjects having the deletion on one of the chromosomes are coded as WM. In this dataset,
there were no subjects with deletion on both chromosomes. We investigate whether this
deletion has a protective effect on AIDS and SI appearance. Five subjects with unknown
CCR5 genotype were excluded from the analysis. The numbers of patients coded as WW
and WM are 259 and 65, respectively. There were 113 subjects with AIDS diagnosis and
107 subjects with SI appearance. The median time from HIV infection to AIDS diagnosis
was 6.199 years, ranging from 1.44 to 13.36 years. The median time from HIV infection to
SI appearance was 5.224 years, ranging from 0.112 to 13.94 years.

Since we have just one covariate (x), β1 and β2 reduce to β11 and β21, respectively.
In (9.6) we take z = (1, x)′, so that φ = (φ1, φ2)

′. Improper uniform priors were taken
for β11, β21, and φ. In (9.21), (9.22), and (9.23), we took intervals with approximately the
same number of events. In (9.24), a = 1 and b = 0 were specified. Different values of K1

and K2 were tried out for optimizing the model fitting. The values of DIC, pD, and LPML
for some combinations of K1 and K2 under all three models are reported in Table 9.1. We
consider two FS models: one with AIDS diagnosis as the primary cause and another with SI
appearance as the primary cause. The values of DIC and LPML range from 1704.4 to 1764.3
and from -881.2 to -853.6, respectively. These ranges highlight the role of the number of
partitions of the time axis in model fitting. We see that (K1,K2) = (10, 10) is the optimum
combination of (K1,K2) for all models. From Table 9.1, we see that the M and FS models
fit the data slightly better than the CS model although the differences among the models
are not so remarkably large.

The posterior means (estimates), posterior standard deviations (SDs), and 95% highest
posterior density (HPD) intervals of the parameters for the scenario of (K1,K2) = (10, 10)
are shown in Table 9.2. For the CS model (M model), β11 and β21 measure the effect of
the CCR5 genotype on the cause-specific (conditional) hazard function of the times from
HIV infection to AIDS diagnosis and SI appearance, respectively. For the FS model, β11

(β21) is the coefficient of the subdistribution (conditional) baseline hazard corresponding to
the primary (secondary) cause of interest. Therefore, it is not surprising that the estimates
in Table 9.2 are different. For the time from infection to AIDS diagnosis the estimates of
β11 are negative and significant, which means a protective effect of the deletion on one
of the chromosomes (WM level of the CCR5 genotype) on AIDS. On the other hand, the
effect of CCR5 on SI appearance was not significant whichever the model in Table 9.2. The
subdistribution model (the S model) (Fine and Gray, 1999) was also fitted to the data.
When the time to AIDS diagnosis is the primary cause, the estimate, standard error and
95% confidence intervals of β11 are -1.004, 0.295, and (-1.583, -0.426), respectively. When
the time to SI appearance is the primary cause, we obtained 0.024, 0.227, and (-0.421,
0.468). These results are similar to the posterior summaries from the FS model.

The effect of the CCR5 genotype effect was further investigated by comparing the pos-
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TABLE 9.1
The values of DIC, dimension penalty, and LPML for the AIDSSI data.

Model K1 K2 DIC pD LPML

CS 1 1 1762.6 4.0 -881.1
5 5 1707.7 12.2 -854.0
10 10 1706.8 22.4 -854.1
15 15 1713.4 32.8 -858.2

M 1 1 1764.3 5.9 -881.2
5 5 1707.5 12.6 -854.3
10 10 1704.4∗ 22.2 -853.7
15 15 1711.2 31.5 -858.7

FS 1 1 1736.9 4.3 -868.2
(AIDS) 5 5 1709.5 12.5 -854.8

10 10 1708.2 22.7 -854.7
15 15 1714.9 33.1 -858.9

FS 1 1 1751.3 4.1 -875.4
(SI) 5 5 1707.3 12.8 -853.7

10 10 1705.8 23.1 -853.6∗

15 15 1712.9 33.1 -858.1

∗The bold values indicate the best values of DIC or LPML corresponding to the best model.

TABLE 9.2
Posterior estimates of parameters for the models with (K1,K2) = (10, 10).

Model Coefficient Estimate SD 95% HPD interval

CS (AIDS) β11 -1.273 0.316 (-1.911, -0.678)
(SI) β21 -0.288 0.243 (-0.782, 0.167)

M (AIDS) β11 -1.055 0.540 (-2.081, -0.023)
(SI) β21 -0.506 0.339 (-1.143, 0.229)

φ1 -0.013 0.215 (-0.398, 0.450)
φ2 -0.767 0.538 (-1.757, 0.341)

FS β11 -1.044 0.311 (-1.662, -0.453)
(AIDS) β21 -0.892 0.314 (-1.556, -0.328)

FS β11 0.015 0.239 (-0.450, 0.483)
(SI) β21 -1.651 0.417 (-2.436, -0.813)
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(a) (b) (c)

(d) (e) (f)

FIGURE 9.3
Plots of the cumulative incidence functions for AIDS and SI under the CS model ((a) and
(d)), the M model ((b) and (e)), and the FS model ((c) and (f)), respectively.

terior means of the cumulative incidence functions at different times. The plots in Figure
9.3 show that when the primary cause is AIDS diagnosis, the estimates from the three
models are very similar. When the primary cause is SI appearance, the nonsignificant effect
of CCR5 is more noticeable in the estimates from the FS model.

After discarding the first 2,000 iterations of the Gibbs sampler, from the following
100,000 iterations with spacing of size 10 we obtain 10,000 samples for each parameter.
The computational code was written in the FORTRAN language with the IMSL library.
Convergence of the chains was monitored using graphical displays and the test statistic in
Geweke (1992). Figure 9.4 shows the trace plots for the four parameters in the FS model
when the primary cause is AIDS. These plots reveal a good mixing of the chains. Similar
plots were drawn for the other parameters in the CS, M, and FS models.
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FIGURE 9.4
Trace plots of β11, β21, λ1,11, and λ2,10 in the FS model with (K1,K2) = (10, 10) intervals
when the primary cause is AIDS.

9.5 Discussion

The CS, M, and S models discussed in Section 9.2 are commonly used in analyzing sur-
vival data with competing risks. Recently, the S model becomes popular particularly in
the medical literature, which may be partially due to the availability of the R package
cmprsk in the public domain (http://cran.r-project.org/). The FS model is a natural ex-
tension of the S model. The FS model allows us to carry out a formal comparison between
these three types of models. Based on the empirical results shown in Table 9.1 and Ge
and Chen (2012), the DIC and LPML values indicate that the M and FS models outper-
form the CS model. The FS model has an attractive proportional hazards interpretation of
regression coefficients in predicting the cause-specific mortality for the primary cause. In
addition, the FS model is more parsimonious than the M model since under the FS model,

Pr(δ = 1|x) = 1− exp
{
−H10(∞) exp(x′β1)

}
while Pr(δ = 1|x) needs to be modeled via

(9.6) under the M model. Therefore, the FS model is more identifiable than the M model
especially when the dimension of x is high. On the other hand, the M model is symmetric
between the primary cause of death and the other cause of death while the FS model is
asymmetric. Therefore, it is important to determine the primary cause before fitting the
FS model. In most medical applications, the primary cause is known based on the goal of
clinical investigation.

As we have emphasized, the regression coefficients are related to different hazard func-
tions (subdistribution, cause-specific or conditional). Therefore, their interpretation should
be cautious. The combined effect of all coefficients can be assessed through the cumulative
incidence function (see Figure 9.3).

In this chapter, we assume the piecewise constant hazard models given by (9.21), (9.22),
and (9.23) for the baseline hazard functions. The exponential model can be extended to the
gamma process prior model (see, for example, Ibrahim et al. (2001)) or the autoregressive
prior model proposed by Kim et al. (2007) for the baseline hazard function. As discussed
in Section 9.1, another closely related type of survival data is the semi-competing risks



196 Handbook of Survival Analysis

data. Unlike the competing risks data, the nonterminating event can be censored by the
terminating event but not vice versa. Thus, the semi-competing risks data are much more
complex than the competing risks data. The CS, M, and FS models can be extended to
model the semi-competing risks data. These extensions deserve to be future research topics,
which are currently under investigation.
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10.1 Introduction

Much of the survival analysis literature is focused on inference in the presence of missing
data typically due to right censoring. Often these survival models are formulated in terms of
hazard regression models. In this article we review an alternative approach to inference with
incomplete survival data, based on pseudo-values or pseudo-observations obtained from a
jackknife statistic constructed from non-parametric estimators for the quantity of interest.
These pseudo-values are then used as outcome variables in a generalized linear model and
model parameters are estimated using generalized estimating equations (GEE) (Liang and
Zeger, 1986). This approach was first proposed by Andersen et al. (2003) for direct modeling
of state probabilities in a multi-state model. This simple approach can be applied to regres-
sion models for any mean value parameter. In particular, the general approach allows for
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regression models to be extended to a number of non-standard settings, including survival
probabilities at a fixed point in time (Klein et al., 2007), cumulative incidence (Klein and
Andersen, 2005; Klein et al., 2008), restricted mean survival (Andersen et al., 2004), quality
adjusted survival (Andrei and Murray, 2007; Tunes-da Silva and Klein, 2009), multi-state
models (Andersen and Klein, 2007) , and clustered time to event data (Logan et al., 2011).
These pseudo-values have also been used as outcome variables in a scatter plot or to com-
pute pseudo-residuals for a regression model in order to facilitate goodness of fit assessment
(Perme and Andersen, 2008; Andersen and Perme, 2010). The main advantage of pseudo-
value regression is that it provides a simple and generalizable method of modeling complex
time to event data which is often not easily modeled using standard techniques. Further-
more, pseudo-value regression is easily implemented using existing software packages once
the pseudo-values have been obtained.

As an illustration of the technique, suppose that the survival time X were fully observed
for all patients. Standard methods for quantitative data could then be applied to model
parameters of the survival distribution (e.g., the mean). Alternatively, the patients’ survival
status at any time point could be determined by dichotomizing X as I(X > t), and the
probability of being alive at time t could be modeled using standard binary data approaches.
Models for repeated binary data could also be performed by considering the vector of
indicators over a set of time points. In general, suppose that we were interested in estimating
θ = E[f(X)], for some f . This f(X) may be a scalar such as the survival indicator I(X > t)
at a given time point t, a vector such as a collection of survival indicators at a set of pre-
specified time points, or it may be function valued. If X1, ..., Xn based on a random sample
were fully observed, then θ could be estimated by the average θ̂ =

∑
i f(Xi)/n. For example,

the survival probability at time t could be estimated by
∑

i I(Xi > t)/n. In the presence of
right censoring or other kinds of incomplete data, such a simple estimator is not feasible.
However, in many cases an estimator θ̂ is available which accounts for the incomplete data,
such as the Kaplan-Meier estimator for the survival probability. Pseudo-values are defined
based on this estimator as

Yi = nθ̂ − (n− 1)θ̂−i, i = 1, ..., n

where θ̂−i is the leave-one-out estimator of θ based on the sample of size n− 1 with the ith
observation deleted. Note that when θ̂ is unbiased, we have E[Yi] = θ. For complete data,
Yi = f(Xi) so that the approach is equivalent to using the raw data. Therefore, the basic
idea is to replace the incompletely observed data f(Xi) with the pseudo-value Yi, and then
treat it as if it were raw data to be analyzed. For example, the pseudo-value can be used as
an outcome variable in a generalized linear regression model for the conditional mean given
the covariate θ(Z) = E[f(X)|Z] with link function g(·) given by

g(E[f(Xi)|Zi]) = α0 + βZi.

Another important use of the Yi’s is to compute residuals to assess model fit.
In this chapter, we review the pseudo-value regression method and its application to a

variety of settings. In Section 10.2, we discuss how pseudo-observations can be obtained in
a variety of complex models. In Section 10.3, we describe the details of how pseudo-values
can be used to estimate parameters of a generalized linear model (GLM) for the effect of
covariates on a mean parameter of interest. We also explain the properties of the pseudo-
values, the theoretical foundation of the regression procedure, the necessary assumptions of
the model, and extensions to clustered data. Another important application of the pseudo-
value approach is in model diagnostics, which is covered in Section 10.4. In Section 10.5, we
describe available statistical software for implementing the techniques. We use two examples
in Section 10.6 to illustrate the use of pseudo-values in the survival/competing risks setting
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as well as in a multi-state model setting. Finally, in Section 10.7, we give concluding remarks
about the method.

10.2 Applications

10.2.1 Survival data

Pseudo-value regression has been used to model survival probabilities at a fixed time point
(Klein et al., 2007), survival probabilities at late time points in the presence of crossing haz-
ards (Logan et al., 2008), and restricted mean survival (Andersen et al., 2004). For modeling
survival at a fixed time t, the parameter of interest is θ = S(t). Let Ti = min(Xi, Ci), where
Xi is the survival time and Ci is the censoring time for observation i, and let δi = I(Xi < Ci)
be the event indicator. Let N(t) =

∑
i I(Ti ≤ t, δi = 1) be the counting process for the

number of failures, and let R(t) =
∑

i I(Ti ≥ t) be the number at risk at time t. The
Kaplan-Meier estimator is given by

Ŝ(t) =
∏
u≤t

(1− dN(u)/R(u)).

The Kaplan-Meier estimator is used to construct the pseudo-value as

Yi = nŜ(t)− (n− 1)Ŝ−i(t), (10.1)

where Ŝ−i(t) is the Kaplan-Meier estimator with the ith observation omitted. Note that if
there is no censoring prior to the time point t, Yi simplifies to a simple binary indicator of
whether the patient is alive at time t. Klein et al. (2007) proposed to model the survival
probability given the covariate vector Z, θ(Z) = S(t|Z), at a single time point. They
used these pseudo-values as responses to fit a GLM model g(θ(Z)) = α + βZ. Note that
several link functions have been considered. The “logit” link function g(u) = log(u/(1−u))
corresponds directly to logistic regression for the probability of survival at time t when there
is no censoring prior to t, since the pseudo-values simplify to binary indicators of whether
the patient is alive at time t. The complementary log-log link function g(u) = log(− log(u))
results in a GLM

log(− log(S(t|Z))) = α(t) + βZ.

This is equivalent to the Cox proportional hazards model

λ(t|Z) = λ0(t) exp{βZ},

with cumulative baseline hazard function Λ0(t) =
∫ t

0
λ0(u)du, where α(t) = − log(Λ0(t)).

Note that this approach can be extended to multiple time points, in which case Yi is a
vector (Yi(t1), . . . , Yi(tk)), with Yi(tj) = nŜ(tj) − (n − 1)Ŝ−i(tj). In this vector case, the
complementary log-log link function corresponds to a joint proportional hazards model
across all the time points,

log(− log(S(tj |Z))) = log(Λ0(tj)) + βZ, j = 1, · · · , k (10.2)

and the exp(β) parameters can be interpreted directly in terms of hazard ratios.
Several other applications of pseudo-values to survival have been proposed. Logan et al.
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(2008) considered pseudo-value regression modeling of survival after a fixed time point t0 in
order to address whether there are late differences in survival. This approach is proposed for
the setting where crossing hazards are anticipated and the researcher is focused on inference
on late survival differences. Here the pseudo-values are computed at a set of times which
all occur after a pre-specified time point t0 of interest, so that the parameters of the model
only reflect effects on survival after t0.

An alternative parameter of interest in the survival setting is the restricted mean sur-
vival time, denoted by θ = µτ = E(X ∧ τ) =

∫ τ

0
S(t)dt, where τ > 0 is the upper limit.

Andersen et al. (2004) proposed the use of pseudo-values to model restricted mean survival
as an alternative to modeling of the hazard function. The restricted mean survival can be
estimated by

µ̂τ =

∫ τ

0

Ŝ(u)du.

Then the ith pseudo-observation is given by

Yτi = n

∫ τ

0

Ŝ(t)dt− (n− 1)

∫ τ

0

Ŝ−i(t)dt =

∫ τ

0

Yi(t).

Andersen et al. (2004) considered a linear model with identity link function g(u) = u as
well as a log-linear model with “log” link function g(u) = log(u). For pseudo-values of the
τ -restricted mean, the identity link gives

θ(Z) = E(X ∧ τ |Z) = α+ βZ,

where βk is interpreted as the difference between the τ -restricted mean for an observation
with zk=1 vs. one with zk = 0, adjusting for the other covariates. With the “log” link,
however,

log θ(Z) = log(E(X ∧ τ |Z)) = α̃+ β̃Z.

In this case, eβ̃k can be interpreted as the ratio of the two τ -restricted means. They also
consider the use of pseudo-values for modeling the unrestricted mean survival, but found
that other methods had better performance, possibly because of the difficulties in dealing
with the unobserved tail of the survival distribution.

10.2.2 Cumulative incidence for competing risks

In the competing risks setting, a failure from one type of event precludes the observation
of failure of another type. This can be expressed as a multi-state model using two causes of
failure without loss of generality, where the states at time t represent alive, failure of type
1, or failure of type 2 as in Figure 10.1.

A common method for modeling this type of data is to apply Cox regression models to
each cause-specific hazard function λj(u)

λj(u) = lim
Δt→0

1

Δt
P (t ≤ X ≤ t+Δt, ε = j|X ≥ t), j = 1, 2

where X is the time to failure from any cause and ε = 1, 2 denotes the type of failure.
However, it is complicated to piece these models together and interpret the covariate effects
on the cumulative incidence function, defined as the probability of failing from cause 1
by time t. This is because the cumulative incidence function Fj(t) = P (X ≤ t, ε = j) =∫ t

0
S(u−)λj(u)du depends on the hazard functions for both causes. Several researchers have

proposed methods for directly modeling the covariate effects on the cumulative incidence
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failure free 

State 1: Failure from 
cause 1 

State 2: Failure from 
cause 2 

FIGURE 10.1
Competing risks model.

function. Fine and Gray (1999) proposed using a Cox type model to model the so-called

subdistribution hazard λ̃j(t) = −d log(1−Fj(t))/dt. Because Fj(t) = 1−exp{−
∫ t

0
λ̃j(s)ds}

has a one-to-one relationship with the subdistribution hazard, the effects of covariates on
Fj(t) could therefore be evaluated via λ̃j(t). Fine (2001) further extended this approach to
other link functions. Alternatively, Scheike et al. (2008) proposed to model the cumulative
incidence function directly using a binomial regression model. Model fitting is based on the
inverse probability of censoring weighting (IPCW) technique. Scheike and Zhang (2011)
also described fitting this type of model using the R package “timereg.”

Here we focus on the proposal by Klein and Andersen (2005) to use pseudo-value re-
gression to model the cumulative incidence functions directly. We focus on the cumulative
incidence for cause 1 without loss of generality. Note that the cumulative incidence function
can be written as an expected value F1(t) = E(I(X ≤ t, ε = 1). Let Ti be the on-study time
for patient i given by Ti = (Xi ∧ Ci), where Xi is the event time and Ci is the censoring
time. Also, δi = I(Xi ≤ Ci) is the event indicator and εi ∈ {1, 2} denotes the failure type,
observable if an event has occurred prior to Ci. Define N1i(t) = I(Ti ≤ t)I(εi = 1)δi, and
let N1(t) =

∑
i N1i(t) be the number of type 1 failures observed up to time t. Denote the

number at risk at time t by R(t). The cumulative incidence estimate is defined as

F̂1(t) =

∫ t

0

Ŝ(u−)R−1(u)dN1(u).

For each subject i = 1, . . . , n, we calculate a pseudo-observation for the cause 1 cumu-
lative incidence at each of several time points t = t1, . . . , tk as

Yi(tr) = nF̂j(tr)− (n− 1)F̂−i
j (tr), r = 1, · · · , k (10.3)
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where F−i
j (t) is the cumulative incidence function based on the sample of size n − 1 with

the i-th subject deleted.
In a dataset without censoring, individuals have pseudo-values equal to 1 at time t if

they experienced an event of type 1 prior to time t. Otherwise, their pseudo-values are 0.
Andersen and Perme (2010) provide further details describing the range of pseudo-values
over time in the presence of censoring, but briefly patients who experience a type 1 event
prior to t have pseudo-values close to 1, those who are still at risk at t or who experienced a
type 2 event prior to t have pseudo-values close to or below 0, while those who are censored
prior to t typically have pseudo-values between 0 and 1.

These pseudo-values can be used in fitting a generalized linear model. As with survival
data, pseudo-values at a single point in time can be used to model the cumulative incidence
at that time. Often a “logit” link function is used for this purpose, providing an analog to lo-
gistic regression for the cumulative incidence at that time. Alternatively, pseudo-values can
be computed at multiple time points. Fine and Gray (1999) proposed a proportional sub-
distribution hazards model λ̃j(t|Z) = λ̃j0(t) exp(βZ), which can be equivalently expressed
as

log(− log(1− Fj(t|Z))) = log(Λ̃j0(t)) + βZ.

Therefore, a generalized linear model on the pseudo-values using a complementary log-
log link function provides an alternative means of estimating the subdistribution hazard
parameters of the Fine and Gray model. While the Fine and Gray’s estimation procedure is
likely more efficient to estimate the proportional subdistribution hazards, the pseudo-value
regression model provides much more flexibility in considering alternative models through
the use of different link functions or select time points. This may be especially useful given
the difficulty in interpreting a subdistribution hazards ratio clinically.

10.2.3 Multi-state models

In situations like bone marrow transplantation (BMT), a transplant patient could experience
one or more intermediate (transient) events such as acute or chronic graft versus host disease
(GVHD) as well as ultimate events such as relapse or death as they are being followed over
time. Multi-state models are a useful tool for modeling such complicated time-to-event data.
It can also be applied to analyze competing risks, as the latter is a special case of the multi-
state models. A multi-state model (MSM) can be described by a multi-state stochastic
process X(t), t ∈ � with a finite state space S = 0, 1, · · · ,M . As an example, consider the
MSM for outcomes after BMT and subsequent Donor Leukocyte Infusion (DLI) presented
by Andersen and Klein (2007) and shown in Figure 10.2. Here patients can die in first
remission (state 2) or experience disease relapse (state 1). Once they relapse, they may die
with disease (state 3) or be treated with DLI and experience a disease remission (state 4).
Even after a DLI-induced remission, they may die or experience a second disease relapse
(state 5).

The transition probabilities in a MSM are defined as Pkh(s, t) = P (X(t) = h|X(s) = k)
for k, h ∈ S, and s, t ∈ �, s ≤ t. The transition intensities are defined as

λkh(t) = lim
Δt→0

Pkh(t, t+Δt)

Δt
.

In a MSM, the research interests often focus on estimation of transition intensities and
transition probabilities, and the assessment of the effects of certain observed covariates
on these probability quantities using regression models. Other quantities such as the state
occupation probabilities and the probability of staying time in a state can be derived from
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FIGURE 10.2
Multi-state model for current leukemia free survival.

the transition intensities or probabilities. For example, the state occupation probability

πh(t) = P (X(t) = h) =
∑
k∈S

πk(0)Pkh(0, t).

When the initial distribution πk(0) = δ0, i.e., degenerate at state 0, then πh(t) = P0h(0, t).
The probability of staying in a state h is Phh(s, t) = 1 −∑k =h Phk(s, t). In general, an
absorbing state is a state from which further transitions cannot occur, while a transient
state is a state that is not absorbing. If h is an absorbing state, then Phk(s, t) = 0 for any
k ∈ S, k �= h and t > s. In the DLI example above, states 0, 1, and 3 are transient states
while states 2, 4, and 5 are absorbing states. The current leukemia free survival (CLFS) is
defined as the likelihood that a patient is alive and in remission at any time t, which can
be written as CLFS(t) = π0(t) + π3(t).

One straightforward approach for analyzing a MSM is to model all transition intensities
based on the Cox proportional hazards model by left truncating on the time that a patient
enters each state. This is often done under a Markov model assumption, where the transition
intensity at time t only depends on the history through the state X(t). We can then estimate
the transition probabilities as product integrals from the transition intensities (Andersen
et al., 1993),

P (s, t) =
∏

u∈(s,t](I + dA(u)),

where P (s, t) = (Phj(s, t)), A(t) = (Ahj(t)) with Ahj(t) =
∫ t

0
λhj(u)du being the integrated

intensity, and
∏

is the product-integral of matrices. When transition probabilities are of
main interest, however, plugging in the estimated transition intensities in the product inte-
grals does not directly give estimates of the covariate effects on the transition probabilities,
as the effects of covariates on the transition probabilities are highly complex nonlinear
functions of the original covariate effects on the transition intensities (Andersen and Perme,
2008; Scheike and Zhang, 2007). This makes it difficult to assess the direct effects of covari-
ates on transition probabilities. Scheike and Zhang (2007) proposed a binomial modeling
approach to construct regression models directly on the transition probabilities, with model
fitting based on the inverse probability of censoring weighting (IPCW) technique.

Alternatively, pseudo-values may be used for direct regression modeling of transition
probabilities. Andersen et al. (2003) first proposed the use of pseudo-value regression models
in this MSM context. They applied the method to an illness-death model in the bone marrow
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transplantation setting with acute GVHD as the disease. In order to apply the pseudo-value
method, a consistent estimator of the transition probabilities is needed. Let Nhj(t) be the
total number of transitions from state h to state j in the interval [0, t] and let Yh(t) be the
number of individuals in state h at time t−. The Nelson-Aalen estimator of the integrated
intensity for an h to j transition is given by

Âhj(t) =

∫ t

0

I(Yh(s) > 0)
dNhj(u)

Yh(u)
.

A consistent estimator of the transition probability matrix under the Markov model as-
sumption is provided by the Aalen-Johansen estimator,

P̂ [s, t] =
∏

u∈(s,t][I + dÂ(u)],

where Â(t) = (Âhj(t)) and Âhh(t) = −∑j =h Âhj(t). Andersen and Klein (2007) also sug-
gested computing pseudo-values based on an alternative estimator for state probabilities
of a transient state based on differences in Kaplan-Meier estimators. This approach was
originally suggested by Pepe (1991) and is valid for non-Markov models as well. They il-
lustrated this approach using models for the current leukemia free survival probability in
the MSM in Figure 10.2. This approach will be illustrated later as well in a different MSM
example. Note that additional estimators of transition probabilities are also available in the
non-Markov setting (Meira-Machado et al., 2009). Once an estimator for a state probability
or transition probability of interest is obtained, the pseudo-value can be computed as before.
For example the pseudo-value for the transition probability from state 0 to state j by time
t, which is equivalent to the state j probability at time t, is given by

Yi(t) = nπ̂j(t)− (n− 1)π̂−i
j (t),

using the leave one out estimator π̂−i
j (t). Note that in the absence of censoring by time

t, the pseudo-value reduces to an indicator of whether the patient is in state j at time t,
similar to what was seen with survival or competing risks data. These pseudo-values can
then be used to model the state transition probability using the generalized linear model,
g(θ(Z)) = g(πj(t|Z)) = α0(t) + βZ. Pseudo-value regression models for multi-state models
have been described for simple multi-state models such as an illness-death model (Andersen
et al., 2003), as well as more complicated multi-state models such as current leukemia free
survival after a bone marrow transplant (Andersen and Klein, 2007; Liu et al., 2008).

10.2.4 Quality adjusted survival

Quality adjusted survival (QAS) attempts to account for both the length and quality of
a patient’s survival time. Here the health history of a patient is described by a process
X(t), t ≤ 0 taking values of K + 1 different health states. State 0 is the absorbing death
state, while states 1, . . . ,K denote transient health states with different qualities associated
with them through the specification of utility coefficients Q(X(t)). The QAS time up to τ
is

µ =

∫ T∧τ

0

Q(X(u))du.

Tunes-da Silva and Klein (2009) proposed the use of pseudo-value regression to model the
effect of covariates on QAS. They define a set of modes Ω based on distinct states entered
and the number of times that state was entered, with utility qj for mode j, and define XE

j
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and XL
j as the times that a patient enters and leaves the mode, respectively. Then the mean

QAS can be written as

µ =
∑
j∈Ω

qjE(XL
j −XE

j ).

To construct pseudo-values, they propose to use the “event-marginal estimator” to estimate
µ, given by

µ̂ =
∑
j∈Ω

qj

∫ τ

0

(ĜL
j (u)− ĜE

j (u))du,

where Ĝk
j (t) is the Kaplan-Meier estimate of Gk

j (t) = P (Xk
j > t). Then the pseudo-values

are computed in the same way as before,

Yi = n(µ̂)− (n− 1)µ̂−i.

They use an identity link function to provide direct inference on the mean QAS.

10.3 Generalized linear models based on pseudo-values

Once a pseudo-value (possibly a vector over multiple time points) for each patient is ob-
tained, based on a consistent and approximately unbiased estimator of the parameter of in-
terest, these pseudo-values are used to estimate the parameters of a generalized linear model.
Let Yi = (Yi(t1), . . . , Yi(tk)) be a vector of pseudo-values for observation i over time points
t1, . . . , tk, with conditional expectation at time j of θj(Zi) = E(Y (tj)|Zi), and suppose that
we are interested in fitting the model g(θj |Zi) = αj + βZi, for i = 1, . . . , n; j = 1, . . . , k.

10.3.1 Estimation

Inference on the parameters may be performed using GEE. Let γ = (α1, . . . , αk, β) and
Z̃ij = (I(tl = tj), l = 1, . . . , k;Zi) be the corresponding design matrix for observation i at

time j. Define g−1(γZ̃i) to be a vector with elements g−1(γZ̃ij), and let dg−1(γZ̃i)/dγ be

the partial derivative matrix with elements dg−1(γZ̃ij)/dγi. Then the estimating equations
to be solved are of the form

U(γ) =
∑
i

(
dg−1(γZ̃i)

dγ

)′
V −1
i

(
Yi − g−1(γZ̃i)

)
=
∑
i

Ui(γ) = 0, (10.4)

where Vi is a working covariance matrix. Let γ̂ be the solution to this equation. Based on
the GEE results of Liang and Zeger (1986), under standard regulatory conditions, it follows
that

√
n(γ̂ − γ) is asymptotically multivariate normal with mean 0. The covariance matrix

of γ̂ can be estimated by the sandwich variance estimator

Σ̂(γ̂) = I(γ)−1

{∑
i

Ui(γ)Ui(γ)
′
}
I(γ)−1,

where

I(γ) =
∑
i

(
dg−1(γZ̃i)

dγ

)′
V −1
i

(
dg−1(γZ̃i)

dγ

)
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is the model-based equivalent of the information matrix. Estimation using a GEE approach
requires selection of a working covariance matrix Vi. While an independent or identity matrix
is often used for simplicity, choice of an appropriate working covariance matrix which more
closely matches the true covariance may improve efficiency. Andersen and Klein (2007)
conducted simulation studies of three possible working covariance matrices including an
independent matrix, and found that the estimator based on an empirical working covariance
matrix had slightly smaller mean squared error compared to the other two.

In practice, to implement the GEE algorithm one must select a set of time points on
which to perform inference. Use of all event times is not practical for large datasets because
the dimensions of the matrices in the GEE algorithm become cumbersome. If there is
interest in a specific time point or set of time points, those could be used. Otherwise, most
researchers have proposed to use 5-10 time points equally spaced on the event time scale
to capture most of the information about the event time distribution, and simulations by
Andersen and Perme (2010) and Klein and Andersen (2005) suggest that more than 5 time
points equally spaced on the event time scale result in minimal improvements in efficiency.

10.3.2 Assumptions and formal justification

Application of the GEE results of Liang and Zeger (1986) require two key assumptions.
First, the conditional expectation of the pseudo-values is equal to the conditional mean pa-
rameter of interest given the covariates, so that modeling the pseudo-value data does in fact
correspond to a model for the conditional mean parameter of interest and the estimating
equation has expectation 0. While it is straightforward to show that the marginal expec-
tation of the pseudo-values is equal to the unconditional mean parameter θ, proof of the
conditional mean is more challenging. Graw et al. (2009) showed using influence functions
that the pseudo-values for the cumulative incidence have conditional expectation given Z
which converges to the conditional cumulative incidence as the sample size increases, when
right censoring is independent and does not depend on covariates. The other key assump-
tion is that the pseudo-value observations are independent across i. In fact, the pseudo-value
observations are dependent; however, Graw et al. (2009) established that the pseudo-values
for the cumulative incidence are approximately independent as the sample size increases.
By using a second order von Mises expansion, they showed that the solution to the gen-
eralized estimating equations based on pseudo-values for the cumulative incidence provide
consistent estimators of the regression parameters. They also showed that these models
are closely related to the weighted binomial regression approach (Scheike and Zhang, 2007;
Scheike et al., 2008). Extension of this proof to survival data (both point-wise and restricted
mean) is straightforward because the survival setting can be seen as a special case of com-
peting risks. Extension of these results to more complex settings such as multi-state models
is an area of ongoing research.

10.3.3 Covariate-dependent censoring

One of the main assumptions of the pseudo-value regression model is that the censoring is
independent and does not depend on the covariates. Andersen and Perme (2010) showed that
bias can be introduced when the censoring is dependent on covariates. They also proposed
a way of modifying the calculation of the pseudo-values to avoid this bias. If censoring
depends on a covariate W with values 1, 2, . . . ,m, then one can replace the Kaplan-Meier
estimator with a mixture estimator of survival

ŜM (t) =

m∑
w=1

pwŜw(t),
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where pw is the observed fraction of subjects with covariate W = w and Ŝw(t) is the Kaplan-
Meier estimate of survival in patients with W = w. Then the ith pseudo-observation,
assuming it has covariate level W = w, simplifies to the ith pseudo-observation calculated
using only patients with covariate W = w,

Yi(t) = nwŜw(t)− (nw − 1)Ŝ−i
w (t).

Andersen and Perme (2010) concluded that this mixture approach works well to correct the
bias due to covariate-dependent censoring, but the variance of the pseudo-values based on
the mixture estimate is slightly higher than the ones based on the standard Kaplan-Meier
estimator.

10.3.4 Clustered data

The estimation techniques described earlier in this section were developed for independent
observations. Logan et al. (2011) considered the problem of accounting for clustered data
(i.e., center effects) when directly modeling cumulative incidence functions, and show that
simple modifications to the estimating equations and sandwich variance estimates can be
used to estimate a marginal model when the observations are clustered. Pseudo-values are
computed for each patient using the leave-one-out estimate of the cumulative incidence
function in (10.3), in the same way as for the independent observation setting. This works
because the cumulative incidence estimator provides a consistent estimate of the marginal
cumulative incidence function (over clusters). They showed following similar arguments as
in Graw et al. (2009) that the pseudo-values have conditional mean given covariate Z equal
to the (marginal over cluster) cumulative incidence given Z, and they are asymptotically
independent across clusters. A marginal model approach is used to adjust the estimators
and variances of the estimators for the within cluster correlation. The pseudo-values are
then used in a generalized estimating equation set up to appropriately reflect the clustered
data structure. This estimating equation simplifies to the usual one (10.4) when observations
within a cluster are all independent or when an independent working covariance matrix is
used. The sandwich variance estimators are set up to directly account for the clustered data
structure, but the asymptotic convergence is driven by the number of clusters rather than
the number of observations. The method can also be applied to model clustered survival
data.

10.4 Model diagnosis

Statistical models often model the data under certain constraints or assumptions. The Cox
model for example assumes that the hazard ratios of each covariate are constant over time. If
a continuous covariate is used in the Cox model, we also need to check whether it has a linear
relationship with log(− log(S(t))). Otherwise, a non-linear transformation or categorization
of the covariate might be needed. The Fine and Gray model for the cumulative incidence
function has similar assumptions that the ratio of subdistribution hazards are constant
over time. Pseudo-value regression models contain analogous assumptions which need to be
assessed.
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10.4.1 Graphical assessment

In survival analysis, model diagnosis is often hampered by the presence of censoring. Perme
and Andersen (2008) proposed using the pseudo-values for diagnosis of the survival models.
Since the pseudo-values can be used to calculate residuals for each individual at each time
point regardless of censoring, one strategy to check the model assumptions such as propor-
tional hazards is to look at the plots of the pseudo-value residuals versus the covariates in
the same manner as checking the goodness-of-fit for other classical regression models.

For a Cox or additive survival model that we want to assess, we can calculate the
predicted survival probabilities Ŝ(t|Zi), i = 1, · · · , n, based on the model, and the pseudo-
values Yi(t) of the survival probability from Equation (10.1). Perme and Andersen (2008)
proposed to compare the pseudo-values with the predicted values using the pseudo-residuals
defined as

ε̂i(t) =
Yi(t)− Ŝ(t|Zi)

Ŝ(t|Zi)(1− Ŝ(t|Zi))
.

Graphical plots are suggested for the diagnosis of model assumptions. For example, to
assess the proportional hazards assumption for a continuous or categorical covariate in a
Cox model, the residual plots should be centered around a mean of 0 and should not exhibit
any trends when plotted against time or the covariates. In practice, a select number of time
points are plotted, and the curves are smoothed to facilitate assessment of the residual mean
function.

Another strategy proposed by Perme and Andersen (2008) is to construct pseudo-scatter
plots and examine the relationship between the survival probability and the covariate Z
directly for a given model. It is well known that a Cox model leads to a linear relationship
between covariates and the complementary log-log transformation of the survival function

log(− log(S(t|Z))) = log(Λ0(t)) + βZ.

An estimate of S(t|Z) can be obtained by smoothing the pseudo-values Yi(t) with respect to
the covariate Z and time t. Then we can transform these smoothed estimates to build profile
curves for log(− log(S(t|Z))) versus Z at a select number of time points t1, · · · , tk. If the Cox
model assumptions hold, each of these profile curves should be approximately a straight line
with the same slope β. For different time points, these profile curves should also be parallel
with their intercepts log(Λ0(t)) being monotonically increasing as time t increases. When
there is a nonlinear effect of Z, the profiles would deviate from a straight line with respect
to Z. If the effect changes over time, then the profiles at different time points will have
different slopes against Z. There are several advantages of this approach compared to tradi-
tional methods using Schoenfeld (Schoenfeld, 1982) or Martingale (Therneau et al., 1990)
residuals. The pseudo-scatter plots allow for simultaneous assessment of the proportional
hazards assumption and linearity of a covariate effect. It can also be adapted to diagnose
the additive hazards model (Lin and Ying, 1994) by using a different transformation of the
smoothed estimates of S(t|Z), given by − log(S(t|Z))/t. Finally, this graphical model di-
agnostic method can be extended to more complex model settings. For example, Andersen
and Perme (2010) applied the pseudo-scatter plots approach to model diagnosis in fitting a
Fine and Gray subdistribution hazards model. Under this model,

log(− log(1− Fj(t|Z))) = log(Λ̃j0(t)) + βZ.

In order to check the model assumptions such as proportional subdistribution hazards or
linearity of Z, we first estimate the pseudo-values Yi(t) for cumulative incidence as in Equa-
tion (10.3). These are smoothed with respect to time and the covariate Z, and transformed
using the complementary log-log link function. The transformed values are used to construct
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profile plots against Z for several time points. If the proportional subdistribution hazards
model holds and the functional form of the covariate Z is correctly specified, the profile
plots should be parallel and approximately linear, as above in the survival setting.

Andersen and Perme (2010) pointed out that this type of diagnostic plots may be more
informative than the previous residual plots because the scale of the plots makes it easier
to determine the reason for the lack of fit. Another consideration is that this plot works
only for models with a single covariate, or with independent covariates. When a covariate is
associated with other covariates in the model, the profile curves do not have to be parallel
and linear under the model assumptions. In this case, Perme and Andersen (2008) suggested
to first use the pseudo-values of survival probabilities to construct smoothed curves with
respect to a Z1 covariate at different time points. Then they used the predicted survival
probability for each individual calculated from the fitted model including all the covariates
to construct smoothed curves for the predicted survival probabilities with respect to the
Z1 covariate at the same time points. Finally, at each time point, they transformed the
smoothed pseudo-observations for the survival probabilities and the smoothed predicted
survival probabilities and subtracted the two. The difference of the two smoothed profiles
at a time point reflects the remaining effects (i.e., residuals) of Z1 after the model fitting.
If the model assumptions are correct, the residuals at each time point should not have a
non-linear relationship with Z1 even though they still could have a linear relationship with
Z1, which may represent a change of Z1’s effect due to the adjustment for other covariates.

10.4.2 Tests of model fit

Perme and Andersen (2008) also introduced several formal tests of model assumptions to
augment the graphical diagnostics. For a GLM model formulated in Equation (10.2), they
consider more flexible models either in terms of nonproportional hazards or non-linearity
or both, and test for lack of fit of the GLM model relative to some more flexible models.
For example, the model

log(− logE[Si(tr)|Zi]) = α(tr) + β(tr)g(Zi), i = 1, · · · , n, r = 1, · · · , k

allows flexibility from the proportional hazards assumption by using a time-varying param-
eter β(t) and relaxes the linearity assumption by using a more flexible functional form g(Z),
such as a restricted cubic spline. Similar lack of fit tests can be constructed for other GLM
models corresponding to additive hazards models or Fine and Gray competing risks models.

10.5 Software

SAS macros and R packages (“pseudo.r”) for computing pseudo-values for standard settings
such as survival, cumulative incidence and restricted mean survival have been described in
Klein et al. (2008). Once the pseudo-values are computed, model fitting is straightforward
as it is based simply on standard estimation routines for GLM and generalized estimating
equations, both of which are available in software SAS (PROC GENMOD) or R (“geese”
function in the “geepack” package). Perme and Andersen (2008) developed an R function
“pseu.r” for getting the diagnostic plots on proportional hazards and linearity in fitting
Cox and additive models. It can also perform some formal tests as we have mentioned in
the previous subsection. More recently, Andersen and Perme (2010) developed a revised R
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function “pseucheck.r” which can provide diagnostic plots not only for the Cox model but
also for the Fine and Gray model, linear regression model of restricted means, and GLM
model using the pseudo-value approach.

10.6 Examples

10.6.1 Example 1: Survival and cumulative incidence

We illustrate the use of pseudo-value regression for survival and cumulative incidence as
well as model diagnosis using a Center for International Blood and Marrow Transplant Re-
search (CIBMTR) registry dataset of n = 348 adult MDS patients ages 45-65 undergoing
bone marrow transplantation. Among them, 124 patients had a myeloablative conditioning
intensity transplant (MCT) while 224 patients had a non-myeloablative/Reduced Inten-
sity conditioning transplant (NST/RIC); 152 patients used 8/8 matched unrelated donors
(MUD) and 196 patients had matched sibling donors (MSD); the number of patients who
had early, advanced and other disease status prior to HCT are 90, 190 and 68, respectively.

We first look at overall survival, and consider diagnostic plots for 3 variables: age at
transplant, interval from disease diagnosis to transplant (using a log transformation due
to skewness), and the use of myeloablative conditioning regimen (1=Yes, 0=No). We ran
“pseucheck.r” at the 10th to 90th percentiles of the death times to obtain the diagnostic
plot in fitting the Cox proportional hazards model as shown in Figure 10.3(a), (c) and
(e). In each plot, the lowest line corresponds to the 10th percentile and the highest line
corresponds to the 90th percentile of the death times, and the lines are elevated from the
lowest to the highest as time t increases. For patient age and logarithm of the time interval
from disease diagnosis to transplant, we cut the edges off the plots as there were very few
events at the edges. For conditioning intensity, the slopes of the curves are positive at early
times and decrease as time increases to become negative at later times, which may indicate
non-proportional hazards. This is confirmed by a formal test of proportional hazards using
the supremum test based on cumulative sums of martingale residuals (p=0.038). Notice that
the conditioning intensity is a binary covariate which only takes two possible values 0 for
NST/RIC, and 1 for myeloablative; therefore, linearity is not an issue for this variable. For
patient age, the lines are curved but parallel, which indicates that the proportional hazards
assumption might be reasonable but the linearity of the age effect is questionable. For the
log-transformed time from disease diagnosis to transplant, the curves are also approximately
parallel but curved, suggesting a non-linear effect.

Because there was evidence of non-proportional hazards based on conditioning intensity,
we fit two separate pseudo-value regression models for the mortality probabilities at day
100 and 2 years after transplantation, using the “logit” link function. Based on the residual
plots, a natural breakpoint for dichotomizing age would be at approximately age 55, and
we considered grouping logarithm of the time interval from disease diagnosis to transplant
at ≤ 1.79, 1.79 to 2.48, and ≥ 2.48, which correspond approximately to 0-6, 6-12, and ≥ 12
months for the time from disease diagnosis to transplant. The two model details are shown
in Table 10.1. Note that while the effect of myeloablative conditioning is not significant at
either time point, the odds ratio (OR) for mortality switches direction between these two
time points, which is consistent with the indication of our diagnostic plot.

Next, we look at relapse, where death in remission is considered a competing event. The
diagnostic plots at the 10th to 90th percentiles of the relapse times are given in Figure 10.3
(b), (d) and (f) based on a complementary log-log transformation for the cumulative in-
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(a) Conditioning (NST/RIC=0, MCT=1) (b) Conditioning (NST/RIC=0, MCT=1)

(c) Patient age (d) Patient age

(e) Logarithm of interval from diagnosis to trans-
plant

(f) Logarithm of interval from diagnosis to trans-
plant

FIGURE 10.3
Goodness-of-fit in fitting a Cox proportional hazards model for overall survival and a Fine
and Gray proportional subdistribution hazards model for relapse. Curves represent the
smoothed scatterplots for the 10th to 90th percentiles of the event times, and they are
plotted against 3 different covariates for each outcome.
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TABLE 10.1
Pseudovalue regression models for overall mortality and relapse. For mortality, two separate
models were fit to mortality at day 100 and 2 years. For relapse, a combined model across
the 10th to 90th percentiles was fit using a complementary log-log model.

Overall Mortality at day 100

Risk Factor Odds Ratio (CI) p-values

Conditioning intensity
MCT vs. NST/RIC 1.95 (0.91,4.20) 0.086

Patient age
55-65 vs. 45-55 2.04 (0.96,4.34) 0.064

Time from dx to tx 0.047(df=2)
6-12 vs. 0-6 month 1.93 (0.91,4.09) 0.085
≥ 12 vs. 0-6 month 0.72 (0.30,1.69) 0.45

Overall Mortality at 2 years

Risk Factor Odds Ratio (CI) p-values

Conditioning intensity
MCT vs. NST/RIC 0.92 (0.57,1.49) 0.74

Patient age
55-65 vs. 45-55 2.52 (1.56,4.06) 0.00015

Time from dx to tx 0.094(df=2)
6-12 vs. 0-6 month 1.26 (0.72,2.22) 0.42
≥ 12 vs. 0-6 month 0.67 (0.39,1.14) 0.14

Cumulative Incidence of Relapse
Risk Factor Subdist. HR (CI) p-values

Conditioning intensity
MCT vs. NST/RIC 0.38 (0.19,0.77) 0.007

Patient age 1.07 (0.99,1.16) 0.059

log(time from dx to tx) 0.58 (0.40,0.84) 0.0038

cidence of relapse. It appears that in each plot all the lines are approximately parallel,
and relatively linear except possibly near the edges of support of the data where there
are very few events. Therefore, the proportional hazards and linearity assumptions for the
subdistribution hazard seems reasonable for each variable. By treating patient age and the
log-transformed time from disease diagnosis to transplant as continuous, we fit a GLMmodel
with a complementary log-log transformation to the pseudo-values at nine time points of
the 10th to 90th percentiles of the relapse times as shown in the bottom of Table 10.1. Note
that this model is analogous to a Fine and Gray model, although the model estimation
techniques are different.

From the above example, we can see that the diagnostic plots from pseudo-values can
provide a visual check on the magnitude and linearity of covariate effects at certain time
points. In addition, as the smoothed curves represent the relationship between each covari-
ate and the “logit” or complementary log-log transformed survival or cumulative incidence
functions at those time points, these diagnostic plots are also useful for choosing an appro-
priate nonlinear functional form or selecting some reasonable cut points for discretizing a
continuous covariate when linearity of the covariate is violated.
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State 0: Alive without 
neutrophil recovery 

State 1: Alive with 
neutrophil recovery 

State 3: Alive with 
secondary graft 

failure 

State 2: Dead 

362 

13 

75 

40 

24 

FIGURE 10.4
SAA Engraftment model

10.6.2 Example 2: Multi-state model

A second application involves outcomes after unrelated donor bone marrow transplantation
for 375 patients with Severe Aplastic Anemia (SAA) using data reported to the CIBMTR.
One concern post-transplant is that the donor cells will fail to engraft and repopulate the
recipient’s immune system; this can manifest as either lack of initial engraftment or recovery
of neutrophils, or as secondary graft failure when the patient’s neutrophil counts drop after
initial recovery. This process can be shown as a multi-state model, where a patient starts
post transplant in state 0 (alive without neutrophil recovery), and from there can either go
to state 1 (alive with neutrophil recovery) or die prior to engraftment (state 2). Once they
are in state 1, they can die or they can experience secondary graft failure (state 3), and
from state 3 they can further progress to death. This multi-state model is summarized in
Figure 10.4, which also shows the numbers of patients experiencing each transition as well
as the number at risk.

One quantity that may be important to clinicians is the probability of being alive and
engrafted (state 1) as a function of time; this combines both primary recovery and sec-
ondary graft failure into one summary endpoint describing a positive result. Note that the
probability of being in state 1 can be written as the probability of being in state 0 or 1
minus the probability of being in state 0. Therefore, an estimate of the probability of being
alive and engrafted is provided by a difference in the Kaplan-Meier estimates

P̂01(0, t) = Ŝ2,3(t)− Ŝ1,2(t),

where Ŝs1,...,sk(t) is the Kaplan-Meier estimate treating transitions to states s1, . . . , sk as
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FIGURE 10.5
Probability of being alive and engrafted in SAA example.

events. An estimate of the marginal probability of being alive and engrafted is given in
Figure 10.5.

To compute pseudo-values, we can take the difference in pseudo-values for each Kaplan-
Meier estimate. Let

Y s1,...,sk
i = nŜs1,...,sk(t)− (n− 1)Ŝ−i

s1,...,sk
(t)

be the pseudo-value based on Ŝs1,...,sk(t). Then the pseudo-value for P01(0, t) is

Yi(t) = Y 2,3
i (t)− Y 1,2

i (t).

We can use these pseudo-values to directly model the probability of being alive and engrafted
as a function of covariates, including age at transplant, gender, karnofsky performance
score (KPS), HLA matching of donor and recipient, and graft versus host disease (GVHD)
prophylaxis. We use pseudo-values at 3 time points (3, 6, and 12 months), and a “logit”
link function. The results of the regression model for survival with engraftment in terms of
odds ratios for each of these covariates is given in Table 10.2. HLA mismatch is significantly
associated with worse survival with engraftment, and patients age 21-40 have significantly
better survival with engraftment compared to those ≤ 20 or > 40. Other risk factors are
not significantly associated with the probability of being alive with neutrophil recovery.
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TABLE 10.2
Results of pseudo-value regression model for the probability of being alive and engrafted.

Variable Comparison Odds Ratio (CI) p-value

Age 21-40 vs. ≤ 20 2.06 (1.16,3.66) 0.014
> 40 vs. ≤ 20 0.73 (0.34,1.56) 0.418

Gender M vs. F 1.47 (0.91,2.38) 0.114

KPS < 90 vs. ≥ 90 1.67 (0.96,2.92) 0.070
Unknown vs. ≥ 90 1.45 (0.48,4.36) 0.506

HLA Mismatched vs. Matched 0.50 (0.31,0.79) 0.003

GVHD FK506 based vs. CSA+MTX 0.96 (0.55,1.69) 0.893
Proph. Others vs. CSA+MTX 0.71 (0.36,1.39) 0.315

10.7 Conclusions

In this article, we reviewed the use of pseudo-values in survival and event history analysis.
As pointed out by Perme and Andersen (2008), the main advantage of using the pseudo-
value approach is that a pseudo-observation corresponding to an expectation of interest such
as a survival probability can be estimated for each individual at any time point regardless
of censoring. These pseudo-values can then be analyzed under a generalized linear model
framework or be used for model diagnosis. Pseudo-value regression models are especially
useful and straightforward to use when one is focusing inference on a single time point,
as may be done either because of clinical interest or to avoid model assumptions such as
proportional hazards. In this setting pseudo-value regression models function essentially as
a censored data logistic regression model.

Pseudo-value regression works when the pseudo-values come from an approximately un-
biased estimator of the mean parameter being modeled. This requirement is often satisfied
when the censoring process is independent of the survival time. Although weighted estima-
tors have been proposed to alleviate this concern when censoring is dependent on covariates,
additional research work in this area is needed.

One drawback of the pseudo-value framework is that it may not be as efficient as other
standard methods. For example, the pseudo-value regression parameter estimates using
pseudo-values for survival data with a complementary log-log link function are not as effi-
cient as the partial likelihood estimator of regression coefficients for a Cox survival model.
Similarly, Klein and Andersen (2005) found a slight loss of efficiency of the pseudo-value
regression parameter estimates using pseudo-values for cumulative incidence with a com-
plementary log-log link function compared to the Fine and Gray model for competing risks
data. However, while there is likely some loss of efficiency, the pseudo-value regression
method is more flexible to handle the situation where the assumption of proportional haz-
ard is violated, and it can be very easily applied to a broad class of multi-state models for
which standard regression analysis is often not available.

Consideration of several issues may lead to improvements in efficiency for pseudo-value
regression models. Selection of the number and position of the time points may affect
efficiency, and while some simulations (Andersen and Perme, 2010; Klein and Andersen,
2005) have suggested that more than 5 time points equally spaced on the event time scale
result in minimal improvements in efficiency, it would be desirable to use all time points.
Several steps in that direction have already been taken. Liu et al. (2008) and Logan et al.
(2008) proposed score tests in the two sample situations for current leukemia free survival
and late survival, respectively, which utilize all the event times and have a closed-form
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expression. Andersen and Klein (2007) proposed an alternative estimating equation which
includes estimation of the intercept α(t) based on work in recurrent events, as well as the
addition of a penalty function to the GEE to smooth out α(t). Andersen and Perme (2010)
proposed regression analysis of the cumulative incidence function using all time points
with a smoothing spline. The choice of working covariance matrix Vi in the generalized
estimating equation framework is another area which may affect efficiency. Simulations by
Klein and Andersen (2005) for the competing risks model suggested that choosing Vi to
approximately match the true covariance may improve the efficiency of the estimators. This
may be especially important for the clustered data setting described in Section 10.3.4 when
one needs to deal with two sources of correlation (within cluster and within individual).
Finally in some settings multiple estimators are available as possible candidates from which
to compute the pseudo-values, and it is unclear whether the choice of estimator may affect
the efficiency of the pseudo-value regression parameter estimates.
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11.1 Introduction

Binomial regression is an estimation technique used for predicting a binary event status at
future time points. In survival analysis the outcome is the time between a well-defined time
origin (or ) and the occurrence of an event. The key to using binomial regression for time-
to-event outcome is the observation that at any time horizon after the time origin the event
status is binary, taking the value 1 if the event has occurred, and 0 otherwise. Clearly, the
event status at a single time horizon carries much less information than the time-to-event
outcome. However, the time process {Nε(t) = I{T ≤ t, ε} : t ∈ [0,∞)} represents the same
information as (T, ε), where ε indicates the type of the event and T the event time. Indeed,
there is a one-to-one correspondence between binomial regression models and (Doksum and
Gasko, 1990) which holds also in more complex models for event history analysis (Jewell,
2005).

11.1.1 Choice of time horizons

In applications it is then possible and often useful to apply binomial regression to the event
status at a sequence of time horizons (t1, . . . , tJ). A sufficient choice is the sequence of all
observed time points at which the event occurred in the current dataset. This is sufficient
because the contrast between the event status of different patients is constant in the period
between observed event times and this contrast is carrying the relevant information for re-
gression. The process of binomial regression models applied at a sequence of time horizons
may define time varying or time constant regression coefficients, or mixtures thereof (Mart-
inussen and Scheike, 2006; Scheike et al., 2008). Simulations have shown that for estimating
time constant effects it may be reasonable to only consider a selected set of 5 to 10 time
horizons (Klein and Andersen, 2005). However, this may depend on the situation, and it is
not totally clear how to optimally place the time horizons on the time scale. On the other
hand it is clear that the choice of time horizons has a small sample effect on the numerical
results of binomial regression analysis even if the regression coefficient is constant in time.
Another challenge is to efficiently weight the sequence of binomial regression equations in
order to combine information across time to obtain estimates of time constant regression
coefficients. Furthermore, there may be problems with the convergence of the estimates at
early time points where few subjects have experienced the event of interest, and at late time
points where few subjects are at risk. We illustrate and discuss the choice of time horizons
further in Sections 11.2.4, 11.3.1, 11.6, and 11.7.

11.1.2 Modeling options

The most commonly applied binomial regression model is the logistic regression model
(Berkson, 1944), an attractive alternative is the log-binomial regression model (Wacholder,
1985; Blizzard and Hosmer, 2006; Marschner and Gillett, 2012). A good starting point for
discussing modeling options is a generalized linear model for the absolute risk () of an event
ε until time point t:

Fε(t|X) = E(Nε(t)|X) = h(β0(t), β(t), X). (11.1)

The model describes the effect of a vector of predictor variables X measured at the time-
origin or landmark by a possibly time-varying vector of regression coefficients β(t), a link
function h, and an intercept β0(t). The intercept characterizes the risk of an event for
subjects with X = 0. Important special cases of model (11.1) are the proportional odds
model and the proportional hazard model (Doksum and Gasko, 1990). Model (11.1) can
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also be regarded as a special case of the transformation model for survival analysis (Fine
et al., 1998; Fine, 1999). We discuss different link functions and constraints of the regression
coefficients in Section 11.2.

11.1.3 Right-censored data

A characteristic of event history analysis is the need to deal with (right-) censored data. If
no event has occurred until time t, then the event status at time t is zero. However, if the
patient was lost to follow up before time t, then the event status Nε(t) is unknown, its value
is right-censored. If the censoring mechanism is not informative, (Andersen et al., 1993),
then the probability that the event has occurred to a patient whose status is censored
may be estimated from the patients whose status was observed. There are two popular
ways of approaching this. One works by weighting the observed status by so-called inverse
of the probability of censoring weights (IPCW) (van der Laan and Robins, 2003). This
approach was proposed by (Scheike et al., 2008) and is reviewed and further discussed in
the present chapter (see in particular Sections 11.3 and 11.4). Another approach is to replace
the possibly censored status by a jackknife pseudo-value. We refer to Andersen et al. (2003)
and Chapter 10. Both approaches require a model for the censoring mechanism. The pseudo-
approach in its basic form assumes that the censoring mechanism is independent of observed
covariates, which is in contrast to the binomial regression approach. Specifically, the estimate
of model (11.1) obtained with the IPCW approach depends explicitly on an estimate of
the conditional probability function of not being censored given X, an infinite dimensional
nuisance parameter. An example of a model for the conditional censoring distribution, which
is attractive for its simplicity, is based on the assumption that the censoring probability does
not depend on the covariates X. In this case the Kaplan-Meier estimate for the censoring
times can be used to construct consistent estimates of the censoring weights. However, the
censored times may depend on the covariates. And if this is the case, then the Kaplan-Meier
model is misspecified. Moreover, the IPCW estimate of (11.1) based on the simple Kaplan-
Meier model is always inefficient, as it ignores the covariate values that were collected for
patients whose status was censored before time t. See van der Laan and Robins (2003) for
a more technical explanation of this fact. Generally to increase efficiency and to reduce the
risk of bias, one can specify a working regression model for the censoring times. We discuss
this further in Section 11.3.2 and compare results obtained with different censoring models
and investigate the effects of misspecification in Sections 11.6 and 11.7.

11.1.4 Interval-censored data

Binomial regression is also a very useful tool under more complex censoring schemes. This
includes current status data and interval-censored data (Sun, 2006). In many applications
it is only possible to observe the event time and status up to an interval. For example when
the event status is monitored over time, e.g., at scheduled visits, exact event times are
not observed but interval-censored. It is only known that the event occurred between two
adjacent visits but the exact event time remains unknown. An extreme form of interval-
censored data is called “current status data.” Here only data are available from a single visit
for each subject at which the event status is diagnosed. We do not detail the estimation
techniques for current status and interval-censored data in this chapter, and instead refer to
the respective literature (Rossini and Tsiatis, 1996; Jewell and van der Laan, 1997; Shiboski,
1998; Lin et al., 1998; van der Laan and Robins, 1998; Martinussen and Scheike, 2002; Jewell
and van der Laan, 2004; Sun, 2006).
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11.1.5 Variance estimation

Standard software for generalized linear models can be used to estimate the parameters of
model (11.1). For this, the data have to be prepared in a special way which we describe in
Section 11.5. This yields consistent estimates of the regression coefficients if both the model
of interest for the absolute risk and the nuisance model for the censoring weights are correctly
specified. But, the standard error obtained by software for generalized linear models does
not automatically account for the variability of the estimate of the nuisance parameter.
One approach to obtain unbiased estimates of the standard errors is to derive an explicit
expression of the asymptotic distribution of the estimator for the regression coefficients. In
Section 11.4.1 we review the approach of Scheike et al. (2008). An alternative approach is to
apply bootstrap in a two-step procedure. In each bootstrap sample one first estimates the
censoring weights and then solves an estimating equation using correspondingly weighted
outcome (Section 11.4.2).

11.1.6 Time-varying covariates

A binomial regression model can incorporate time-varying covariates (van Houwelingen,
2006) by landmark analysis (see van Houwelingen and Putter (2012) and Chapter 21 for
details). A landmark analysis starts by choosing a landmark time point. Then all individuals
are included that are event-free at the landmark time point. At the landmark, the baseline
information of covariates readily available at the time origin is augmented by information
from time-dependent covariates which became available until the landmark. Also the state
of the multi-state process at the landmark can be used as a covariate (van Houwelingen and
Putter, 2008).

11.1.7 Comparison with cause-specific modeling

It is worth noting that there is an alternative way of modeling the cumulative incidence
function in a multi-state model (Chapter 20). In this approach regression models are speci-
fied for all transition intensities and the results are combined. For example, Cox regression
models can be fitted to all the cause-specific hazards of a competing risk model (Chapter 8)
and the results subsequently combined into an estimate of the cumulative incidence func-
tion. The advantage of this approach is that one does not have to specify a model for the
censoring mechanism. But the need to specify and estimate regression models for all the
other transition intensities may turn out to be a disadvantage. This happens when there
are many possible transitions, few observed transitions in the current dataset, and when it
is not possible to observe transitions in continuous time. Furthermore, it may be difficult
to summarize the total effect that a single predictor variable has on the cumulative inci-
dence function. Here the direct binomial regression approach discussed in this chapter and
the pseudo-value approach discussed in Chapter 10 have a clear advantage. In summary,
the advantages of binomial regression are feasibility and direct interpretation of regression
parameters. The disadvantages are that the censoring mechanism needs to be modeled and
that the estimates of the regression coefficients depend on the estimate of the baseline risk
(even in proportional hazards models).
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11.2 Modeling

Consider a dataset that includes for each subject an event time T , a categorical marker ε,
and a p-dimensional vector of covariates X = (X1, . . . , Xp). The marker takes one of K
different values indicating the event status at time T . It is assumed that it is coded such
that ε = 1 indicates that the event of interest has occurred at time T whereas ε > 1 indicates
a competing risk at time T . After a competing risk has occurred, the event of interest can
either not occur anymore, for example when the subject has died, or it is not of interest
any longer, for example when the subject has changed the treatment. All fatal events, such
as death due to other causes after which the event of interest cannot occur, are competing
risks. And it often makes sense to also define other events which change the risk of the
event of interest as competing risks, and to study the time to whatever event comes first.
Our set-up also covers more complex multi-state models with transient states which can be
studied using a landmark approach. For a discussion of binomial regression in a multi-state
model see Scheike and Zhang (2007).

The interpretation of the regression coefficients defined in (11.1) depends on the specific
link function (Zhang and Fine, 2008; Ambrogi et al., 2008; Gerds et al., 2012) and on
whether it is assumed that some or all regression coefficients are time constant. These
modeling options are discussed in this section.

11.2.1 Logistic link

The choice h(a, b, x) = expit(a+ bTx) = exp(a+ bTx)/(1 + exp(a+ bTx)) defines a logistic
regression model for the event status at time t in which the regression coefficients are log-
odds ratios:

OR(t) =
Fε(t|X1 + 1, X2, . . . , Xp)/(1− Fε(t|X1 + 1, X2, . . . , Xp))

Fε(t|X1, X2, . . . , Xp)/(1− Fε(t|X1, X2, . . . , Xp))

=
exp(β0(t) + β1(t)(X1 + 1) + β2(t)X2 + · · ·+ βp(t)Xp)

exp(β0(t) + β1(t)X1 + β2(t)X2 + · · ·+ βp(t)Xp)

= exp(β1(t)) .

In the special case where it is assumed that the regression coefficients do not depend on
time, the model is also known as the “proportional odds model” (Bennett, 1983; Rossini
and Tsiatis, 1996).

11.2.2 Log link

The choice h(a, b, x) = exp(a+ bTx) gives rise to a log-binomial regression model in which
the regression coefficients are log-transformed absolute risk ratios.

ARR(t) =
Fε(t|X1 + 1, X2, . . . , Xp)

Fε(t|X1, X2, . . . , Xp)

=
exp(β0(t) + β1(t)(X1 + 1) + β2(t)X2 + · · ·+ βp(t)Xp)

exp(β0(t) + β1(t)(X1) + β2(t)X2 + · · ·+ βp(t)Xp)

= exp(β1(t)).

Absolute risk ratios are generally easier to understand than odds ratios. However, the
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log link comes at the cost of an increased risk of numerical instability when fitting the model
with standard maximum likelihood procedures, in particular when the predictor variables
are continuous. Furthermore, the model may predict risks below zero or above one (Blizzard
and Hosmer, 2006; Gerds et al., 2012). To remedy these problems Marschner and Gillett
(2012) derived an adapted EM algorithm.

11.2.3 Complementary log-log link

A third commonly used link function is h(a, b, x) = 1 − exp(− exp(a + bTx)) which yields
the Cox regression model (Cox, 1972) in absence of competing risks, and when there are
competing risks the Fine and Gray model (Fine and Gray, 1999). In absence of competing
risks the regression coefficients are hazard ratios:

HR(t) =
d log(1− Fε(t|X1 + 1, X2, . . . , Xp))

d log(1− Fε(t|X1, X2, . . . , Xp))

=
exp(β0(t) + β1(t)(X1 + 1) + β2(t)X2 + · · ·+ βp(t)Xp)

exp(β0(t) + β1(t)(X1) + β2(t)X2 + · · ·+ βp(t)Xp)

= exp(β1(t)).

In the presence of competing risks, the regression coefficients have no direct interpretation
(Fine and Gray, 1999; Ambrogi et al., 2008; Gerds et al., 2012).

11.2.4 Constant and time-varying regression coefficients

An important special case of model (11.1) is the following in which all covariates have
time-constant effects:

Fε(t|X) = h(β0(t) + β̄1X1 + · · · β̄pXp). (11.2)

The vector of constant regression parameters β̄ = (β̄1, . . . , β̄p) can be estimated based on
a sequence of time points (see Section 11.3). Interestingly, choosing a single time point
is sufficient to identify β̄. But, this will not be efficient since not all information is used.
Combining results from multiple time horizons will increase the efficiency and the results
can only be fully efficient if at least all time points are used at which the event of interest
occurred in the current dataset. However, note that one may just as well choose time points
at which no events were observed. For example, Klein and Andersen (2005) worked with a
set of time points that were equally spaced on the event scale.

Another special case of (11.1) is the Cox-Aalen regression model (Scheike and Zhang,
2002, 2003; Scheike et al., 2008):

Fε(t|X) = 1− exp {[β0(t) + β1(t)X1 + · · ·+ βk−1(t)Xk−1]

exp(β̄T
k Xk + · · ·+ β̄T

p Xp)
}

(11.3)

In this model the first k − 1 covariates are allowed to have time-varying additive effects
as in Aalen’s additive regression model (Aalen, 1989) and the remaining covariates have a
time-constant multiplicative effect on the hazard, as in the Cox regression model (Cox, 1972,
1975). When fitting model (11.3) the choice of the time points affects the estimates of the
time-constant parameters in a similar way as for (11.2). The choice of time points also defines
the support of the estimates of the time-varying parameters. To reduce dimensionality of
model (11.3) one can specify parametric or semiparametric constraints, such as β(t) =
φ log(t) (Bennett, 1983; Shiboski, 1998; Martinussen and Scheike, 2006).
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11.3 Estimation

The estimators for the regression parameters in the models described in Section 11.2 are
often called “maximum likelihood like estimators” (M-estimators) (Huber and Ronchetti,
2009). They really are zero estimators (Z-estimators) (Van der Vaart, 1998) defined as the
solutions (zeros) to generalized estimating equations. In this section we describe so-called
“inverse of the probability of censoring weighted” (IPCW) estimating equations.

11.3.1 Weighted response

Let C denote a right-censoring time and G its conditional survival function. We assume that
the censoring event is non-informative in the sense that the risk of the event of interest does
not change for individuals after they were lost to follow-up (Andersen et al., 1993). But we
allow that the distribution of the censoring times depends on the covariates. Specifically, we
assume that C is conditionally independent of (T, ε) given the observed predictors X and
denote G(t|X) = P(C > t|X) for the conditional probability of not being lost to follow-up
by time t given X. We also define the censoring indicator Δ = I{T ≤ C}, such that Δ = 1
when the event time is observed, and Δ = 0 when the event time is censored. The data
observed for each subject are then Y = (X, T̃ ,Δε), where T̃ = min(T,C).

To avoid bias it is necessary to account for the possibility that the event may have
occurred to subjects who were lost to follow-up (right censored) before the current time
horizon. The idea is to replace the event status Nε(t) by a weighted response Ñε(t) =
ΔNε(t)/G(T − |X). Under the assumed conditional independence we have E(Δ|X,T, ε) =
G(T − |X) and hence

E(Ñε(t)) = E

(
E

(
ΔNε(t)

G(T − |X)

∣∣∣T, ε,X)) = E(Nε(t)|X) = Fε(t|X) . (11.4)

This equality motivates the generalized estimating equations for the binomial regression
model described below. Since, the numerator of the weighted response is zero when T̃ > t
we can replace the denominator by G(min(t, T−)|X). To avoid problems with large weights
it is sufficient to restrict the sequence of time horizons such that there exists η > 0 such
that supx{G(t|x)} > η. In practice it seems reasonable to choose η > n/m(t) where m(t) is
the number of subjects who were right censored before time t and n is the sample size.

11.3.2 Working censoring model

To use the weighted response (11.4) in estimating equations we need to estimate the cen-
soring distribution. The estimate Ĝ is based on a “working model” G which is a subset of
all conditional survival functions. In the case were it is reasonable to assume that the cen-
soring mechanism does not depend on the covariates a useful model consists of all marginal
survival probability distributions. In this model the Kaplan-Meier estimator based on the
censoring times consistently estimates G. However, as readily noted in the introduction this
model does not lead to efficient estimating equations. To incorporate the covariate infor-
mation of subjects censored before the current time horizon, one can specify a stratified
survival model or a semiparametric regression model for the censoring times, for example
a Cox regression model. However, a necessary condition for the estimating equations to
yield consistent estimates of the regression coefficients is that the working model for the
censoring distribution is correctly specified. More precisely, following Scheike et al. (2008)
we assume that Ĝ is asymptotically regular, Gaussian linear with influence function ICG
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such that uniformly in G

n1/2(Ĝ−G)(s, x) = n−1/2
n∑

i=1

ICG(s, x;Yi) + oP(1).

Note that recent work by Cheng and Huang (2010) indicates that it may be possible to
relax the rate convergence.

The model G may be misspecified. In this case G /∈ G, and the best one can hope for is
that Ĝ still converges, to G∗ ∈ G. For example, in the context of a Cox regression model,
the estimate Ĝ converges to G∗ ∈ G which has an interpretation as the least-false parameter
(Hjort, 1992; Gerds and Schumacher, 2001). The effects of misspecification of the working
model for G on the estimation of the binomial regression parameters are investigated in
simulated data in Section 11.7.

11.3.3 Weighted estimating equations

Consider right-censored data from n independent individuals. At a fixed time horizon t, the
Z-estimator β̂(t) solves the estimating equation, Un(β0(t), β(t), Ĝ) = 0, corresponding to
model (11.1) where

Un(β0(t), β(t), Ĝ) =

n∑
i=1

ω(t,Xi)

{
ΔiNε,i(t)

Ĝ(Ti|Xi)
− h(β0(t), β(t), Xi)

}
. (11.5)

The weights ω(t,Xi) may be p-dimensional and can depend on the model and on the
link function h. For example Scheike et al. (2008) considered weights that depend on the
directional derivatives ∂h(β0(t), β(t), X)/∂β(t) of the current model.

Estimating equations for time-constant regression coefficients β̄ are obtained relative to
a sequence of time horizons (t1, . . . , tJ). The estimates are solutions, Ūn(β0(t), β̄, Ĝ) = 0
where

Ūn(β0(t), β̄, Ĝ) =

n∑
i=1

J∑
j=1

ω(tj , Xi)

{
ΔiNε,i(tj)

Ĝ(Ti|Xi)
− h(β0(tj), β̄, Xi)

}
. (11.6)

Note that if the weights do not depend on the prediction horizon, then the information from
all time points will contribute equally no matter for example the number of subjects at risk.
This will not be efficient. However, it is difficult to derive explicit formulae for efficient
weights. In Equation (11.6) the weights can also be used to model the correlation structure
of data from the same subject obtained at the different time horizons.

11.4 Variance estimation

11.4.1 Asymptotic variance estimate

A natural way to estimate the variance of the Z-estimators of the regression coefficients is
to estimate an asymptotic expression for the variance. To motivate this, it is instructive to
first review the situation where all data are uncensored. In this case the data of subject i are
Yi = (Ti, εi, Xi). Denote P for the joint distribution of the vector Yi, and ψ(Yi, β0(t), β(t)) =
{Nε,i(t) − h(β0(t), β(t), Xi)} for the criterion function which defines the Z-estimator. The

influence function of the Z-estimate (β̂0, β̂(t)) at Yi is given by (see page 47 in Huber and
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Ronchetti, 2009):

ICβ(Yi,P, t) =
ψ(Yi, β0(t), β(t))

−
∫

∂
∂β(t)ψ(y, β0(t), β(t))P(dy)

. (11.7)

Furthermore, under the usual regularity conditions, which include differentiability of
(β0(t), β(t)) �→ ψ(y, β0(t), β(t)) and finite second moments of ψ(Y, β0(t), β(t)), the following
von Mises expansion holds (Van der Vaart, 1998, Section 20):

√
n(β̂(t)− β(t)) =

1√
n

n∑
i=1

ICβ(Yi,P, t) + oP(1). (11.8)

This implies that
√
n(β̂(t)−β(t)) is asymptotically normal with mean zero and asymptotic

variance:

Var(β̂(t)) =

∫
IC2

β(Y,P, t)P(dy).

Thus, based on an estimate ÎCβ of the influence function the asymptotic variance of the

Z-estimator β̂ can then be estimated by

V̂ar(β̂(t)) =
1

n

n∑
i=1

ÎC
2

β(y,P, t).

For right-censored data, under the assumption that the censoring model is correctly
specified (see Section 11.3.2), and under further regularity conditions that are detailed in
Appendix 1 of Scheike et al. (2008) one proves that the von Mises expansion (11.8) holds
for the solution of (11.5). The most important condition which has to be ensured is that
the probability of not being censored at the prediction horizon is uniformly bounded away
from zero. This can be achieved by not using late time horizons where few subjects are at
risk, (see Section 11.3.1). The influence function of the Z-estimator which solves (11.5) is
given by

ICβ(Ỹi, P̃) =
ψ̃(Yi, β0, β)−

∫ ∫
ICG(s,x;y,P̃ )ñ(y,s)

G(s−|Xi)
P̃(dy)

−
∫

∂
∂β ψ̃(y, β0, β)P̃(dy)

. (11.9)

Here the criterion function uses the weighted response

ψ̃(Yi, β0, β) =

{
ΔiNε,i(t)

G(Ti − |Xi)
− h(β0(t), β,Xi)

}
,

and P̃ is the joint distribution of the right-censored observation Ỹi = (T̃i,Δiεi, Xi).

11.4.2 Bootstrap confidence limits

Another way to take the uncertainty of the estimation of the censoring distribution into
account is to use bootstrap. Here we consider two different types of confidence limits for
the regression coefficients, percentile bootstrap confidence limits and Wald type confidence
intervals based on bootstrap standard errors. For other and more sophisticated construc-
tions, for practical advice and theory on bootstrap confidence limits we refer to Efron and
Tibshirani (1993); DiCiccio and Efron (1996); Davison and Hinkley (1997); and Carpenter
and Bithell (2000). The present situation seems to be covered by recent results on bootstrap
consistency for M-estimation in semiparametric models (Cheng and Huang, 2010).

To construct confidence limits, repeat the following algorithm B times, where B is a
large number, such as 10,000.
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Algorithm for estimating bootstrap confidence limits

1. Draw a bootstrap sample from the observed data

2. Fix a set of time points t1 <, . . . , < tJ for estimation based on the event times in the
bootstrap sample

3. Estimate the censoring model based on the bootstrap sample

4. Calculate the weighted outcome based on the estimated weights for each subject i at
each time point tj (see Section 11.5 for details)

5. Compute the estimate β̂∗b by solving the estimating equation in (11.5) applied to the
bootstrap sample.

Based on the empirical distribution of the B bootstrap estimates: (β̂∗1 , . . . , β̂
∗
B), a per-

centile bootstrap confidence set is defined as(
τ∗n(α/2), τ

∗
n(1−α/2)

)
,

where τ∗n(α) is the α percentile, in the empirical distribution of the bootstrap estimates.
That is, α satisfies

P (β̂∗ ≤ τ∗n(α)) = α .

Also a Wald test-based confidence interval is given by(
β̂ − zq · Ŝ.E(β̂∗), β̂ + zq · Ŝ.E(β̂∗)

)
, (11.10)

where zq is the q quantile of the standard normal distribution. The Wald confidence interval
is calculated based on the empirical standard error of the bootstrap estimates:

Ŝ.E(β̂∗) =
(

1

B

B∑
b=1

(
¯̂
β∗ − β̂∗)2

)1/2

, (11.11)

where

¯̂
β∗ =

1

B

B∑
b=1

β̂∗ .

11.5 Software implementation

The regression coefficients of the binomial regression model (11.1) can be estimated by
solving the weighted estimating Equation (11.5). This can be implemented in most statistical
software packages.

The first step is to transform the data from the format in Table 11.1 into the stacked
format shown by the first 5 columns of Table 11.2. The second step is to specify and
estimate a model for the conditional censoring distribution. To get individual weights, the
estimate Ĝ needs to be evaluated “just before” the subject specific event time and possibly
given covariates. In Table 11.1 this is illustrated for three time points t1, t2, t3. Column 6
shows time point specific censoring weights evaluated at the subject specific event times and



Binomial Regression Models 231

TABLE 11.1
Unprepared competing risks data of n subjects.

id Observed
time

Event
status

Covariates

1 T̃1 ε̃1 x1

2 T̃2 ε̃2 x2

...
...

...
...

n T̃n ε̃n xn

TABLE 11.2
Stacked data format for estimation of binomial regression models.

id
Time
grid

Observed
time

Event
status

Covariates Weights
Weighted
outcome

1 t1 T̃1 ε̃1 x1 Ĝ11 Ñε,1(t1)

1 t2 T̃1 ε̃1 x1 Ĝ21 Ñε,1(t2)

1 t3 T̃1 ε̃1 x1 Ĝ31 Ñε,1(t3)

2 t1 T̃2 ε̃2 x2 Ĝ12 Ñε,2(t1)

2 t2 T̃2 ε̃2 x2 Ĝ22 Ñε,2(t2)

2 t3 T̃2 ε̃2 x2 Ĝ32 Ñε,2(t3)
...

...
...

...
...

...
...

n t1 T̃n ε̃n xn Ĝ1n Ñε,n(t1)

n t2 T̃n ε̃n xn Ĝ2n Ñε,n(t2)

n t3 T̃n ε̃n xn Ĝ3n Ñε,n(t3)

covariates Ĝji = Ĝ(min(tj , T̃i−)|xi). Finally, the weighted outcome Ñε,i for each subject at
each of the time points (column 7) is a simple function of the other columns in the stacked
dataset: Ñε,i(tj) = I{T̃i ≤ tj , ε̃i = 1}/Ĝji.

To estimate time-varying regression coefficients based on the stacked data in Table 11.2,
one includes an interaction term between the covariates and the vector of time points. To
do this one specifies the time horizons as a factor or class variable with levels (t1, . . . , tJ),
in a model statement. Estimates of time constant regression coefficients are obtained by
including the covariates and time points. For example, in R the estimation can be done
using the function geese from the geepack-package.

geese(Weighted outcome~covariates+factor(time.grid),

data=Table.8.2, id=Table.8.2$id,

scale.fix=TRUE,

family=gaussian,

mean.link="cloglog",

corstr="independence")

For example, to estimate the Cox model in survival or the Fine-Gray model in a
competing risk model use the cloglog link function and choose family=Gaussian and
mean.link="cloglog". This produces estimating equations as the ones in Equation (11.6).
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Time-varying coefficients can be obtained by replacing the formula with:

Weighted.outcome covariates*factor(time.grid).

In SAS the corresponding procedure is proc genmod where the model can be specified
by a model statement. User defined link functions can be specified via the fwdlink and
invlink statements as shown below where we again specify the cloglog link function.

proc genmod data=Table.8.2;

class Time.grid id;

ginv=1-exp(-exp(_xbeta_)); g=log(-log(1-_mean_));

fwdlink link=g; invlink link=ginv;

variance var=1;

deviance dev= _resp_;

model Weighted outcome = covariates Time.grid;

repeated subject=id;

run;

As before time-varying coefficients can be obtained by replacing the model statement with:

Weighted.outcome=covariates*Time.grid

The standard errors obtained using geese or proc genmod do not reflect the statistical
uncertainty incurred by the estimates of the censoring weights. To construct valid tests and
confidence limits one possibility is to apply the bootstrap, see Section 11.4.2.

As far as we are aware the statistical software R (R Core Team, 2012) is the only package
which provides routines to directly find the IPCW estimates of (11.5). This is implemented
in the R packages timereg (Scheike and Zhang, 2011) and riskRegression (Gerds and
Scheike, 2011). The function allows the user to specify a set of time points for estimation
of time-constant coefficients, the link function and different ways to estimate the censoring
weights. The electronic appendix of Gerds et al. (2012) describes the functionality and
compares different link functions with respect to predictive performance.

11.6 Example

In this section we illustrate the binomial regression methods discussed in this chapter.
For this purpose we use data which are described in Section 11.6.1 and freely available,
e.g., from the online appendix of the book Andersen and Skovgaard (2010). We illustrate
the effects of the link function and different choices of time points on the estimation of
the regression coefficients and standard errors. We also compare the different bootstrap
confidence intervals discussed in Section 11.4.2 with the Wald type interval which ignores
the statistical uncertainty incurred by the censoring weights.

11.6.1 Melanoma data

The melanoma data include information on the survival time with malignant melanoma
for 205 patients and were collected at Odense University Hospital by K.T. Drzewiecki.
All the patients had their tumor removed by surgery in the period of 1962-1977 and were
followed from day of surgery until death due to cancer or other causes, or end of study at
December 31, 1977. At the end of study 57 patients had died from cancer and 14 patients
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TABLE 11.3
Log absolute risk ratios in the melanoma data with three different confidence intervals.

log(ARR) 95% confidence intervals

β̂ Bootstrap
percentile

Naive Wald Bootstrap
Wald

Sex: Male vs.
Female

0.129 (−0.326; 0.646) (−0.283; 0.541) (−0.360; 0.618)

Ulceration:
Present vs.
Not present

0.785 (0.237; 1.450) (0.219; 1.350) (0.166; 1.403)

Log-
thickness
(1/100 mm)

0.323 (0.092; 0.562) (0.066; 0.580) (0.083; 0.563)

died from other causes. The remaining 134 patients were alive at the end of 1977 and their
event time was right censored. Death due to cancer is the event of interest in the following.

11.6.2 Choice of link function

For the purpose of illustration we use a binomial regression model which includes only three
variables into the linear predictor: sex, ulceration, (present/not present) and log-thickness,
(operated tumor thickness in 1/100 mm). We first consider the log-link function. Table
11.3 shows corresponding estimates of time constant regression coefficients given as log-
transformed absolute risk ratios (compare Section 11.2.2) with three different confidence
intervals. The two bootstrap methods are described in Section 11.4.2. They take the vari-
ability of the estimates of the censoring distribution into account, as opposed to the naive
Wald-type confidence limits which are based on the standard errors which assume the cen-
soring weights are known. For the estimation we used all the event times in the dataset but
discarded the first and last ten percent (155 time points).

For example the interpretation of the regression coefficient of ulceration is as follows.
There is a 2.19 times (ARRUlceration = exp(β̂Ulceration) = exp(0.785) = 2.19) higher proba-
bility of dying from cancer during the next t days for a patient with ulceration than for a
patient without ulceration, for fixed values of the other predictors.

When we change the link function to the logistic link, we obtain an odds ratio
ORUlceration = exp(β̂Ulceration) = 2.92. This means that the odds of dying of cancer is 2.92
times higher for patients with ulceration compared to patients without ulceration, keeping
other variables fixed. Note in the competing risk model, the complementary probability of
not experiencing the event includes both the risk of the competing causes and the chance
of no event.

11.6.3 Effect of choice of time points

The regression coefficients in Table 11.3 were estimated based on all but the first and
last ten percent of observed time points. Alternatively one could choose a smaller set of
time points; for example, the set of event times at which the cause of interest occurred,
deciles of the empirical distribution of the observed event times, or only a single time
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TABLE 11.4
Effect of different choices of time horizons on the parameter estimates in the melanoma
data.

1 time point 3 time points 10 time points

β̂ SE(β̂) β̂ SE(β̂) β̂ SE(β̂)

Sex: Male
vs. Female

0.143 0.238 0.098 0.218 0.115 0.209

Ulceration:
Present vs.
Not present

0.845 0.348 0.733 0.295 0.797 0.291

Log-
thickness
(1/100 mm)

0.432 0.152 0.285 0.126 0.312 0.130

point. Andersen and Klein (2007) discusses how and how many time points are needed for
estimation in a multi-state model using pseudo-values. They show by simulation that there
is little advantage gained by introducing a large number of time points in the estimation.
In their data example they use 10 time points equally spaced on the event time scale for
the estimation.

Table 11.4 shows estimates of the log-absolute risk ratios based on 1, 3, and 10 time
points, respectively, for the same model. The time points are chosen based on quantiles of
the event time distribution in the melanoma dataset. Considered are three different sets of
time points: the 50% quantile (1 time point), the 25, 50 and 75% quantiles (3 time points)
and 10 quantiles equally spaced between the 10% and the 90% quantiles (10 time points).
The results clearly demonstrate that there is a considerable small sample effect, as the
estimates differ from each other and from the estimates based on the 155 time points in
Table 11.3.

The estimated standard errors are also affected by the choice of time points. The stan-
dard errors generally become smaller as more time points are introduced in the estimation.

The selection of the set of time points should also account for the size of the estimated
censoring weights Ĝ(min(t, Ti−)|Xi). Too small weights even for only few subjects will have
large effects on the estimates of the regression coefficients and lead to unstable results. This
may be controlled by first locating the subjects for whom the observed event times return
very small weights. Then the set of time horizons for estimation can be restricted such that
the very small weights do not enter the estimating equations.

11.6.4 Compare confidence limits

Three different confidence limits are reported for each of the three estimates of the log
absolute risk ratio in Table 11.3. We used 1,000 bootstrap replications and the Kaplan-Meier
estimator in the estimation of the weights. To compare the naive Wald type confidence limits
and the bootstrap based confidence limits we use all but the first and last ten percent of
the unique observed event times in each bootstrap replication. The three methods give rise
to the same overall conclusions of significance.
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11.7 Simulations

The simulation study in Scheike et al. (2008) showed that the estimates of the regression
coefficients had low small sample bias, when both the binomial regression model and the
models for the censoring were correctly specified. Also the empirical variance of the β̂ and
the mean variance of the standard errors β̂ were comparable to those obtained with the
estimating technique of Fine and Gray (1999).

In this section we investigate the magnitude of the bias of the estimate of the regression
parameter β and the coverage probability when the model for the censoring distribution is
misspecified.

11.7.1 Competing risks model

Data are simulated from a Fine and Gray regression model based on the indirect simulation
approach (see Fine, 1999; Beyersmann et al., 1993). It is assumed that the cumulative
incidence function for cause 1 is given by

P (Ti ≤ t, εi = 1|Xi = (xi1, xi2)) = 1− (1− p(1− exp(−t)))exp(βx) (11.12)

For cause 2 the cumulative incidence function is assumed to be

P (Ti ≤ t, εi = 2|Xi = (xi1, xi2)) = (1− p)exp(βx)(1− exp(−t exp(βx)) . (11.13)

We set p = 0.66 in all the simulations. The probability of a failure of cause 1 given the
observed covariates is p1 = 1 − (1 − 0.66)exp(βx) and the cause of failure is determined
by a coin toss with success probability p1. The covariates X = (X1, X2) are independent
standard normal distributed and the relationship β = (β1, β2) between X and T is constant
over time.

11.7.2 Misspecified censoring model

We introduce conditionally independent right censoring as follows. Censoring times are sim-
ulated from a Cox-Weibull regression model by using the simulated values of the covariate
matrix X. The shape parameter is set to 1 and the scale parameter to 1/2.

For the estimation of the censoring weights we consider two different ways of misspeci-
fying the censoring distribution G:

1. Omitting covariate(s): The censoring time C depends on two covariates (X1, X2) which
are also affecting the cumulative incidences. Estimation of the censoring weights is based
either on the marginal Kaplan-Meier estimator which omits covariates, or on a misspec-
ified Cox-model (Coxmis.) which includes only X1 as a predictor and omits X2.

2. Wrong functional form: The censoring time C depends on (X1, X2, X
2
2 ), where (X1, X2)

are also affecting the cumulative incidences. The estimation of the censoring weights is
based either on the marginal Kaplan-Meier estimator, which omits covariates, or on a
misspecified Cox-model (Coxmis.) which includes only (X1, X2) and thus misspecifies the
functional form for the association between the variable X2 and the censoring hazard
function.

The relationship between the cumulative incidences and X2 is fixed by setting β2 = 0.5
in all simulations. By ηx1

, ηx2
and ηx2 we denote the regression parameter values for the
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TABLE 11.5
Summary of simulation results across 1,000 simulated datasets (n=500). Shown are Bias,
MSE and Coverage Probabilities for estimates of β1 and fixed β2 = 0.5.

Parameters Bias MSE Coverage Prob.

Estimates of β1

β1 ηx1
ηx2

ηx2
2

KM Coxmis. Cox KM Coxmis. Cox KM Coxmis. Cox

0.3 0.0 0.0 0.007 0.008 0.008 0.008 0.007 0.007 0.945 0.958 0.957

0.5 0.0 0.0 0.008 0.008 0.009 0.009 0.009 0.009 0.948 0.953 0.952

0.3 0.1 0.1 −0.022 0.004 0.007 0.008 0.007 0.007 0.936 0.957 0.953

0.5 0.1 0.1 −0.026 0.000 0.004 0.009 0.008 0.008 0.930 0.947 0.949

0.3 0.3 0.1 −0.080 −0.001 0.005 0.014 0.008 0.008 0.815 0.953 0.956

0.5 0.3 0.1 −0.092 −0.003 0.004 0.016 0.008 0.008 0.800 0.963 0.965

0.3 0.1 0.3 −0.027 −0.003 0.006 0.008 0.007 0.007 0.921 0.962 0.960

0.5 0.1 0.3 −0.028 −0.004 0.009 0.009 0.008 0.009 0.927 0.949 0.950

0.3 0.3 0.3 −0.087 −0.011 0.005 0.015 0.008 0.008 0.813 0.951 0.959

0.5 0.3 0.3 −0.096 −0.015 0.005 0.017 0.008 0.008 0.792 0.959 0.969

0.3 0.1 0.1 0.3 −0.027 0.003 0.005 0.010 0.009 0.010 0.929 0.945 0.946

0.5 0.1 0.1 0.3 −0.029 0.004 0.006 0.010 0.010 0.010 0.936 0.955 0.956

0.3 0.3 0.1 0.3 −0.100 −0.003 −0.001 0.018 0.009 0.010 0.783 0.959 0.963

0.5 0.3 0.1 0.3 −0.105 0.002 0.003 0.019 0.009 0.011 0.770 0.969 0.973

0.3 0.1 0.3 0.3 −0.029 0.006 0.006 0.009 0.008 0.013 0.943 0.952 0.952

0.5 0.1 0.3 0.3 −0.035 0.006 0.008 0.011 0.010 0.012 0.904 0.953 0.957

0.3 0.3 0.3 0.3 −0.108 −0.007 −0.008 0.020 0.009 0.011 0.764 0.953 0.955

0.5 0.3 0.3 0.3 −0.116 0.001 0.000 0.022 0.010 0.012 0.716 0.961 0.958

effects on the censoring time hazard of the variables X1, X2 and X2
2 , respectively. Note that

ηx1
= 0 means no correlation between C and X1.
Table 11.5 summarizes the simulation results across 1,000 simulated datasets, each of

size n=500. We report the bias, mean squared error (MSE) and coverage probabilities for

the estimation of β̂1 subject to the two different misspecified models for the censoring dis-
tribution, as described above. Note that the model for the binomial regression model which
describes the relationship between X and the cumulative incidence function is correctly
specified. To estimate β̂ we solved the estimating equations based on three time points: the
25, 50 and 75% quantiles of the event time distribution. For the coverage probabilities we ap-
plied the Wald-based confidence limits based on the naive standard error. The calculations
are repeated for different choices of ηx1

, ηx2
and ηx2

2
.

The columns KM and Coxmis. in Table 11.5 refer to the Kaplan-Meier and misspecified
Cox models for the estimation of the censoring weights, respectively. The columns denoted
by Cox show results using the correctly specified model for the censoring weights. The first
two rows in the table show results for (ηx1 = ηx2 = 0) corresponding to censoring times being
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independent of the covariates X1 and X2. Here we find that the coverage is better when
the censoring weights are based on either of the Cox models as compared to the Kaplan-
Meier estimator. This confirms that even though censoring is independent of the observed
covariates the IPCW estimate which uses the Kaplan-Meier for the censoring model is not
fully efficient. The upper half of Table 11.5 summarizes results from the setting where the
misspecified censoring models omit one covariate (Coxmis.) or all covariates (KM). The
lower half of Table 11.5 summarizes results from the misspecified censoring model with a
wrong functional form of the covariate X2. Overall, the results in Table 11.5 indicate that
the bias in β̂1 becomes smaller and the coverage probabilities higher, when the weights are
based on the misspecified Cox models compared to when they are based on the marginal
Kaplan-Meier. Similar results were obtained for the estimate β̂2 (results not shown).

11.7.3 Compare confidence limits

To compare the performance of the three different confidence intervals discussed in Section
11.4.2 we calculate the corresponding coverage probabilities in simulated data. For this
purpose, we simulate data with different sample sizes n = (250, 300, 500) and only one
covariate X1. The true relationship between X1 and the cumulative incidence is denoted by
β1 = 0.5. We introduce independent right censoring based on the Cox-Weibull model with
shape parameter 1 and scale parameter 1/2.

Based on 1,000 replications Table 11.6 shows the coverage probability for the bootstrap
and the naive Wald type confidence limits for β̂1 for different values of β1. For the estimation
we used the following three time points: the 25%, 50% and 75% quantiles of the event time
distribution in each bootstrap sample. The bootstrap confidence limits in Table 11.6 are
estimated based on 1,000 bootstrap replications and the IPCW weights are estimated with
the marginal Kaplan-Meier estimator.

Within the limitations of this simulation study we conclude that the bootstrap Wald
confidence interval and the naive Wald confidence interval have satisfactory and comparable
coverage probabilities. The coverage for the bootstrap quantile interval seems to be slightly

TABLE 11.6
Coverage probabilities for three different confidence intervals for the estimate of β̂ (1,000
simulations).

Parameters Coverage probabilities

β n Wald Bootstrap Bootstrap Quantile Naive Wald

0.1 250 0.962 0.938 0.961

0.3 250 0.964 0.939 0.957

0.5 250 0.964 0.933 0.954

0.1 300 0.951 0.933 0.943

0.3 300 0.958 0.934 0.949

0.5 300 0.956 0.933 0.942

0.1 500 0.959 0.944 0.948

0.3 500 0.938 0.925 0.933

0.5 500 0.961 0.947 0.961
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lower than that of the Wald-based intervals. This small difference between the quantile and
Wald-based intervals may depend on the sample size.

11.7.4 Effect of choice of time points

We simulate data as described in 11.7.1 using two covariates X = (X1, X2) varying log-

hazard ratios β = (βx1
, βx2

) to see how the bias and MSE of β̂1 changes dependent of the
selection of time points for estimation. ηx1

is the regression coefficient which characterizes
the relationship between the X1 and the censoring time. If ηx1

= 0 then there is no de-
pendence between X1 and C. For the censoring weights we use the marginal Kaplan-Meier
estimator. Note that this model for the weights is misspecified in the case where ηx1 �= 0.

For the estimation of the parameters βx1
and βx2

we use three different sets of time
points based on the observed event time distribution in each of the simulated datasets:

1 The median of the event time distribution

10 10 quantiles from the event time distribution equally spaced between the 10% and the
90% quantile.

ALL All the observed times, discarding the first and last 10 percent.

Table 11.7 summarizes the bias and the mean squared error (MSE) of the estimates of
βx1 across 1,000 simulated datasets with sample size n = 500. There is a gain in efficiency
if 10 time points are used compared to 1 time point when there is no misspecification in
the IPCW. If we introduce dependence between censoring time C and covariate X1 the bias

TABLE 11.7
Effect of the choice of time points on Bias and MSE for estimates of β̂1 (1,000 simulations).

Parameters Bias MSE

Number of time points

1 10 All 1 10 All

βx1 βx2 ηx1 β̂1 β̂1

0.3 0.1 0.0 0.001 0.001 0.001 0.030 0.026 0.026

0.5 0.1 0.0 0.005 0.004 0.004 0.093 0.089 0.089

0.3 0.3 0.0 0.009 0.003 0.004 0.010 0.006 0.006

0.5 0.3 0.0 0.009 0.004 0.004 0.032 0.027 0.027

0.3 0.1 0.1 −0.007 −0.030 −0.025 0.028 0.020 0.021

0.5 0.1 0.1 −0.011 −0.033 −0.028 0.085 0.076 0.077

0.3 0.3 0.1 −0.015 −0.032 −0.027 0.010 0.007 0.007

0.5 0.3 0.1 −0.005 −0.030 −0.025 0.028 0.021 0.022

0.3 0.1 0.3 −0.043 −0.107 −0.092 0.023 0.015 0.015

0.5 0.1 0.3 −0.045 −0.107 −0.090 0.075 0.057 0.060

0.3 0.3 0.3 −0.044 −0.106 −0.091 0.012 0.018 0.015

0.5 0.3 0.3 −0.057 −0.119 −0.103 0.020 0.016 0.016



Binomial Regression Models 239

seems to be higher if we use 10 or all time points compared to one time point. However in
all settings the MSE was smaller for 10 or all time points compared to 1 time point.

11.8 Final remarks

Binomial regression is a flexible modeling approach which can be extended to complex
multi-state models. Binomial regression yields direct models for covariate effects on the
probability scale. Different interpretations can be obtained by changing the link function. A
challenge is that one needs a (correctly) specified model for the censoring distribution. Also
the choice of time points can influence the resulting estimates substantially, in particular
if the β coefficient is in fact time varying. Then the estimate which combines information
across different time points is expected to be variable and sensitive to the choice of time
points.

Bibliography

Aalen, O. O. (1989), ‘A linear regression model for the analysis of life times’, Statistics in
Medicine 8(8), 907–925.

Ambrogi, F., Biganzoli, E. and Boracchi, P. (2008), ‘Estimates of clinically useful measures
in competing risks survival analysis’, Statistics in Medicine 27(30), 6407–6425.

Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993), Statistical Models Based
on Counting Processes, Springer Series in Statistics, Springer, New York.

Andersen, P. K. and Klein, J. P. (2007), ‘Regression analysis for multistate models based
on a pseudo-value approach, with applications to bone marrow transplantation studies’,
Scandinavian Journal of Statistics 34, 3–16.

Andersen, P. K. and Skovgaard, L. T. (2010), Regression with Linear Predictors, Statistics
for Biology and Health, Springer, New York.

Andersen, P., Klein, J. and Rosthøj, S. (2003), ‘Generalised linear models for correlated
pseudo-observations, with applications to multi-state models’, Biometrika 90(1), 15–27.

Bennett, S. (1983), ‘Analysis of survival data by the proportional odds model’, Statistics in
Medicine 2(2), 273–277.

Berkson, J. (1944), ‘Application of the logistic function to bio-assay’, Journal of the Amer-
ican Statistical Association 39, 357–365.

Beyersmann, J., Schumacher, M. and Allignol, A. (1993), Competing Risks and Multistate
Models with R, Use R!, Springer, New York.

Blizzard, L. and Hosmer, D. (2006), ‘Parameter estimation and goodness-of-fit in log bino-
mial regression’, Biometrical Journal 48(1), 5–22.

Carpenter, J. and Bithell, J. (2000), ‘Bootstrap confidence intervals: when, which, what? A
practical guide for medical statisticians’, Statistics in Medicine 19(9), 1141–1164.



240 Handbook of Survival Analysis

Cheng, G. and Huang, J. Z. (2010), ‘Bootstrap consistency for general semiparametric m-
estimation’, The Annals of Statistics 38, 2884–2915.

Cox, D. R. (1972), ‘Regression models and life tables’, Journal of the Royal Statistical
Society B 34, 187–220.

Cox, D. R. (1975), ‘Partial likelihood’, Biometrika 62, 269–276.

Davison, A. C. and Hinkley, D. V. (1997), Bootstrap Methods and Their Applications, Cam-
bridge University Press, New York.

DiCiccio, T. and Efron, B. (1996), ‘Bootstrap confidence intervals’, Statistical Science
pp. 189–212.

Doksum, K. A. and Gasko, M. (1990), ‘On a correspondance between models in binary
regression and in survival analysis’, International Statistical Review 58, 243–252.

Efron, B. and Tibshirani, R. J. (1993), An Introduction to the Bootstrap, Chapman &
Hall/CRC, Florida.

Fine, J. (1999), ‘Analysing competing risks data with transformation models’, J. R. Statist.
Soc. B 61, 817–830.

Fine, J. and Gray, R. (1999), ‘A proportional hazards model for the subdistribution of a
competing risk’, Journal of the American Statictical Association 94, 496–509.

Fine, J., Ying, Z. and Wei, L. (1998), ‘On the linear transformation model for censored
data’, Biometrika 85, 980–986.

Gerds, T. A. and Scheike, T. H. (2011), riskRegression: Risk regression for survival analysis.
R package version 0.0.5. URL: http://CRAN.R-project.org/package=riskRegression

Gerds, T. A., Scheike, T. H. and Andersen, P. K. (2012), ‘Absolute risk regression for
competing risks: interpretation, link functions, and prediction’, Statistics in Medicine
31(29), 3921–3930.

Gerds, T. and Schumacher, M. (2001), ‘On functional misspecification of covariates in the
cox regression model’, Biometrika 88, 572–580.

Hjort, N. L. (1992), ‘On inference in parametric survival models’, International Statistical
Review 60, 355–387.

Huber, P. J. and Ronchetti, E. M. (2009), Robust Statistics, Wiley Series in Probability and
Statistics, New Jersey.

Jewell, N. P. (2005), ‘Correspondance between regression models for complex binary out-
come and those for structured multivariate survival analysis’, U.C. Berkeley Division of
Biostatistics Working Paper Series 195.

Jewell, N. and van der Laan, M. (1997), Singly and doubly censored current status data
with extensions to multi-state counting processes, in D.-Y. Lin, ed., ‘Proceedings of First
Seattle Conference in Biostatistics’, Springer Verlag, pp. 171–84.

Jewell, N. and van der Laan, M. (2004), ‘Current status data: review, recent developments
and open problems’, Advances in Survival Analysis 23, 625–642.

Klein, J. P. and Andersen, P. K. (2005), ‘Regression modeling of competing risks data based
on pseudovalues of the cumulative incidence function’, Biometrics 61(1), 223–229.



Binomial Regression Models 241

Lin, D., Oakes, D. and Ying, Z. (1998), ‘Additive hazards regression with current status
data’, Biometrika 85(2), 289–298.

Marschner, I. and Gillett, A. (2012), ‘Relative risk regression: reliable and flexible methods
for log-binomial models’, Biostatistics 13(1), 179–192.

Martinussen, T. and Scheike, T. (2002), ‘Efficient estimation in additive hazards regression
with current status data’, Biometrika 89(3), 649–658.

Martinussen, T. and Scheike, T. (2006), Dynamic Regression Models for Survival Data,
Springer.

R Core Team (2012), R: A Language and Environment for Statistical Computing, R Foun-
dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
URL: http://www.R-project.org/

Rossini, A. and Tsiatis, A. (1996), ‘A semiparametric proportional odds regression model
for the analysis of current status data’, Journal of the American Statistical Association
91, 713–721.

Scheike, T. H. and Zhang, M.-J. (2002), ‘An additive-multiplicative Cox-Aalen regression
model’, Scandinavian Journal of Statistics 29(1), 75–88.

Scheike, T. H. and Zhang, M.-J. (2003), ‘Extensions and applications of the Cox-Aalen
survival model’, Biometrics 59(4), 1036–1045.

Scheike, T. H. and Zhang, M.-J. (2007), ‘Direct modeling of regression effects for transition
probabilities in multistate models’, Scandinavian Journal of Statistics 34, 17–32.

Scheike, T. H., Zhang, M.-J. and Gerds, T. A. (2008), ‘Predicting cumulative incidence
probability by direct binomial regression’, Biometrika 95, 205–220.

Scheike, T. and Zhang, M. (2011), ‘Analyzing competing risk data using the R timereg
package’, Journal of Statistical Software 38(2), 1–15.

Shiboski, S. C. (1998), ‘Generalized additive models for current status data’, Lifetime Data
Analysis 4, 29–50.

Sun, J. (2006), The Statistical Analysis of Interval-Censored Failure Time Data, Springer,
New York.

van der Laan, M. J. and Robins, J. M. (2003), Unified Methods for Censored Longitudinal
Data and Causality, Springer, New York.

van der Laan, M. and Robins, J. (1998), ‘Locally efficient estimation with current status
data and time-dependent covariates’, Journal of the American Statistical Association
93(442), 693–701.

Van der Vaart, A. W. (1998), Asymptotic Statistics, Cambridge University Press, New York.

van Houwelingen, H. (2006), ‘Dynamic prediction by landmarking in event history analysis’,
Scandinavian Journal of Statistics 34(1), 70–85.

van Houwelingen, H. and Putter, H. (2008), ‘Dynamic predicting by landmarking as an
alternative for multi-state modeling: an application to acute lymphoid leukemia data’,
Lifetime Data Analysis 14(4), 447–463.



242 Handbook of Survival Analysis

van Houwelingen, J. and Putter, H. (2012), Dynamic Prediction in Clinical Survival Anal-
ysis, Chapman & Hall/CRC, Florida.

Wacholder, S. (1985), ‘Binomial regression in GLIM: estimating risk ratios and risk differ-
ences’, American Journal of Epidemiology 123, 174–184.

Zhang, M.-J. and Fine, J. (2008), ‘Summarizing differences in cumulative incidence func-
tions’, Stat Med 27(24), 4939–4949.



12

Regression Models in Bone Marrow Transplantation
– A Case Study

Mei-Jie Zhang

Division of Biostatistics, Medical College of Wisconsin

Marcelo C. Pasquini

Division of Hematology and Oncology, Medical College of Wisconsin

Kwang Woo Ahn

Division of Biostatistics, Medical College of Wisconsin

CONTENTS

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
12.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
12.3 Survival analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

12.3.1 Fitting Cox proportional hazards model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
12.3.2 Adjusted survival curves based on a Cox regression model . . . . . . . . . . . 248

12.4 Competing risks data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
12.4.1 Common approaches for analyzing competing risks data . . . . . . . . . . . . . 252
12.4.2 Adjusted cumulative incidence curves based on a stratified Fine-Gray

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
12.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

12.1 Introduction

Hematopoietic stem cell transplantation (HSCT) is a life-saving procedure for many cancer
patients. It has been widely used for treating malignant and non-malignant diseases. Since
the first successful transplantation using bone marrow from a human leukocyte antigen
(HLA) identical sibling in 1968, more than 800,000 patients have received HSCT worldwide
with an estimated annual number of transplantations around 60,000 currently (Bach et al.,
1968; Gatti et al., 1968; Eapen and Rocha, 2008). The main reasons for the wide increase
in HSCT are its demonstrated efficacy in many diseases, increased donor availability due
in part to using stem cells from umbilical cord blood, increased use of peripheral blood
stem cells, and improved transplant outcomes. However, HSCT also has severe side effects
including graft failure and graft-versus-host disease complications. These complications are
major causes for transplant-related death. Patients and transplant physicians are interested
in knowing survival outcomes after HSCT and are interested in comparing outcomes between
treatments. The main outcome events after HSCT are overall mortality and treatment
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failure which is defined as death or disease recurrence. Treatment failure is the complement
of disease-free survival. Other outcomes of interest are engraftment, acute and chronic graft-
versus-host-disease (GVHD), treatment-related mortality (TRM) which is defined as death
without cancer relapse or progression, and cancer relapse or progression. Some of these
events are competing risks, where a patient may fail due to one of the k causes, and the
occurrence of one of these events precludes us from observing the other events. For example,
death before developing acute GVHD precludes patients from getting acute GVHD. Thus,
death pre-acute GVHD is considered a competing risk for acute GVHD. Another common
competing risks in HSCT studies are TRM and cancer relapse or progression.

In HSCT studies researchers and patients often want to know the effect of treatment- and
patient-related risk factors on the outcome, and to compare outcomes between treatment
groups using existing non-clinical trial data. Regression techniques can be used to address
these important questions. In addition, most HSCT studies involve censored observations,
which results in observing only partial information on patients. The most common type
of censoring is right censoring. Right censoring occurs when patients are lost to follow-up
before the event occurred. Thus, it is unknown when the event will occur.

For right-censored survival data, one of the most widely used statistical regression mod-
els is the Cox proportional hazards regression model (Cox, 1972). The Cox model estimates
the hazard rate as a function of risk factors. Cox proposed a partial likelihood-estimating ap-
proach. Andersen and Gill (1982) gave a detailed theoretical discussion of these techniques.
Cox models can be fit using common statistical packages, such as SAS, SPSS, STATA, R
and others. Recently, some alternative models have been developed, studied and applied to
HSCT studies. Commonly used alternative models include Aalen’s additive model (Aalen,
1989), partly parametric additive risk models (McKeague and Sasieni, 1994; Lin and Ying,
1995), and the flexible additive-multiplicative Cox-Aalen model (Scheike and Zhang, 2002,
2003). In this chapter we will focus on fitting a Cox model using a real HSCT dataset.

For analyzing competing risks data, the standard approach is to model cause-specific
hazards for all causes. The Cox proportional hazards model has been most commonly used to
model the hazard functions for all causes (Prentice et al., 1978; Cheng et al., 1998). A specific
additive risk model has been considered by Shen and Cheng (1999), and a flexible Cox-Aalen
model has been proposed and studied by Scheike and Zhang (2003). Since the cumulative
incidence function (CIF) of a particular type of failure is a function of all cause-specific
hazards, this modeling approach requires all cause-specific hazards to be modeled correctly,
and it may be hard to evaluate the covariate effect on the cumulative incidence function
directly and hard to identify which specific risk factor has an effect on the cumulative
incidence function that changes over time. Recently, some new regression approaches have
been proposed to model the CIF directly. Fine and Gray (1999) proposed a proportional
regression model for the subdistribution hazard function which is based on earlier work
by Gray (1988) and Pepe (1991). This approach is implemented in the crr function in the
cmprsk package for R; see Gray (2013) for details. Since there is a direct relationship between
the subdistribution hazard function and the CIF, one can directly interpret the covariate
effect on the CIF based on the covariate effect on the subdistribution hazard function.
Other flexible and more general models for the subdistribution hazard function have been
proposed and studied (Sun et al., 2006). A second approach to direct modeling of the CIF
is based on pseudo-values from a jackknife technique using nonparametric estimated CIF
at some pre-fixed time points (Klein and Andersen, 2005; Klein, 2006). An R function and
a SAS macro are also available for the pseudo-value approach (Klein et al., 2008). A third
approach to direct modeling of the CIF is based on binomial regression modeling using
inverse probability censoring weighting technique. A fully nonparametric regression model
and a class of flexible and general semiparametric regression models have been proposed
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and studied (Scheike et al., 2008; Scheike and Zhang, 2008). An R package (timereg) has
been developed for the direct binomial modeling approach (Scheike and Zhang, 2011).

In this chapter we will review some of the regression techniques with their applications
to real HSCT data. The HSCT dataset is described in Section 12.2. The Cox model and
its application are discussed in Section 12.3. Section 12.4 studies various competing risk
modeling techniques.

12.2 Data

The data used for illustration came from a study comparing allogeneic HSCT versus autol-
ogous HSCT for diffuse large B cell lymphoma (DLBCL) (Lazarus et al., 2010). DLBCL is
a type of non-Hodgkin lymphoma. The study included 916 adult DLBCL patients, between
the ages of 18 and 60 years from 156 centers in 17 different countries, receiving autolo-
gous or matched sibling allogeneic HSCT reported to the Center for International Blood
and Marrow transplantation (CIBMTR) from 1995 to 2003. The CIBMTR is comprised
of clinical and basic scientists who confidentially share data on their blood and bone mar-
row transplants with the CIBMTR Data Collection Center located at the Medical College
of Wisconsin. The CIBMTR is a repository of information about results of transplants at
more than 450 transplant centers worldwide. For the purpose of illustration, we consider two
outcomes: overall mortality, in which event is death from any cause, and treatment-related
mortality (TRM), in which an event is defined as death without lymphoma progression.
TRM and disease progression (defined as lymphoma recurrence or progressive lymphoma)
are two competing risks. The main objective of this study is to determine the treatment
effect of allogeneic HSCT (N=79) versus autologous HSCT (N=837). Comparing outcomes
between treatment groups using registration data requires adjustment for the differences in
baseline characteristics of patients and transplant-related risk factors. The variables consid-
ered in the CIBMTR study (Lazarus et al., 2010) include the main treatment effect, patient
age, Karnofsky performance score at transplant, patient gender, disease stage at diagno-
sis, chemosensitive disease at transplant, B symptoms at diagnosis, time from diagnosis
to transplant, extranodal disease, marrow involvement at diagnosis, source of stem cells,
year of transplant, donor-patient gender match, GVHD prophylaxis, donor-patient CMV
status, and purging; see Table 1 of Lazarus et al. (2010) for detail. In this example we will
only consider the risk factors that were found to be significantly associated with overall
mortality and TRM, which consists of the main treatment effect (allogeneic HSCT versus
autologous HSCT), patient age at transplant (18 − 30 (N=120) versus 31 − 50 (N=468)
versus 50−60 (N=325)), chemosensitive disease at transplant (sensitive (N=752) versus re-
sistant (N=161)), year of transplant (1995−2000 (N=174) versus 2001−2003 (N=739)), and
Karnofsky performance score at transplant (< 90% (N=560) versus 90− 100% (N=331)).

12.3 Survival analysis

12.3.1 Fitting Cox proportional hazards model

Regression techniques are often used in cancer research to identify patient- and treatment-
related risk factors which are associated with the outcomes, and to compare the treat-
ment effect adjusting for potential imbalance of risk factors between treatment groups.
This is commonly done by modeling the hazard function since there is a close rela-
tionship between survival probability, S(t;Z) = P (T > t|Z) and the hazard function,
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λ(t;Z) = limΔt→0 P (T ≤ t + Δt|T > t,Z)/Δt: S(t;Z) = exp
{
−
∫ t

0
λ(u;Z)du

}
. Cox

(1972) proposed the proportional hazards model,

λ(t|Z) = λ0(t) exp(β
TZ), (12.1)

where λ0(t) ≥ 0 is an unknown baseline hazard function and Z = (Z1, . . . , Zp)
T is a

p-dimensional vector of covariates. The proportionality of hazards in the Cox model pro-
vides a direct interpretation, where the exponential of the regression coefficient, exp(βk),
represents the relative risk of having an event for each one unit increment of a specific
risk factor, Zk. Cox (1972) suggested estimating the regression coefficients by maximiz-
ing the partial likelihood function and estimating the cumulative baseline hazard function,
Λ0(t) =

∫ t

0
λ0(u)du by a Nelson-Aalen type estimator. Both estimators are consistent and

asymptotic variances can be consistently estimated. Statistical procedures for fitting a Cox
model are available in most statistical packages. The use of a Cox model requires validating
some statistical assumptions. The most important assumption that needs to be examined
is the proportionality of hazards. When the proportionality assumptions are not valid, it
indicates that the effects of covariates are not constant, which means the effects change over
time. The proportional hazards assumption can be checked via various methods. Klein and
Moeschberger (2003) gave a detailed review of various model diagnostic tests. One of the
most popular methods is adding a time-dependent variable, Z̃(t) = Z × g(t) to the Cox
model, for a monotone function g(t) and testing whether the coefficient of Z̃(t) is significant.
The most commonly used functions for g(t) are log(t) and t. If the covariate Z satisfies the
proportional hazards assumption, the coefficient of Z̃(t) should be zero. Another common
approach is the graphical method. A survey of various graphical methods can be found
in Chapter 11 of Klein and Moeschberger (2003). One of the simplest ways is comparing
log-log survival curves. Assume that a covariate Z has two levels. We fit a Cox model to
the other covariates stratified on Z, λ0k(t) exp(β

TX) where X are the other covariates and

k (= 1, 2) represents the level of Z. Let Ŝ(t|Zk) be the estimator for exp{−
∫ t

0
λ0k(u)du}.

Under the proportional hazards assumption, − log{− log Ŝ(t|Z1)} and − log{− log Ŝ(t|Z2)}
should be parallel to each other. See Chapter 4 of Kleinbaum and Klein (2005) for mathe-
matical details.

Application to example HSCT data
We analyze the overall mortality for the lymphoma transplant data using a Cox regression
model. First, we check the proportionality assumption for the main treatment effect of
allogeneic HSCT versus autologous HSCT by adding a time-dependent covariate. The test
indicated that transplant type had a significant time-varying effect; see Table 12.1. Figure
12.1 plots the complementary log-log of the survival functions by transplant type and it
confirms that the proportionality assumption does not hold for the treatment effect.

When the proportionality assumption does not hold for some risk factors, we need to
make some adjustments to the modeling. Two approaches are commonly used: (i) fit a

TABLE 12.1
Checking the proportionality assumption.

Covariate β̂(σ̂) HR (95% CI) P

Z1 : transplant type 1.46 (0.20) 4.33 (2.94 - 6.37) < 0.0001

Z2 = Z1 × log(t) -0.43 (0.11) 0.65 (0.52 - 0.81) 0.0001
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FIGURE 12.1
Log-log of survival plot.

stratified Cox model stratifying on these variables; and (ii) fit a time-varying effect Cox
model, λ0(t) exp{β(t)TZ + γTX}, where covariates Z have time-varying effects and X
have constant effects.

To fit a stratified Cox model, the covariate having a time-varying effect should be cate-
gorical. If it is a continuous variable, it needs to be categorized. The stratification approach
assumes that each stratum has a different baseline hazard rate, but the proportional haz-
ards assumption is satisfied for the other covariates within each stratum. It also assumes
that all strata share the same coefficient in general. For the HSCT data, to model the
non-proportionality of the transplant type, we could fit a stratified Cox model,

λj(t;Z) = λj0(t) exp{γTX},

where j = 1, 2 for autologous HSCT and allogeneic HSCT, respectively, and X are the
other significant covariates. Thus, the time-varying effect of transplant type is explained by
two different baseline hazard rates λ10(t) and λ20(t). In practice, one of the advantages of
using stratification is that no further proportionality conditions need to be examined. It has
been implemented in most statistical packages. In SAS, we can use the “strata” statement
in the Proc PHREG procedure.

Although stratification may be easier to implement in practice, its drawback is that the
effect of the transplant type cannot be quantified directly. To model the effect of transplant
type directly we model the main effect using time dependent covariates. We can fit a Cox
model where the treatment has an early effect and a different late effect,

λ0(t) exp
{
β1 × Z × I(t ≤ t0) + β2 × Z × I(t > t0) + γTX

}
,

where Z = 0 for autologous HSCT, Z = 1 for allogeneic HSCT, and X are the other
significant covariates.

To determine the optimal cut point t0 for the treatment effect we fit a series of models
with different values of t0. The cut point giving the largest partial likelihood is selected for
the next step in the analysis. We use 6, 9, 12, 18, 24 months after transplant to choose the
optimal cut point. Twelve months since transplant gave us the largest partial likelihood; see
Table 12.2. This optimal cut point also can be verified in Figure 12.1. We need to further
check the proportionality assumptions for the “early” and “late” transplant type effect
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TABLE 12.2
Partial log-likelihood for various choices of a cut point t0.

t0 = 6 t0 = 9 t0 = 12 t0 = 18 t0 = 24

−3007.550 −3007.599 −3005.199 −3006.052 −3006.527

with cut point of 12 months since transplant. This test indicated that the proportionality
assumption may not hold for “early” transplant type effect (P = 0.01 for {Z × I(t ≤
12)}× log(t)). This is mainly caused by the fact that allogeneic HSCT patients had a much
higher percentage of death rate within one month of transplant compared to autologous
HSCT (12% versus 1%). We can further find a cut time point within 12 months since
transplant. For illustrative purposes we fit a Cox model with time-dependent covariates for
the main treatment effect using 12 months since transplant as the cut time point.

The transplant type is the main interest of the study (Lazarus et al., 2010) and the
CIBMTR study has identified significant risk factors associated with overall mortality in-
cluding patient’s age, Karnofsky performance score, chemosensitive disease, and year of
transplant. It is important to examine whether these risk factors had the same effect for al-
logeneic and autologous HSCT. Thus, we need to test for potential interaction between the
main treatment effect and these risk factors, and further adjustments will be needed if the
test indicates that any interaction exists. Here, potential interaction between six covariates
and early and late treatment effects need to be tested. For the late treatment effect, there is
no subject or no event occurred for some categories. Eight interaction variables ware tested
and no strong interaction was observed; see Table 12.3.

Finally, we fit a Cox model with time-dependent covariates:

λ0(t) exp
{
β1 × Z × I(t ≤ 12) + β2 × Z × I(t > 12) + γTX

}
.

The results are given in Table 12.4. They indicate that the type of transplant had a time-
varying effect on overall mortality: in the first 12 months within transplant, allogeneic
HSCT had a higher mortality rate than autologous HSCT with relative risk of 2.75 (95%
confidence interval: 2.03 - 3.72; P < 0.0001) for allogeneic HSCT versus autologous HSCT.
For patients surviving 12 months after transplant the risk of death was similar for both
types of transplants.

12.3.2 Adjusted survival curves based on a Cox regression model

In randomized clinical trials Kaplan-Meier survival curves are commonly used summary
curves/statistics for the comparison between treatments. For non-randomized retrospective
studies the distribution of some risk factors between the treatment groups is often differ-
ent. The Kaplan-Meier curves for each treatment group represent a univariate unadjusted
summary curve, which can be misleading when the distribution of covariates is unbalanced
between the treatment groups. It has been proposed that for a non-randomized study ad-
justed survival curves should be computed. Such adjusted survival curves represent the
survival experiences of the “average” patient in a given treatment group.

Based on a stratified Cox proportional hazards model, two methods of estimating the
adjusted survival curves have been proposed. In the first method the adjusted survival
probability for the ith treatment group is estimated by

S̃i(t) = exp

{
−Λ̂i0(t)e

β̂
T ¯Z
}
,
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TABLE 12.3
Interaction test.

Covariate β̂(σ̂) P

Z1E : “Early” HSCT effect 2.03 (0.51) < 0.01

Z1L : “Late” HSCT effect 1.06 (0.65) 0.10

Z2 : Age 31-50 Years 0.20 (0.17) 0.26

Z3 : Age 51-60 Years 0.60 (0.18) < 0.01

Z4 : Karnofsky: ≥ 90% −0.23 (0.10) 0.02

Z5 : Karnofsky: Missing −0.18 (0.35) 0.60

Z6 : Chemo-resistant 0.86 (0.12) < 0.01

Z7 : Year of transplant 0.53 (0.16) < 0.01

Z8 = Z2 × Z1E −0.78 (0.41) 0.06

Z9 = Z3 × Z1E −0.38 (0.44) 0.39

Z10 = Z4 × Z1E −0.58 (0.31) 0.06

Z11 = Z5 × Z1E 1.22 (0.83) 0.17

Z12 = Z6 × Z1E −0.04 (0.31) 0.89

Z13 = Z7 × Z1E −0.26 (0.36) 0.46

Z14 = Z6 × Z1L 0.05 (0.79) 0.95

Z15 = Z7 × Z1L −1.59 (0.36) 0.05

where Λ̂i0(t) is the estimated cumulative baseline hazard function and Z̄ is the average
value of Z from the pooled sample. Zhang et al. (2007) showed that this method is easy to
implement in practice, but it has several drawbacks. First, the average value of a categorical
variable could be quite meaningless. In addition, this method does not account for the sample
variability in the risk factor from subject to subject.

The second method is based on the average of the estimated survival curves for each
patient over the entire sample, i.e.,

Ŝi(t) =
1

n

n∑
i=1

exp

{
−Λ̂i0(t)e

β̂
T

Zi

}
.

This is often called the “direct adjusted survival curve” and it produces a more represen-
tative curve. These direct adjusted survival curves estimate the survival probabilities in
populations with similar prognostic factors.

Zhang et al. (2007) derived a variance estimate for Ŝi(t) and for the difference of two
adjusted survival curves between treatment groups. They also developed a SAS macro to
implement the estimating procedure for the direct adjusted survival curves (the macro is
available at http://www.mcw.edu/biostatistics).

To use the SAS macro, we need to load it into the current program:
%INCLUDE ‘ADJSURV.sas’;
The macro is invoked by running the following statement:
%ADJSURV(inputdata, time, event, group, covlist, model, outdata);
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TABLE 12.4
Final proportional hazards model with time-dependent covariate for the type of HSCT.

Covariate HR (95% CI) P

Main effect: < 0.0001a

≤ 12 months:

Autologous 1.00

Allogeneic 2.75 (2.03–3.72) < 0.0001

> 12 months:

Autologous 1.00

Allogeneic 0.93 (0.43–1.99) 0.8427

Age: < 0.0001a

18–30 1.00

31–50 1.10 (0.81–1.49) 0.5620

> 50 1.72 (1.26–2.35) 0.0006

Karnofsky score: 0.0059a

< 90% 1.00

90-100% 0.74 (0.61–0.89) 0.0014

Missing 0.91 (0.49–1.67) 0.7496

Chemotherapy-resistant disease:

Sensitive 1.00

Resistant 2.31 (1.86–2.86) < 0.0001

Year of transplant:

2001–2003 1.00

1995–2000 1.55 (1.18–2.03) 0.0016

Note: a: 2 degree-of-freedom overall test.

where
inputdata the input SAS dataset name;
time the failure time variable;
event the event indicator variable;
group the treatment indicator variable;
covlist list of all covariates (risk factors);
model the option for model selection, which takes the value:

1 for a stratified Cox model and
2 for an unstratified Cox model;

outdata the SAS output dataset name;

The group indicator variable group needs to be coded as (1, . . . ,K), where K is the total
number of treatment groups. The results are saved in the SAS output data file “outdata”
which includes estimated direct adjusted survivals (surv1, . . . , survK), their standard errors
(se1, . . . , seK), and estimated standard errors of the differences between any two adjusted
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survivals (se 12,. . . , se (K-1)K). In practice we suggest estimating the direct adjusted sur-
vival probabilities based on a stratified Cox model which allows the treatment groups to
have their own baseline hazards.

Application to example HSCT data
We estimate the direct adjusted survival probabilities for the large B-cell lymphoma (DL-
BCL) (Lazarus et al., 2010) data. The study indicated that patient age (Z1=1, if age
31−50; Z2=1, if age > 50), Karnofsky performance score (Z3=1, if 90-100%; Z4=1, if Miss-
ing), chemotherapy-resistant disease (Z5=1, if Resistant), and year of transplant (Z6=1, if
1995 − 2000). The DLBCL dataset is saved in the SAS dataset “autoallo” which includes
variables of time to death in months (time), death indicator variable (dead=1, if dead; =0, if
alive), and treatment group variable (group=1, if autologous HSCT; =2, if allogeneic HSCT)
were significant, where Zi is an indicator variable for 1 =, . . . , 6. We use the following SAS
statement to invoke the SAS macro:

%ADJSURV(autoallo, time, dead, group, Z1 Z2 Z3 Z4 Z5 Z6, 1, outSURV);

SAS micro computes pointwise survival probability with its standard error and standard er-
ror for the difference of two survival probabilities at each event time point. Based on the SAS
output, we can compute the estimated adjusted survival probabilities with 95% pointwise
confidence intervals by transplant type, the difference of the two adjusted survivals, and the
P -value of pointwise tests of equal survival probability; see Table 12.5. From Cox model (see
Table 12.4) we see a huge difference within 12 months of transplant (RR = 2.75; p < 0.0001).
Since there is no difference between allogeneic HSCT and autologous HSCT 12 months after
transplant (RR = 0.93; p = 0.8427), the differences in survival probability persisted after
12 months; see Table 12.5. To compare two survival curves over a given time period, one
needs to compute the confidence band for the difference of two survival curves which is not
available in SAS macro of %ADJSURV.

Figure 12.2 plots the estimated survival probabilities using the Kaplan-Meier method
(Figure 12.2(a)) and the direct adjusted survival curves (Figure 12.2(b)). Both figures show
a similar pattern in survival probabilities between allogeneic HSCT and autologous HSCT.
However, the distribution of the chemotherapy-resistant disease is significantly different
between two treatment groups, where only 128 (15%) autologous HSCT patients had re-
sistant disease compared to 33 (42%) allogeneic HSCT patients (P < 0.0001), and the
relative risk of mortality for resistant disease versus sensitive disease is 2.31 (95% CI:
1.86 − 2.86;P < 0.0001; see Table 12.4). Clearly, without any adjustment, the Kaplan-
Meier method overestimates the survival difference between the two types of transplants.

TABLE 12.5
Estimated adjusted survival probabilities, by type of HSCT with pointwise CI and P -value.

Autologous HSCT Allogeneic HSCT

Months N1 Ŝ1(95% CI) N2 Ŝ2(95% CI) Ŝ1 − Ŝ2 P

24 420 57(54− 60)% 20 32(22− 42)% 25% < 0.0001

48 279 51(47− 54)% 14 29(20− 39)% 22% < 0.0001

72 163 47(44− 51)% 9 27(18− 37)% 20% 0.0001

96 78 44(41− 48)% 4 27(18− 37)% 17% 0.0010
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FIGURE 12.2
Direct adjusted survival curves.

This can be seen in Figure 12.2. For example, at 24 months after transplant, the differ-
ence Ŝ1(t) − Ŝ2(t) for the Kaplan-Meier estimators and the direct adjusted survivals are
57.5%−27.5% = 30.2% and 57.1%−31.9% = 25.2%, respectively. It shows that the Kaplan-
Meier method overestimates the difference by about 5%.

12.4 Competing risks data analysis

12.4.1 Common approaches for analyzing competing risks data

For transplant studies, we often need to analyze competing risks data where a patient may
fail due to one of K causes and the occurrence of one of these events precludes us from
observing the other events. Common combinations of competing risks in HSCT studies
include cancer relapse and treatment related mortality (TRM, defined as death without
relapse), and GVHD and death without GVHD. When analyzing competing risks data
we often wish to estimate and model the cumulative incidence function (CIF), i.e., the
probability of failure from a specific cause. Assuming two type failures the CIF for cause 1
given covariates z is

F1(t; z) = P (T ≤ t, ε = 1|z),
where T is the failure time and ε indicates the cause of failure. One approach to analyzing
competing risks data is to model cause-specific hazards for each cause, which is defined as

λk(t; z) = lim
Δt→0

1

Δt
P {t ≤ T ≤ t+Δt, ε = k|T ≥ t, z} , k = 1, . . . ,K.

The cause-specific hazards for each cause need to be properly modeled since

F1(t; z) =

∫ t

0

λ1(s; z) exp

[
−
∫ s

0

{λ1(u; z) + λ2(u; z)} du
]
ds.
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The commonly used Cox model, λk(t; z) = λk0(t) exp{βT
k z} has been proposed for mod-

eling each cause, and for estimating the cumulative incidence functions (Cheng et al., 1998).

Application to example HSCT data
We apply the cause-specific hazard approach to the HSCT example data: 184 patients died
without relapse (TRM) and 347 patients had cancer relapsed. We need to fit the Cox model
for both TRM and relapse/progression even if we are only interested in modeling the CIF
of TRM. First, testing proportionality assumptions by adding a time-dependent covariate,
Z × log(t) showed that transplant type (allogeneic versus autologous) had a time-varying
effect for TRM (P = 0.0026) and a constant effect for relapse/progression (P = 0.3690).
For illustrative purposes we fit a piecewise constant hazards Cox model with cut point of
12 months since transplant for both TRM and relapse/progression (Table 12.6).

Table 12.6 shows that TRM had a time-varying effect (P = 0.0167) and significant co-
variates include patient age, Karnofsky performance score, chemotherapy-resistant disease,
and year of transplant, whereas relapse/progression had a non-significant constant effect
and only patient age and chemotherapy-resistant disease were significant. Since cumulative
incidence function of a specific cause is a function of all cause-specific hazards, modeling
the CIF of a specific cause by cause-specific hazard approach needs to model cause-specific
hazards correctly for all causes. It is therefore hard to evaluate the covariate effect on the
CIF directly and hard to identify the time-varying effect on the CIF for a specific covariate.

Recently, some new regression techniques have been developed to model the CIF directly.
The first approach is to directly model the subdistribution hazard function (Fine and Gray,
1999), where the subdistribution hazard of cause 1 is defined as

λ∗1(t; z) = −d log{1− F1(1; z)}/dt.

The CIF of cause 1 can be expressed as F1(1; z) = 1 − exp
{
−
∫ t

0
λ∗1(u; z)du

}
. Thus, we

can interpret the covariate effect on the CIF directly through the subdistribution hazard
function. Fine and Gray (1999) proposed a Cox-type proportional subdistribution hazard
model for a specific cause (Fine-Gray model),

λ∗1(t; z) = λ∗10(t) exp{βTz}, (12.2)

where λ∗10(t) is an unknown baseline subdistribution hazard function. Fine and Gray pro-
posed using an inverse probability of censoring weighting (IPCW) technique to estimate β

and the cumulative baseline subdistribution hazard function, Λ∗10(t) =
∫ t

0
λ∗10(u)du. This

approach has been implemented in the crr function in the cmprsk R package which was
developed by Gray (2013). Fine-Gray model assumes a constant proportional effect for each
covariate. When the required constant effect assumption does not hold for a specific covari-
ate, one may consider fitting a stratified subdistribution hazards model. This is not available
in the cmprsk package.

The second approach is based on pseudo-values (Klein and Andersen, 2005) using a
pre-selected grid of time points, t1, . . . , tM . Five to ten time points with equal distance, or
some fixed time points that are of interest to the researchers could be used. At each grid
time point (tj), one computes the nonparametric estimator for CIF, F̂1(tj) based on the

complete dataset and F̂−i
i (tj) based on the sample obtained by deleting the ith observation.

The pseudo-value of the ith subject at tj is defined by θ̂ij = nF̂1(tj)−(n−1)F̂−i
i (tj). Then,

we consider modeling the conditional CIF, θij = F1(tj |Zi) by φ(θij) = αj +βTZi, where φ
is a known link function. Some commonly used link functions, such as the logit link function,
φ(θ) = log{θ/(1−θ)} and the complementary log-log link function, φ(θ) = log{− log(1−θ)}
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TABLE 12.6
Cox proportional hazards models for TRM and relapse/progression.

TRM HR (95% CI) P

Main effect: < 0.0001a

≤ 12 months: Autologous 1.00 0.0167b

Allogeneic 4.89 (3.22–7.43) < 0.0001

> 12 months: Autologous 1.00

Allogeneic 1.09 (0.34–3.50) 0.8886

Age: 18–30 1.00 0.0006c

31–50 0.96 (0.60–1.55) 0.8765

> 50 1.73 (1.07–2.80) 0.0250

Karnofsky score: < 90% 1.00 0.0010c

90-100% 0.60 (0.45–0.81) 0.0008

Missing 1.41 (0.65–3.09) 0.3853

Chemotherapy-resistant disease: Sensitive 1.00

Resistant 1.76 (1.22–2.53) 0.0024

Year of transplant: 2001–2003 1.00

1995–2000 1.67 (1.08–2.59) 0.0022

Relapse/Progression HR (95% CI) P

Main effect: 0.7322a

≤ 12 months: Autologous 1.00 0.5095b

Allogeneic 1.14 (0.75–1.74) 0.5472

> 12 months: Autologous 1.00

Allogeneic 0.69 (0.17–2.86) 0.6126

Age: 18–30 1.00 0.0005c

31–50 1.56 (1.07–2.28) 0.0225

> 50 2.07 (1.40–3.05) 0.0003

Karnofsky score: < 90% 1.00 0.5323c

90-100% 1.03 (0.82–1.28) 0.8298

Missing 0.62 (0.25–1.52) 0.2914

Chemotherapy-resistant disease: Sensitive 1.00

Resistant 2.71 (2.10–3.49) < 0.0001

Year of transplant: 2001–2003 1.00

1995–2000 1.36 (0.99–1.84) 0.0510

Note: a: 2 degree-of-freedom overall test.
b: Test early effect equals to late effect.
c: 3 degree-of-freedom overall test.
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TABLE 12.7
Regression analysis for TRM based on a subdistribution hazard approach and pseudo-vlaue
approach.

Subdistribution hazard Pseudo-value

Variable exp(β̂) (95% CI) P exp(β̂) (95% CI) P

Autologous 1.00 1.00

Allogeneic 3.46 (2.26–5.30) <0.0001 3.50 (2.33–5.24) <0.0001

Age:

18–30 1.00 1.00

31–50 0.86 (0.53–1.40) 0.5452 0.75 (0.46–1.21) 0.2345

> 50 1.38 (0.85–2.25) 0.1974 1.28 (0.80–2.06) 0.3021

Karnofsky:

< 90% 1.00 1.00

90-100% 0.65 (0.48–0.88) 0.0051 0.66 (0.48–0.91) 0.0118

Missing 1.67 (0.70–3.98) 0.2444 1.20 (0.48 –2.98) 0.7020

Sensitive 1.00 1.00

Resistant 1.14 (0.78–1.68) 0.4971 1.13 (0.75–1.69) 0.5553

Year of TX:

2001–2003 1.00 1.00

1995–2000 1.77 (1.14–2.76) 0.0117 1.71 (1.08–2.71) 0.0225

have been suggested and used in biomedical studies. Klein et al. (2008) developed an R func-
tion and a SAS macro to compute the pseudo-values for right-censored competing risks data.
The SAS GEE estimating procedure GENMOD has been applied to estimate the regression
coefficients of αj and β with pseudo-observation θ̂ij . Gerds et al. (2009) showed that the
coefficient estimates are asymptotically unbiased for right-censored competing risks data.

Application to example HSCT data
We applied the crr function to fit Fine-Gray model (12.2) for TRM in the HSCT example
data. We also applied the pseudo-value approach to the HSCT example data for TRM
using complementary log-log link function with 4 time points 12, 24, 48, and 96 months
after transplantation. This fitted model is equivalent to the Fine-Gray model (12.2) at
these time points. As expected both approaches give similar results; see Table 12.7. The
table shows that in addition to transplant type only Karnofsky performance score and year
of transplantation were significantly associated with TRM, and the effects of patient age
and chemotherapy-resistant disease on TRM were not significant. However, patient age and
chemotherapy-resistant disease were both significant for the cause-specific hazard function
of TRM; see Table 12.6. It shows that it is hard to evaluate the covariate effect on the CIF
directly based on cause-specific hazard functions. Figure 12.3 plots the univariate CIF of
TRM by the transplant type. It shows that the transplant type had a time-varying effect
on TRM. Thus, the Fine-Gray model is not an appropriate model for modeling the TRM.

The third approach to directly modeling the cumulative incidence function is based on
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FIGURE 12.3
Univariate CIF of TRM for allogeneic HSCT versus autologous HSCT.

a direct binomial modeling approach. Scheike et al. (2008) and Scheike and Zhang (2008,
2011) considered a class of general models

h{F1(t;x, z)} = α(t)Tx+ g(z,γ, t),

where h is a known link function, g is a known regression function, and α(t) and γ are
unknown regression coefficients. They focused on two classes of flexible models: proportional
models

cloglog{1− F1(t;x, z)} = α(t)Tx+ γTz (12.3)

and additive models
log{1− F1(t;x, z)} = α(t)Tx+ (γTz)t. (12.4)

A direct binomial regression approach has been proposed to estimate the regression coeffi-
cients (Scheike et al., 2008), and the proposed estimating procedures have been implemented
in an R function comp.riks which is available in the timereg R package (Scheike and Zhang,
2011). The predict function available in the timereg package also predicts the cumulative
incidence probability for given values of covariates and constructs (1 − α)100% pointwise
confidence intervals and confidence bands over a given time interval. Scheike and Zhang
(2008) developed a goodness-of-fit test for testing whether a specific covariate has a con-
stant effect on the CIF, which has been implemented in the timereg package.

Application to example HSCT data
We applied the timereg package to analyzing the HSCT example data. Let Z0 be the
transplant type indicator (Z0 = 1 for allogeneic transplant), and {Z1, . . . ,Z6} be defined
same as in Section (12.3.2). First, to check whether there is a time-varying effect on the
TRM for each covariate we fit a flexible additive model

F1(t;Z) = 1− exp{α(t)TZ},

where Z = (1, Z0, Z1, Z2, Z3, Z4, Z5, Z6)
T . The result is given in Table 12.8. It shows that
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TABLE 12.8
Testing of constant effect and non-significant effect for TRM.

P -value

Variable Test constant effect Test significant effect

Main effect: Autologousa — —

Allogeneic <0.0001 0.0002

Age: 18− 30a — —

31–50 0.5400 0.2750

> 50 0.5350 0.0514

Karnofsky score: < 90%a — —

90-100% 0.0270 0.0308

Missing 0.3710 0.4130

Chemo-resistant disease:

Sensitivea — —

Resistant 0.3440 0.2250

Year of transplant:

2001-2003a — —

1995–2000 0.0192 0.0008

Note: a: Baseline.

transplant type (allo vs auto) has a strong time-varying effect (P < 0.0001) and Karnof-
sky score and year of transplant have mild time-varying effects (P=0.0270 and P=0.0192,
respectively), which indicates that the assumption of constant effect required in the Fine-
Gray model is not valid. The test of non-significant effect indicates that patient age and
chemotherapy resistant disease have no significant effect on TRM, which agrees with the
conclusion from fitting a Fine-Gray model and the conclusion based on the pseudo-values
approach; see Table 12.7.

Let Z = (Z3, Z4, Z6)
T . For illustrative and comparison purposes, we fit the Fine-Gray

model (12.3)
F1(t;Z) = 1− exp

{
− exp

(
α0(t) + β1Z0 + γTZ

)}
(12.5)

and a proportional flexible model (12.4)

F1(t;Z) = 1− exp
{
− exp

(
α0(t) + α1(t)Z0 + γTZ

)}
. (12.6)

We compute the predicted cumulative incidence probabilities for given average covariate
values for both models by transplant type. Figure 12.4(b) shows that for the allogeneic
HSCT, the predicted CIF of TRM based on the flexible model (12.6) reaches 40% within
about 9 months after HSCT and has very little additional TRM occurring afterwards,
whereas in Figure 12.4(a) the predicted CIF of TRM based on Fine-Gray model (12.5)
reaches 40% at about 24 months after HSCT, and it keeps increasing afterwards. The
predicted cumulative incidence probabilities of TRM based on Fine-Gray model (12.5) are
misleading since the underlying model assumption is not valid.
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FIGURE 12.4
Cumulative incidence probabilities of TRM based on (a) Univariate, (b) Adjusted CIF based
on the Fine-Gray model (12.5) assuming constant effect, (c) Adjusted CIF based a stratified
Fine-Gray model (12.7).

12.4.2 Adjusted cumulative incidence curves based on a stratified Fine-
Gray model

For non-randomized retrospective studies, the standard nonparametric estimated cumula-
tive incidence curves for each treatment group can be misleading since the distribution of
covariates is unbalanced between treatment groups. To adjust for the potentially imbalanced
prognostic factors among treatment groups and for the potentially time-varying treatment
effect, Zhang and Zhang (2011) considered fitting a stratified Fine-Gray model,

λ∗1(t; l, z) = λ∗10,l(t) exp{βTz}, (12.7)

where λ∗10,l(t) is the baseline subdistribution hazards for treatment l = 1, . . . , L, and pro-
posed to estimate the direct adjusted cumulative incidence probabilities by

F̂1l(t) =
1

n

n∑
i=1

[
1− exp

{
−Λ̂∗10,l(t)e

β̂
T

Zi

}]
,

where Λ∗10,l(t) =
∫ t

0
λ∗10,l(u)du is the cumulative baseline subdistribution hazard for the lth

treatment group. Zhang and Zhang (2011) derived variance estimates for F̂1l(t) and for the
difference of two adjusted cumulative incidence curves between two treatment groups, and
also developed a SAS macro to implement the proposed estimating procedures (SAS macro
is available at http://www.mcw.edu/biostatistics).

Application to example HSCT data
We estimate the direct adjusted cumulative incidence probabilities of TRM using the HSCT
example data. Model diagnostic tests indicate that only Karnofsky performance score and
year of HSCT are significantly associated with TRM and transplant type had a time-varying
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TABLE 12.9
Pointwise estimated cumulative incidence (CIF) probabilities of TRM by type of HSCT.

Univariate CIF

Autologous HSCT Allogeneic HSCT

Months N1 F̂11(95% CI) N2 F̂12(95% CI) F̂12 − F̂11 P

24 371 14(12− 16)% 18 42(31− 52)% 28% < 0.0001

48 244 17(14− 19)% 13 43(32− 54)% 27% < 0.0001

72 145 19(16− 22)% 8 45(34− 56)% 27% < 0.0001

96 69 21(18− 25)% 4 45(34− 56)% 24% < 0.0001

Adjusted CIF based on Fine-Gray Model (12.5)

Autologous HSCT Allogeneic HSCT

Months N1 F̂11(95% CI) N2 F̂12(95% CI) F̂12 − F̂11 P

24 371 14(12− 17)% 18 40(29− 51)% 26% < 0.0001

48 244 17(14− 19)% 13 45(33− 57)% 29% < 0.0001

72 145 18(16− 21)% 8 49(36− 60)% 30% < 0.0001

96 69 21(18− 25)% 4 54(40− 66)% 33% < 0.0001

Adjusted CIF based on Stratified Fine-Gray Model (12.7)

Autologous HSCT Allogeneic HSCT

Months N1 F̂11(95% CI) N2 F̂12(95% CI) F̂12 − F̂11 P

24 371 14(12− 16)% 18 42(31− 53)% 28% < 0.0001

48 244 17(14− 19)% 13 44(32− 54)% 27% < 0.0001

72 145 18(16− 21)% 8 46(34− 57)% 27% < 0.0001

96 69 21(18− 24)% 4 46(34− 57)% 25% < 0.0001

effect; see Table 12.8. For illustrative purposes we fit a stratified Fine-Gray model (12.7)
stratified on transplant type. Based on the SAS output, we can estimate adjusted CIF with
a 95% pointwise confidence interval, the difference of the two adjusted CIFs, and the P-
value of pointwise tests of equal CIF; see Table 12.9. Figure 12.4(c) plots the estimated
adjusted CIF of TRM based on a stratified Fine-Gray model (12.7) by transplant type.
The adjusted risk factors are not strongly imbalanced (P=0.41 and P=0.02 of test equal
distribution between transplant types for Karnofsky performance score and year of HSCT,
respectively). As expected it is (Figure 12.4(c)) close to the univariate estimated CIF (Figure
12.4(a)). Fine-Gray model assumes constant effect for transplant type which is not true in
the HSCT example data. Adjusted CIF of TRM based on Fine-Gray model overestimates
the late difference from 25% to 33% at 8 years after transplant, see Figure 12.4(b) and Table
12.9. The plot of the adjusted cumulative incidence curves based on a stratified Fine-Gray
model provides useful information to researchers and patients.
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12.5 Summary

In this chapter we reviewed some basic regression techniques for analyzing the bone marrow
transplant data. The Cox model can be applied for survival data and competing risks data.
When the proportional hazards assumption is violated, a stratified Cox model or a Cox
model with time–dependent variables can be used. For competing risks data, the Fine-
Gray model, the pseudo-value approach, the direct binomial modeling approach can also be
employed. Adjusted survival or cumulative incidence curves are recommended for graphical
presentation. All methods have been successfully applied for the bone marrow transplant
data. Discussion on other topics such as model diagnostics, multi-state modeling, and left
truncation can be found in other chapters and Klein and Moeschberger (2003).
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In Part III we examine, in a series of chapters, two complementary problems in modeling
survival data. The first is the body of techniques available for model selection and validation
and the second is the robustness of the Cox regression model.

Model selection and model validation is an important problem in survival analysis. The
most appropriate model depends in part on how the model will be used. Regression models
can be used to test a particular hypothesis, perhaps adjusted for other covariates or the
goal of the regression model can be to make a predictive model for the time to some event
or the survival probability for an individual with known covariates.

In Chapter 13 Yong et al. examine classical techniques for selecting the best predictive
model for survival based on a Cox proportional hazards model. The optimal model selection
and validation procedures require the data to be split into three sub-samples with the first
used to generate candidate regression models; the second to pick the best model using
some measure of how well the model predicts outcome; and a third independent sub-sample
which is used to validate the best model selected using sub-sample two. In some cases
where data is limited, a cross-validation technique is used. There are a number of measures
of how well a Cox model predicts outcome discussed in the chapter. These are measures
of model fit such as the Akakie information criterion (AIC) and the Bayes information
criterion; penalized partial likelihood methods such as the Lasso (Least Absolute Shrinkage
and Selection Operator) selection; and measures based on the predictive ability of the model
such as the C(Concordance)-statistic. Many of these measures are very similar to those
used in the classical logistic regression problem. Yong et al. illustrate and compare all these
methods using a well-known dataset from the Mayo Clinic Primary Biliary Cirrhosis (PBC)
study.

In Chapter 14 Laud presents the Bayesian approach to model selection. Here Laud
considers a quite general problem. Selection could be between two models or the selection
problem could be to select between covariates, functional forms of covariates or alternative
distributional assumptions in a Bayes analysis. In this approach Laud puts a prior on each
model in a “model space,” which is a collection of potential models. An element of this space
is characterized by a model for all observable information in the experiment and includes,
for example, the functional form of the relationship and a listing of the covariates which go
into the model. Using this framework he examines the use of Bayes Factors to pick the best
model; the Bayesian interpretation of the AIC and BIC as well as a number of Bayes-specific
measures of fit. Given that the model space grows quite quickly he also considers model
algorithms for this approach.

Meijer and Goeman in Chapter 15 examine model selection in a genetic framework. In
this problem there are often a very large number of covariates to be tested in a survival
model. These covariates come from, for example, individual genes or SNPs (single nucleotide
polymorphisms), and possibly interactions between these genes. The goal is to select impor-
tant covariates from a large set of candidate covariates. Here the authors present techniques
based on prediction methods. In this approach, where there are typically more covariates
than observations, one needs some special techniques other than the standard Cox model
selection methods. These methods include penalized likelihood methods and screening us-
ing univariate models. A second general approach is to select variables by testing individual
covariates and making adjustments to the α level of the individual tests to control the type
I error rate.

In the final chapter of this part O’Quigley and Xu examine the robustness of the Cox
model. They show that estimators that are robust to the censoring distribution can be
found by a modification to the Cox model to have time-varying regression coefficients or by
a modified estimating equation. They also present robust estimators of an average regression
effect as well as an extensive set of simulations of these models.
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13.1 Introduction

There are two major goals for conducting regression analysis: examining the association of
the outcome variable and the covariates, and making prediction for future outcomes. The
choice of the process for model building, selection and validation depends on the aim of the
investigation. Generally it is difficult, if not impossible, that the selected model would be the
correct one. On the other hand, a good approximation to the true model can be quite useful
for making prediction. Model building and selection should not be a stand-alone procedure,
we need valid inference for prediction with the final model.

To establish a prediction model, the same observations in a dataset are often used to
build, select, and conduct inference. This traditional practice can lead to quite overly opti-
mistic and unreliable model at the end. To tackle this issue, we present a model development
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strategy based on the well-known “machine learning” concept with additional inferential
component. We recommend splitting the dataset randomly into two pieces. The first part
is used for model building and selection via conventional cross-validation techniques, and
the second part, often called the “holdout sample,” is used for statistical inference based
on the final selected model. Although conceptually this strategy is applicable to the general
regression problem, our focus is on censored event time outcome variable.

The Cox proportional hazards (PH) model (Cox, 1972) is the most widely used model in
analyzing event time data. Its statistical procedures for making inferences about the asso-
ciation between the event time and covariates are well developed and theoretically justified
via martingale theory (Andersen and Gill, 1982). For prediction using Cox’s model, van
Houwelingen and Putter (2008) provide an excellent review of various prediction methods
in clinical settings. Other recent development in this area involves high-dimensional data
in which the number of observations is much smaller than the number of variables (van
Houwelingen et al., 2006; Witten and Tibshirani, 2010). For typical study analyses, a vast
majority utilizes all observations in the same dataset for model building and validation,
despite a growing concern of the false positive findings (Ioannidis, 2005; Simmons et al.,
2011).

The goal of our investigation is to establish a Cox prediction model and draw reliable
inferences using such a model. We discuss in detail the model-building strategies from a
prediction point of view. We will use a well-known dataset from a Mayo Clinic Primary
Biliary Cirrhosis (PBC) study (Fleming and Harrington, 1991; Therneau and Grambsch,
2000) to guide us through each step of the process for conducting model building, selection
and inference.

The article is organized as follows. In Section 13.2, we describe our study example.
Section 13.3 summarizes various model building and selection procedures in the litera-
ture for the Cox model. Model evaluation based on predictive accuracy measures such as
a censoring-adjusted C-statistic is introduced, which can be used to identify the optimal
method among all candidate models to develop a final Cox model. Section 13.4 applies five
candidate model selection methods to the PBC dataset to demonstrate the conventional
model building, selection, and inference procedure. Section 13.5 presents some challenges
using the conventional process. It shows that the conclusion of such inference can be quite
misleading due to using an overly optimistic model building procedure. A prediction model
development strategy that integrates cross-validation in the model building and valida-
tion, utilizes predictive measure to help identify the optimal model selection method, and
conducts valid prediction inference on a holdout dataset is proposed. This 3-in-1-dataset
modeling procedure is illustrated in detail with the PBC data in Section 13.6. We conclude
with discussion of potential issues and interesting research problems on model selection in
the Remarks section.

13.2 Mayo Clinic primary biliary cirrhosis (PBC) data

The Mayo clinical trial in PBC of the liver has been a benchmark dataset for illustration
and comparison of different methodologies used in the analysis of event time outcome study
(Fleming and Harrington, 1991; Therneau and Grambsch, 2000). The trial was conducted
between January 1974 and May 1984 to evaluate the drug D-penicillamine versus placebo
with respect to survival outcome. There were 424 patients who met the eligibility criteria
for the trial, in which 312 cases participated in the double-blinded randomized placebo
controlled trial and contained mostly complete information on the baseline covariates. Six
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patients were lost to followup soon after their initial clinic visit and excluded from Me study.
The rest of the 106 cases did not participate in the randomized trial but were followed for
survival with some basic measurements recorded.

Since there was no treatment difference with respect to the survival distributions at the
end of study, the study investigators combined the data from the two treatment groups to
establish models for predicting survival. In this article, we utilized data on all 418 patients
to establish a prediction model for the patient’s survival given their baseline covariates.
The average follow-up time of these 418 patients was 5.25 years. Like other studies, there
were missing covariate values among the patients ranging from 2 patients missing prothrom-
bin time (protime) to patients missing triglyceride levels. For illustration, we imputed the
missing values with their group sample median.

The outcome variable is the time to death (timei). Censoring variable (deathi) for each
case i has value 1 if the death date is available, or value 0 otherwise. The patient’s baseline
information consists of

• Demographic attributes: age in years, sex
• Clinical aspects: ascites (presence/absence), hepatomegaly (presence/absence), spiders
(blood vessel malformations in the skin, presence/absence), edema (0 no edema and no
diuretic therapy for edema, 0.5 edema untreated or successfully treated, 1 edema despite
diuretic therapy)

• Biochemical aspects: serum bilirubin (mg/dl), albumin (g/dl), urine copper (µg/day),
prothrombin time (standardised blood clotting time in seconds), platelet count n (num-
ber of platelets × 10−3 per mL3), alkaline phosphotase (U/liter), ast (aspartate amino-
transferase, once called SGOT (U/ml)), serum cholesterol (mg/dl), and triglyceride
levels (mg/dl)

• Histologic stage of disease.

We applied logarithmic transformations to albumin, bilirubin, and protime in the process
of model building, based on analyses of this dataset in Fleming and Harrington (1991).

To establish a prediction model, ideally one should have three similar but independent
datasets, or split the dataset randomly into three subsets. Using the observations from
the first subset, we fit the data with all model candidates of interest; using the data from
the second piece, we evaluate those fitted models with intuitively interpretable, model-free
criteria and choose a final model; and using the data from the third piece, we draw inferences
about the selected model. In practice, if the sample size is not large, we may combine the
first two steps with a cross-validation procedure.

We will use the PBC dataset to illustrate this model selection strategy in Section 13.5.4.
First we review some classical algorithms for model selection and introduce some model-free,
heuristically interpretable criteria for model evaluation.

13.3 Model building procedures and evaluation

Depending on the study question and subject matter knowledge, we may identify a set of
potential explanatory variables which could be associated with the survival outcome in a
Cox PH model, the hazard function at time t for m for an individual is:

λ(t|Z) = λ0(t)exp(β
′Z),

where λ0(t) is an unknown baseline hazard function, Z = (z1, z2, . . . , zp)
′ is the vector

of explanatory variables of the individual, and β = (β1, β2, . . . , βp)
′ is a p × 1 vector of
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coefficients of the explanatory variables Z1, Z2, . . . , Zp. We estimate the parameter β by
maximizing the partial likelihood:

L(β) =
∏
r∈D

exp(β′Zkr )∑
k∈Rr

exp(β′Zk)
,

where D is the set of indices of the failures, Rr is the set of indices of subjects at risk at
time tr, and kr is the index of the failure at time tr.

13.3.1 Variable selection methods

A classical variable selection method is the stepwise regression using L(β) as the objective
function and p-value as a criterion for inclusion or deletion of covariates. It combines forward
selection and backward elimination methods, allowing variables to be added or dropped at
various steps according to different pre-specified p-values for entry to or stay in the model.
Variations of stepwise regression method have been proposed. For example, forward stepwise
regression starts from a null model with intercept only, while backward stepwise regression
starts from a full model. We use forward stepwise procedure, as backward stepwise selection
may be more prone to the issues of collinearity.

To reduce overfitting (Harrell (2001); Section 13.5.1), we may introduce a penalty of
complexity of the candidate models for the stepwise procedures using Akaike information
criterion (AIC; Akaike (1974)) or Bayesian information criterion (BIC; Schwarz (1978)).
Both AIC and BIC penalizes degrees of freedom (k) which is the number of nonzero covari-
ates in regression setting, and their objective functions are:

AIC = −2 ∗ L(β) + 2 ∗ k; and
BIC = −2 ∗ L(β) + log(No. of Events) ∗ k. The AIC’s penalty for model complexity is

less than that of BIC’s. Hence, it may sometimes over-select covariates in order to describe
the data more adequately; whereas BIC penalizes more and may under-select covariates
(Acquah and Carlo, 2010). Note that we usually follow the principle of hierarchical models
when building a model, in which interactions are included only when all the corresponding
main effects are also included; however, this can be relaxed (Collett, 2003).

We can also select a model based on the maximization of a penalized partial likelihood
(Verweij and Van Houwelingen, 2006) with different penalty functions including L2 penalty,
smoothing splines, and frailty models, which are studied extensively in the literature. Two
commonly used methods are Lasso (Least Absolute Shrinkage and Selection Operator) se-
lection (Tibshirani, 1996) and Ridge regression methods (Van Houwelingen, 2001).

Lasso Selection
Tibshirani (1996) proposed the Lasso variable selection procedures which was extended

to the Cox model (Tibshirani, 1997). Instead of estimating β in the Cox model through
maximization of the partial likelihood, we can find the β that minimizes the objective
function {-logL(β) + λ1||β||1} (Park and Hastie, 2007), where

β̂ = argminβ{-logL(β) + λ1||β||1}.

Lasso imposes an L1 absolute value penalty, λ1||β||1 = λ1

∑p
j=1 |βj | to log L(β), with

λ1 ≥ 0. It does both continuous shrinkage and automatic variable selection simultaneously.
Notice that Lasso penalizes all βj(j = 1, . . . , p) the same way, and can be unstable with
highly correlated predictors, which is common in high-dimensional data settings (Grave
et al., 2011).

Different methods such as path following algorithm (Park and Hastie, 2007), coordinate
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descending algorithm (Wu and Lange, 2008), and gradient ascent optimization (Goeman,
2009) can be used to select variables and estimate the coefficients in Lasso models. In-
stead of using cross-validation to select the tuning parameters, we will consistently apply
AIC or BIC to select models across various classical model selection methods for illustration.

Ridge regression
The Ridge penalty is a L2 quadratic function, λ2||β||22 = λ2

∑p
j=1 βj

2 in a general penal-
ized regression setting. It achieves better prediction performance through a bias-variance
trade-off. Of note, this method always keeps all predictors in the model and hence cannot
produce a parsimonious model.

There are other penalized regression methods such as elastic net (Zou and Hastie, 2005)
which combines both L1 and L2 penalty, the smoothly absolute clipped deviation (SCAD)
penalty (Fan and Li, 2001, 2002), and various modification of the Lasso procedures. Other
variable selection procedures and different combinations of model selection methods and
algorithms to select the tuning parameter(s) have also been developed.

13.3.2 Model evaluation based on prediction capability

Many evaluation criteria can be used to select a model; however, if some covariates are
difficult to obtain due to cost or invasiveness, a heuristically interpretable criterion is more
informative than a purely mathematical one. Since it is desirable to examine the predic-
tive adequacy of the Cox model for the entire study period, one of such criteria is the
C(Concordance)-statistic (Pencina and D’Agostino, 2004).

C-statistics
To select a model with best predictive capability, C(Concordance)-statistics are rou-

tinely used to evaluate the discrimination ability and quantify the predictability of working
models. Good predictions distinguish subjects with the event outcome from those without
the outcome accurately and differentiate long-term survivors from the short-lived in sur-
vival context. The traditional C-statistic is a rank-order statistic for predictions against
true outcomes (Harrell, 2001), and it has been generalized to quantify the capacity of the
estimated risk score in discriminating subjects with different event times. Various forms of
C-statistics are proposed in literature to provide a global assessment of a fitted survival
model for the continuous event time. However, most of the C-statistics may depend on the
study-specific censoring distribution.

Uno et al. (2011) proposed an unbiased estimation procedure to compute a modified C-
statistic (Cτ ) over a time interval (0, τ), which also has the same interpretation as Harrell’s
C-statistic for survival data, except that Uno’s method is censoring-independent, and is
given by (Uno et al., 2011) equations (5) and (6). This censoring-adjusted C-statistic is
based on inverse-probability-of-censoring weights, which does not require a specific working
model to be valid. The procedure is valid for both type I censoring without staggered entry,
and random censoring independent of survival times and covariates (other conventional C-
statistics may not be valid in this situation). A simulation study reported in Uno et al.
(2011) did not find the procedure to be sensitive to violation of the covariate independent
censoring assumption.

van Houwelingen and Putter (2008) and Steyerberg et al. (2010) provide a very helpful
discussion of other assessments of predictive performance such as Brier score (Graf et al.,
1999; Gerds and Schumacher, 2006). We show, as an example, the model-free, more recently
developed censoring-adjusted C-statistic to evaluate the overall adequacy of the predictive
model.
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13.4 Application of conventional model development and
inferences

The goal of this section is twofold: (1) to show the conventional way of analyzing time-
to-event data, using the Mayo Clinic PBC dataset described in Section 13.2; and (2) to
present some challenges and limitations, which lead us to propose an alternative strategy
for selecting a model among several candidate model selection procedures and establishing
a more reliable prediction model.

13.4.1 Model building

We apply five classical model selection algorithms to the PBC dataset for illustration. These
candidate methods are: forward selection, backward elimination, stepwise regression, Lasso,
and Ridge regression. For each of these methods, we build a model using AIC and BIC as
model tuning criteria, respectively. For the Lasso and Ridge regression method, AIC (or
BIC) as a function of the regularization parameter λ is plotted and evaluated to find the
global minimum. Models are fitted using the λ at which the least AIC (or BIC) is achieved.
The results are shown in Table 13.1, which consists of two parts. The first part summarizes
all the resulting models via the aforementioned model building processes. The second part
of the table summarizes how we obtained these models.

As a reference, all but two covariates (sex and alk.phos) contributed to a “significant”
increase or decrease in risk ratio in univariate analysis (p < 0.005). Numerous studies in the
literature have used Cox models to identify prognostic factors on event outcome. As shown
in Table 13.1, the risk ratio estimates for each risk factor of interest can be very sensitive
to what other covariates are put in the same model for evaluation.

13.4.2 Selecting procedure using C-statistics

Using the entire PBC dataset, Table 13.2 summarizes the censoring-adjusted C-statistics
of the eight models presented in Table 13.1. The higher the measure, the better the model
predicts throughout the course of study.

The two penalized regression methods yield slightly higher C-statistics. However, models
derived from these two methods use more variables than the classical methods. The best
single variable model, M4, has the lowest C-statistic. The predictive measures of M1, M2
and M3 are close to the models derived from the two penalized regression methods while
using fewer variables. Inference for the difference in the C-statistic between models shows a
difference between M1 and M4 using the method proposed by Uno et al. (2011). M1 appears
as the most parsimonious model with reasonably good C-statistic of 0.790 among all these
models.

13.4.3 Making statistical inferences for the selected model

Conventionally, once we find a desirable model, the risk score for this model can be estimated
and used to differentiate the risk of the subjects in the cohort. These risk scores can be
ranked to put subjects into different risk categories such as tertiles (or deciles if there are
more data). We choose M1, and the Ridge BIC model which has the highest C-statistic in
Table 13.2 for demonstration.

Table 13.3 presents the summary statistics of the difference in survival distributions
depicted in Figure 13.1. The restricted mean survival time is computed as the area under
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TABLE 13.1
Models derived from various classical model selection methods, using entire PBC dataset,
hazard ratios exp(β̂) are presented.

Covariates M1 M2 M3 M4 Lasso@ Ridge

AIC BIC AIC BIC

logbili 2.334 2.312 2.279 2.688 2.213 2.137 2.016 1.651

edema 2.238 2.110 2.107 2.022 1.996 2.182 2.099

age 1.034 1.032 1.034 1.031 1.027 1.029 1.023

stage 1.386 1.394 1.412 1.366 1.326 1.369 1.284

lalb 0.120 0.119 0.128 0.168 1.180 0.166 0.199

lptime 8.164 7.267 8.004 6.535 5.513 7.715 6.898

ast 1.002 1.002 1.001 1.002 1.002

copper 1.002 1.001 1.001 1.001 1.001 1.002

ascites 1.320 1.291 1.407 1.498

trig 0.998 0.998 0.998 0.999 0.998 0.999

hepato 1.049 1.158 1.223

spiders 0.947 1.044

sex 1.057 1.063

chol 1.000 1.000

alk.phos 1.000 1.000

platelet 1.000 1.000

Note: All covariates were treated as continuous effects.

Model Selection Method

M1 Several model building procedures using BIC as stopping criterion came

up with this same model:

a. Forward selection, BIC; b. Backward elimination, BIC; c. Stepwise, BIC

M2 Backward elimination, AIC

M3 a. Forward selection, AIC; b. Stepwise, AIC

M4 Best single variable model, logbili (log(bilirubin)) is the most significant

variable (p < .00001)

the K-M survival curve, over the range from [0, tmax], where tmax (= 12.5 years) is the
maximum time for all K-M curves considered and serves as a common upper limit for the
restricted mean calculation. The overall logrank test, and the logrank tests for the difference
in survival distributions between any two risk categories all yield p-values < 0.00001. Both
M1 and Ridge, BIC models produce similar results with little difference in C-Statistics, this
further illustrates that M1 model is most preferable because it only takes 6 variables to
achieve similar predictability.
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TABLE 13.2
C-statistic of models using the full PBC dataset.

Model Selection Method Model Size C-Statistic

M4 1 0.748

M1 8 0.784

M3 6 0.790

M2 9 0.791

Lasso, AIC 11 0.794

Lasso, BIC 10 0.794

Ridge, AIC 16 0.796

Ridge, BIC 16 0.799

FIGURE 13.1
Kaplan-Meier curves of the survival time, stratified by tertiles of risk scores from two models:
M1 - Six-variable model (left panel), and Ridge, BIC model (right panel).

TABLE 13.3
Summary statistics of the survival distributions by risk categories, scoring using the entire
dataset.

Model Selection Risk N Events/ Restricted Mean Median (95% CI)

Method Categories Total (se) in years (years)

Stepwise, BIC Low 14/140 11.31 (0.283) NA (NA, NA)

Medium 45/139 8.66 (0.393) 9.19 (7.70, 11.47)

High 102/139 4.21 (0.340) 2.97 (2.55, 3.71)

Ridge, BIC Low 14/140 11.36 (0.278) NA (NA, NA)

Medium 42/139 8.98 (0.381) 9.30 (7.79, NA)

High 105/139 3.98 (0.320) 2.84 (2.44, 3.55)

13.5 Challenges and a proposal

The aforementioned process of using the same dataset for model building selection, and
inference has been utilized in practice. This conventional process has potential of self-serving
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problem. In this section, we first summarize the reasons for the issue of over-fitting, then we
will use the PBC dataset to demonstrate such an over-fitting problem with this conventional
process.

13.5.1 Over-fitting issue

If we use the same dataset to construct a prediction rule and evaluate how well this rule
predicts, the predictive performance can be overstated. Over-fitting occurs when a model
describes the random variation of the observed data instead of the underlying relationship.
Generally an overfit model indicates better fit and smaller prediction error than in reality
because the model can be exceedingly complex to accommodate minor random fluctuation
in observed data. This leads to the issue of over-optimism. We will demonstrate some
covariates can be selected as statistically significant risk predictors of an event outcome
even though there is no underlying relationship between them.

13.5.2 Noise variables become significant risk factors

Using the PBC dataset, we first randomly permutate the 418 survival time observations
to break the ties between the observed or censored survival time and its covariate vector
Z. Then we apply various traditional methods including forward selection, backward elim-
ination, and stepwise regression to fit the data with newly permuted y′ and 16 original
covariates. These two steps are repeated 5,000 times.

Table 13.4 shows the median, interquartile range, and the range of the number of vari-
ables selected in 5,000 simulations. Using AIC as tuning criterion tends to over-select vari-
ables to achieve better model fit, while BIC tends to select fewer variables. Stepwise regres-
sion with BIC picked up at least one variable 25% of the time.

Consider one such realization, the risk ratio of the variable log(protime) is 11.5
(se=0.845, p=.0039). Using this single variable model to score the entire dataset, and strat-
ify the risk scores into two strata, we have the left panel of the Kaplan-Meier (K-M) plot
in Figure 13.2. It appears that this model is a reasonable prediction tool for survival.

If we randomly split the data into two parts, using the first half (called training data)
to fit the model using Stepwise BIC approach, the upper part of the right panel shows
some separation again; one may also pause here had we just given the training dataset.
However, if we go one step further, using the training model to score the holdout sample
(the other half) to evaluate the generalizability of the model, the lower right K-M plot shows
no separation at all.

TABLE 13.4
Summary statistics of the number of variables selected in 5,000 runs.

Selection Procedure Tuning Criterion Median (1st, 3rd) Quartile (Min, Max)

Forward Selection AIC 2 (1, 3) (0, 9)

BIC 0 (0, 1) (0, 3)

Backward Elimination AIC 3 (2, 4) (0, 11)

BIC 0 (0, 1) (0, 6)

Stepwise AIC 2 (1, 3) (0, 10)

BIC 0 (0, 1) (0, 4)
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FIGURE 13.2
An example of using a holdout sample to show the over-fitting phenomena, using the entire
dataset.

13.5.3 Utilizing cross-validation in model selection process

One way to address over-fitting is to use cross-validation (CV) techniques. It is preferred to
evaluate the prediction error with independent data (validation data) separated from the
data used for model building (training data). Two ways of conducting cross-validation are:

1. K-fold cross-validation

• Randomly partition the entire original dataset into K groups
• For k = 1, · · · ,K, do the following:

– Retain a single kth group as validation data

– Use the rest (K−1) groups as training data to estimate β and form prediction
rule

– Evaluate a predictive performance measure (e.g., C-Statistic) using the vali-
dation data

• Compute the average of the K predictive performance measures

All data are used for both training and validation, and each observation is used for
validation exactly once.

2. Monte-Carlo cross-validation

• Randomly subsample p percent of the entire dataset without replacement and
retain it as validation data

• Use the rest (1-p percent) data as training data to form prediction rule
• Evaluate the prediction model using the validation data
• Repeat the above steps M times
• Average the M estimates to get the final estimate of the predictive accuracy mea-

sure

In this schema, the results may vary if the analysis is repeated with different random
splits; some observations may be selected more than once for training, while others may
not be selected for validation. However, these can be resolved by increasing M , the
number of times the CV is repeated.

CV is especially useful when we do not have enough observations to set aside for test
set validation; it may address the over-fitting issue.
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13.5.4 3-in-1 dataset modeling proposal

We present the following strategy to help us select a model with best predictive accuracy,
utilizing CV in model selection process. First we randomly partition a given dataset into
two parts, for example, Dtrain.val has 50% of the data and Dhold.out has the rest.

1. Model Building:
For each candidate model selection method considered, use dataset Dtrain.val to build
a model and apply cross-validation to find the predictive accuracy measures of interest.

2. Model Selection:
Identify the “optimal” model selection method(s) that gives us the most acceptable or
highest predictive accuracy measures with a reasonable model size in Step 1. For the
final model, we can either

(a) Use the “optimal” method to refit the dataset Dtrain.val to obtain the prediction
equation for each subject; or

(b) Apply the average model obtained from the training data portion of Dtrain.val to
Dhold.out to report how good it is, and future data for application (e.g., identifying
future study population for intervention).

While the first approach can provide a simple scoring system (a linear combination
of selected covariates in this example), the second approach as the “bagging” version,
Breiman (1996), may have superior performance to the first one for “discrete” procedure
such as stepwise regression and Lasso.

3. Statistical Inference:
Dataset Dhold.out is not involved in any training process; therefore, it is best suited for
testing and reporting the predictive accuracy of the final model derived from Dtrain.val

using the optimal model selection method identified in Step 2 without over-fitting issue
and biases. Additionally, using scores obtained from numerous training models developed
during the cross-validation procedure in Step 1, model averaging can be applied to
increase predictive accuracy in the holdout sample.

We now use the PBC data to illustrate this proposal.

13.6 Establishing a prediction model

Conventional model building strategies using the entire dataset without external data vali-
dation may have limited application. For any given dataset, it will be ideal to be able to

(1) develop a predictive model with validation, and
(2) report how well the model performs externally.
Hereafter, we apply our proposal to the PBC dataset using Monte Carlo cross-validation

to illustrate the idea.

1. First, retain a random 50% sample of data from the randomized trial portion of the
dataset and another 50% of the follow-up portion of the data. This holdout dataset
Dhold.out consists of 209 observations and will be used to conduct inference, and examine
the generalizability of our model developed by the other half of the dataset (called
Dtrain.val).
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TABLE 13.5
PBC Cross-validation data Dtrain.val: performance measures of different model selection
methods, using random cross-validation with 2/3 of observations as training data and 1/3
of data as validation data.

Model Selection Method C- Median

Procedure Tuning Criterion Statistic Model Size

Forward AIC 0.737 6

Selection BIC 0.733 4

Backward AIC 0.742 7

Elimination BIC 0.740 4

Stepwise AIC 0.736 6

BIC 0.744 4

Lasso AIC 0.746 8

BIC 0.746 6

Ridge AIC 0.749 16

BIC 0.757 16

2. Apply Monte Carlo CV to Dtrain.val dataset, use 2/3 of the 209 observations as training
data, and the rest 1/3 observations (70 in this case) as validation data.

3. In each CV run, evaluate the model selected by each candidate method using a predictive
measure of interest: censoring-adjusted C-statistic proposed by Uno et al. (2011).

4. Repeat the model selection and computation of the above performance measures 200
times. The average over all 200 measures is presented in Table 13.5 using various model
selection methods. The C-statistic measures how well the model predicts throughout
the course of study.

In Table 13.5, the three traditional methods (forward selection, backward elimination,
and stepwise regression), have comparable predictive performance in this dataset, with
stepwise regression using BIC as stopping criterion yielding the highest censoring-adjusted
C-statistic of 0.744. The Lasso and Ridge model selection methods yield slightly higher
C-statistic than the other three methods with larger median model size. Ridge regression
with BIC as stopping criterion using all 16 covariates yields the best predictive measure.

Stepwise regression using BIC as stopping criterion has comparable predictive perfor-
mance as Lasso and Ridge regression on this particular dataset. However, the median model
size of stepwise, BIC method is 4, compared with 6 in Lasso and 16 in Ridge regression
method. The difference in the predictive measures between the traditional methods and
the two penalized regression methods are not substantial in this dataset. Since CV-based
estimator like all statistics is subject to some variability, the observed differences (if small)
may be due to stochastic variation. If one decides that the slight difference in predictive ac-
curacy does not outweigh the ease of implementation and smaller number of variables used
by the traditional methods, one may choose the method that gives the highest predictive
measures. In this case, stepwise regression using BIC as stopping criterion performs very
well.

We should be aware that the CV-based prediction measures, such as the highest C-
statistic of 0.757 derived from the Ridge BIC regression model, are optimistically biased
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because the models with the best estimated prediction accuracy measures are selected.
Hence the true C-statistics may actually be lower.

13.6.1 Evaluating model’s generalizability

To examine the generalizability of the model fit, we use the holdout sample for the evaluation
and reporting. For the model selection method chosen by the CV procedure with best
predictive measures, say, stepwise using BIC as stopping criterion, the following scoring
algorithm is applied:

1. Use 2/3 of the Dtrain.val dataset to build a model called M1, the rest 1/3 of this dataset
is used to evaluate the predictive performance measures aforementioned.

2. Use β estimates from M1 to obtain a score for each subject in the holdout sample
Dhold.out. This score r1 = exp(β̂Z), where Z is the covariate of each subject in dataset
Dhold.out.

3. Repeat the above two steps 200 times, and we have r1, r2, r3, . . . , r200 for each subject
in the holdout sample derived from 200 training models M1,M2,M3, . . . ,M200.

4. Take the average of r1, r2, r3, . . . , r200, which becomes the final risk score of the subjects
in the holdout sample. The distribution of this summary risk score (r) can be obtained
and used for risk profiling.

We stratify the summary risk scores (r) using tertiles of r. For the holdout sample,
Dhold.out dataset, Figure 13.3 displays the Kaplan-Meier curves of the survival time stratified
by the risk scores using three risk categories. The left panel shows the results using the
optimal model selection method stepwise BIC identified in Table 13.5. For reference, the
right panel shows the scoring results using Lasso with BIC as stopping criterion, a penalized
regression method that used fewer variables than Ridge regression.

Table 13.6 and Table 13.7 present the summary statistics of the difference in survival
distributions depicted in Figure 13.3. All the reported log-rank test p-values, and confidence
intervals based on the holdout sample are valid conditional on the scoring system derived
from the training dataset. We also evaluate another schema by stratifying the risk scores

FIGURE 13.3
K-M curves of the survival time, stratified by tertile of risk scores of the holdout sample.
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TABLE 13.6
Summary statistics of the survival distributions by risk categories, scoring using 200 training
models on Dhold.out dataset.

Model Selection Risk N Events/ Restricted Mean Median (95% CI)

Method Categories Total (se) in years (years)

Stepwise, BIC Low 7/70 11.16 (0.370) NA (NA, NA)

Medium 15/69 9.41 (0.606) NA (7.79, NA)

High 55/70 3.76 (0.365) 3.15 (2.66, 4.05)

Lasso, BIC Low 8/70 10.96 (0.406) NA (NA, NA)

Medium 16/69 9.48 (0.586) NA (7.79, NA)

High 53/70 3.74 (0.369) 3.15 (2.66, 4.05)

Note: Restricted mean with upper limit = 12.1 years.

TABLE 13.7
Logrank test p-values of the difference between the survival distributions by risk categories.

Survival Difference between Model Selection Method

Risk Categories Stepwise, BIC Lasso, BIC

Overall p < 10−7, χ2
(2)=124.63 p < 10−7, χ2

(2)=119.47

Pairwise Comparison

Low vs. Medium 0.0131 0.0151

Low vs. High < 10−7 < 10−7

Medium vs. High < 10−7 < 10−7

using four risk categories (low, medium low, medium high and high). The results (not shown)
are similar between the stepwise, BIC method and the Lasso penalized regression method.

As for the final prediction model, the scoring system presented above used the average
model approach, which is an ensemble of 200 training models, no simple formula can be
expressed. Figure 13.4 displays the distribution of β̂ for each covariate obtained from 200
training models. The distribution of β̂ for log(bilirubin) concentrated around 0.9 with low
variability (mean risk ratio is 2.375), the best single prognostic factor. Other covariates have
a variety of distributions, with those covariates in the upper right region located closely at
zero (5th and 95th percentile equal zero) leading to a risk ratio of 1.000. Alternatively, we
can use the stepwise regression method with BIC as stopping criteria to fit the dataset
Dtrain.val and obtain a prediction equation based on a linear combination of the selected

covariates. These covariates and their risk ratios exp(β̂) are: log(bilirubin), 2.195; edema,
5.596; age, 1.044; hepato, 1.975 and spiders, 1.943.

13.6.2 Reducing over-fitting via 3-in-1 proposal

We examine the performance of different scoring algorithms when there is no underlying
relationship between survival time observations and covariates in a high-dimensional set-
ting using simulations on the PBC dataset as follows. We keep the original survival time
observations (timei, deathi), simulate 50 independent binary random variables with event
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FIGURE 13.4
Distribution of β̂ obtained from the 200 training models for each covariate.

rates ranging from 0.001 to 0.981 with 0.02 increment and 160 independent normal random
variables with the same mean and standard deviation as the ten continuous covariates in
PBC dataset (16 variables for each covariate distribution).

We randomly partition the dataset into two halves: Dtrain.val and Dholdout, each has
209 observations (n < p). Applying stepwise regression with BIC as stopping criteria to the
datasets, we present Figure 13.5 as follows:

• Leftmost panel: using the training data Dtrain.val to build a model, and score on itself
(conventional way)

• Middle panel: using the training data Dtrain.val to build a model, but score on the
holdout sample Dholdout

• Rightmost panel: apply our 3-in-1 modeling strategy similar to the procedure described
in Section 13.6 with Stepwise BIC as the only candidate method considered, obtain an
average model derived from 200 training models obtained during the CV process using
Dtrain.val, score the holdout sample Dholdout using this average model.

The leftmost panel shows over-fitting using conventional same dataset modeling way;
the other two panels did not show separation of the K-M curves. Applying the average
model derived from 200 training models in the spirit of bagging (i.e., bootstrap aggregate),
all three K-M curves almost overlap each other, leading to the correct conclusion that there
is no relationship between the survival time and covariates.

The example shows that a combination of cross-validation and holdout sample is useful
in combating overfitting.

13.7 Remarks

It is important to consider model building, selection and inference processes simultaneously
as a package. The usual practice of using the same dataset for implementing procedures
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FIGURE 13.5
Kaplan-Meier curves of three scoring methods, using stepwise regression method with BIC
as stopping criterion.

for these three steps may result in invalid inference as we demonstrated in this chapter.
One may question about the efficiency issue for splitting the dataset for the final inference.
However, with the conventional method, it is difficult to quantify the reliability of our claim
at the end after an extensive, iterative model building process. This is probably why there
are numerous false positive findings in all the scientific investigations. In fact, the sizes (or
event rates) of most studies in practice may be too small for building reliable models for
making valid inference.

We proposed a 3-in-1 dataset modeling strategy, achieving model building, selection,
and holdout inference in one dataset. Cross-validation techniques are utilized to provide a
sanity check for model fit to assess whether its predictive performance is acceptable. We
can then select the optimal model building method to develop the final model and proceed
with the inference part using the holdout sample, leading to more reproducible results and
better application.

Needless to say, model building does not only depend on statistical grounds, knowledge
of subject matter is absolutely essential in selecting the most appropriate model tailored to
our needs. We focused on several classical methods and found that careful implementation
of these methods could help us find a reasonably good predictive model. While censoring-
adjusted C-statistic was used to evaluate predictive performance for illustration, other pre-
dictive measures or model evaluation methods can be considered. For example, Tian et al.
(2007) proposed model evaluation based on the distribution of estimated absolute prediction
error. Uno et al. (2011) looked at the incremental values of predictors. Furthermore, the
candidate model selection methods considered were presented mainly under the framework
that n > p. For the review on high-dimensional regression with survival outcomes, we refer
to Chapter 5. They described some of the existing literature on dimension reduction, shrink-
age estimation procedures with a range of penalty functions, and some hybrid procedures
with univariate screening followed by shrinkage.

As mega datasets (genomic, data warehouse) become increasingly available, together
with the ease of data storage and rapid development of data mining methodologies in cen-
sored data, these have enabled us to utilize more information for model development. It
would be of interest to see how other datasets and predictive measures perform using our
scoring algorithm. Moreover, what proportion of samples should we retain for holdout sam-
ple, other cross-validation techniques with different partition schema can also be considered
to fine-tune our model building strategies. Additionally, we tend to develop methods sep-
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arately for each step of the model building, selection and inference process. If one aims at
making efficient and valid inference about a parameter, say, the restricted mean survival
time, a more consistent and integrated process using criteria to increase the precision of the
final inference procedure should be considered. These questions remain an area of active
research.

With the advent of the information age and the vast growth in the availability of massive
amount of data, the challenges presented a unique window of opportunity for us to re-
examine our conventional model selection strategy. Alternative modeling strategies in the
analysis of censored outcome data could be considered to utilize the data and increase the
overall model predictability in this big data era and dawn of personalized medicine age.
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Model selection methods from the Bayesian perspective rely on full probability specification
for each model under consideration. This includes the likelihood and the prior for each
model. Beyond this, some methods employ the notions of prior and posterior probabilities
on the models. Others omit this and rely on optimizing a criterion defined for each model.
When the number of models under consideration is moderate, complete calculations of
posterior probabilities or the selection criteria are feasible. For a large set of models, as is
often the case in variable selection, various forms of stochastic searches can be quite effective.
In this chapter we describe these three types of methods based on: (i) model probabilities,
(ii) defined criterion, and (iii) stochastic search, and their use in survival analysis.

The plan for the chapter begins with an introduction with some needed notation in
Section 26.1. We next describe the three types of methods in successive sections. A discussion
section concludes the chapter.

14.1 Introduction

We consider model selection in a broad sense here. Firstly, it can be selection between two
alternative models or several competing models. One common example of the latter case is
when one wishes to select explanatory variables, from a potential set of these, that have an

285
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effect on the outcome in a regression model such as the Cox proportional hazards model.
The former case is simpler to consider as it resembles hypothesis testing.

Secondly, model selection can involve exclusive ranges for parameter values, alternative
distributional assumptions, or even some other aspects of models such as functional forms.
The following three example scenarios are intended to convey this breadth of considerations
to follow. Given an exchangeable (conditionally i.i.d.) sample from a population we may
wish to determine whether the median survival time in the population is greater than a
specified number θ0, or not. Again with exchangeable observations of survival times, we
may wish to select between the Weibull and the lognormal distributions for the population.
Given survival data suitable for a regression on some covariates, we may wish to select
between the Cox model and the proportional odds model; or between a model with frailties
and one without.

From the Bayesian perspective, there is a unified approach to all of these problems. To
describe it, let us establish some notation. We will denote a model by M or m, sometimes
with a subscript to emphasize that more than one model is under consideration. When clear
from the context, we will drop the subscript for brevity even though, strictly speaking, it
should be used. The collection of all models under consideration will be denoted by M and
often called the model space.

By a model we mean a complete probability specification for all the observables. Typ-
ically, this involves the likelihood (or the sampling distribution for the observables con-
ditioned on the parameters of the model), and the prior distribution for the parameters.
Generically, we will denote the observables by y and the parameters by θ. As parame-
ters belong to specific models, we need a subscript m as in θm to be accurate. Again, we
will omit this subscript if the context provides sufficient clarity. In some conditional mod-
els (typically regressions), we will denote the fixed observables by x and these will be
considered constants throughout the context. Only y and θ will be given distributions.

The sampling distribution will be denoted by p(y|θ) mostly omitting, as is usual,
the conditioning on any x variables present. Looking at this function (or any multiple of
it) as a likelihood in θ, we will denote it by L(θ; y) thus making it clear that this is
not a conditional distribution. The prior distribution for θ will be denoted π(θ). When
considering several (countable) models in a model space M, a full Bayesian specification
requires probabilities for each model in the space which we will denote p(m),m ∈ M such
that p(m) ≥ 0,

∑
m∈M p(m) = 1.

14.2 Posterior model probabilities and Bayes factor

With a full Bayesian specification, Bayes theorem yields the posterior probability of any
model m∗ in M as

p(m∗|y) = p(y|m∗) p(m∗)∑
m∈M p(y|m) p(m)

(14.1)

where

p(y|m) =

∫
Θm

p(y|θm,m)π(θm)dθm, (14.2)

Θm being the parameter space for model m. We note here that p(y|m) is the marginal
distribution of the data under model m, and is sometimes called – perhaps misleadingly –
the “marginal likelihood.”

While these expressions are rather simple, they have many interesting consequences.
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One is the automatic control for the multiplicity of decisions, inherent in model selection,
attained by good choices of prior model probabilities p(m). This is discussed by Scott and
Berger (2010). Another, quite distant from the first, yields a measure of evidence – called
the Bayes Factor – provided by the data in favor of one model versus another, regardless of
the prior model probabilities. Yet another is to note that the data marginal p(y|m) may not
exist if the prior π(·) is not a proper density. In Bayesian analysis, there are good reasons
sometimes to use an improper density, i.e., one that does not assign finite total mass to the
parameter space.

To introduce the Bayes Factor (BF hereafter), let M contain only two models,
say M1 and M2. Thus p(M2) = 1 − p(M1) so that the prior odds in favor of
M1 are p(M1)/p(M2). Now, by (14.1), the posterior odds equal p(M1|y)/p(M2|y) =
p(y|M1)p(M1)/{p(y|M2)p(M2)}. The ratio of posterior to prior odds is p(y|M1)/p(y|M2),
free of the prior model probabilities. This ratio was defined by Jeffreys (1998) in the early
1930s as the Bayes Factor. We thus have

BF1,2 =
Posterior odds of M1

Prior odds of M1
=

p(y|M1)

p(y|M2)
. (14.3)

The subscript on BF identifies the numerator and the denominator. Clearly, BF2,1 =
1/BF1,2. An excellent article detailing the use and interpretation of the BF is by Kass and
Raftery (1995).

When M contains more than two models, the ratio of data marginals with two models
yields the BF assuming a model space with just those two models. This can be seen by
conditioning on the event M1 ∪ M2 a priori, i.e., when other models are not considered.
A ratio of posterior to prior odds of a particular model versus all others is possible to
compute, but then it depends on prior probabilities of individual models in addition to the
data marginals.

Computation of the BF is not necessarily a simple matter. In many situations, the data
marginal in (14.2) is a high-dimensional integral. One often needs to resort to simulation
techniques (Monte Carlo or Markov chain Monte Carlo). Many have discussed such methods,
including Newton and Raftery (1994), Gelfand and Dey (1994), Chib (1995), Chib and
Jeliazkov (2001), Chen and Shao (1997a,b). See also Chen, Shao and Ibrahim (2000). For
survival analysis, Ibrahim et al. (1999) and Ibrahim and Chen (1998) provide a method for
computing posterior model probabilities for proportional hazards models.

14.3 Criterion-based model selection

If we wish to avoid assigning prior probabilities to models, model selection can be based on
the values of a criterion computed for each model. The criterion should have some appeal
and interpretation suitable for the purpose. Here we view the criteria in current use as falling
into two categories: those measuring the information content of models in some sense and
following the lead of Akaiki’s Information Criterion (AIC), and those deriving from
predictive considerations.

14.3.1 Information criteria

The very popular AIC is based on comparing models by the maximized likelihood under
each with a penalty for the “size” of the model. The size is measured by the number of
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parameters and it works well in many cases. Formally, we can write it as

AICm = −2 log

(
sup

θm∈Θm

p(y|θm)

)
+ 2km (14.4)

where km is the number of parameters in model m. The model with the smallest value for
this criterion is selected since the criterion has an interpretation as the loss of information
(measured by the Kullback-Leibler divergence) with respect to a true model. It can also be
seen as an estimate of the expected predictive log-likelihood for replicated experiments in
a frequentist setting. It should be noted, however, that km is difficult to specify in many
situations including models with random effects and semi-parametric models such as the
Cox model.

14.3.1.1 BIC

Schwarz (1978) introduced what is called the Bayesian Information Criterion (BIC).
It also takes the form for the maximized log-likelihood with a penalty. But the penalty
involves the sample size n. We can define it as

BICm = −2 log

(
sup

θm∈Θm

p(y|θm)

)
+ km log(n) . (14.5)

The fixed multiple of the number of parameters in the AIC, namely 2, is replaced by log(n) in
the penalty term. With this modification, the difference in BIC of two models approximates
twice the log of BF under mild conditions in the following sense (Kass and Raftery, 1995):

{BICm2
(n)−BICm1

(n)}/2− log(BF1,2(n))

log(BF1,2(n))
→ 0 as n → ∞ . (14.6)

This allows the relative error of e{BICm2 (n)−BICm1 (n)}/2 in approximating B1,2 to be O(1)
with some priors. Kass and Wasserman (1995) show that BIC can provide a better approx-
imation, to order O(n−1/2), with the use of a reference prior called the unit information
prior in the case of nested models. These approximations connecting this criterion to BF
give it a Bayesian flavor and perhaps justifies its name.

Implicit in the definition of BIC is the notion that the number of parameters km as well
as the sample size n are easily determined without any ambiguity. Volinsky and Raftery
(2000) show clearly how, in the censored data case so common in survival analysis, using
the number of uncensored observations is to be preferred to using the total sample size.
This is essentially because censored and uncensored samples contribute different amounts
of information to the likelihood. While they consider the cases of i.i.d. exponential data and
regression data using Cox’s partial likelihood, they comment that their method of deriving
the appropriate choice of “n” via consideration of the unit information prior applies more
broadly.

14.3.1.2 DIC

How to count the number of parameters in a model is a vexing problem, especially in
models with random effects and hierarchical specifications. Such situations arise routinely
in survival analysis, for example in frailty models and latent class models. Both AIC and
BIC require this number km. To address this difficulty and with the intention of providing
an AIC-like criterion suitable in a Bayesian analysis, Spiegelhalter et al. (2002) proposed
to measure the complexity of a model in such a way that this measure of complexity would
reduce to the number of parameters in the simple cases where the latter are easy to count.
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Using this as the penalty and measuring goodness of fit via the deviance at the posterior
mean of the parameter vector, they defined theDeviance Information Criterion (DIC).

Let D(θ) = − log L(θ; y) denote the deviance and D̄ = Eθ|y(D(θ; y)) its posterior
expectation. Then the measure of complexity is defined as pD = D̄ −D(Eθ|y(θ)). It equals
the posterior mean of the deviance minus the deviance at the posterior mean. It can be
shown (Spiegelhalter et al., 2002) that, as the sample size grows, the expectation of pD
approximately equals the number of parameters p in a fixed effects models. Now, with
θ̄ = Eθ|y(θ), define

DIC = D(θ̄) + 2pD = 2D̄ −D(θ̄) . (14.7)

Given samples from the posterior distribution of θ, DIC can be calculated quickly and easily.
Many Bayesian software packages now routinely make this available along with inferences
for linear and generalized linear mixed models.

In survival analysis, Zhou et al. (2008) utilize the DIC in their joint spatial analysis of
age at diagnosis of prostate cancer and survival times conditioned on this age. For both
outcomes, they consider models without and with spatial correlation which is induced in
the survival model via frailties. They conclude, through the use of DIC, that the frailty
terms substantially improve the model fit. The best-fitting model shows correlation within
counties for the survival outcome but not for the age at diagnosis. Kim et al. (2009) use
the DIC to infer the number of distinct groups in their newly proposed latent cure rate
marker model. They analyze data on prostate cancer recurrence and, using DIC (as well as
the LPML; see below), conclude that there are three latent risk category groups. Ibrahim
et al. (2008) derive expressions for and utilize the DIC in the context of variable selection
in Cox regression with missing data. They illustrate the methodology using a bone marrow
transplantation dataset with ten covariates.

14.3.2 Predictive criteria

While BIC and DIC follow the notion of a model’s information content, other criteria have
been proposed that focus more on a model’s ability to predict future observations. These
criteria can be seen to fall in two categories: one that uses a cross-validation approach and
another that relies on the concept of a future replicate of the current experiment. The
former was proposed in, and the latter inspired by, the work of Seymore Geisser, a strong
proponent of the view that prediction is the primary goal of statistical methods.

14.3.2.1 Cross-valid prediction

Suppose the data y are composed of observations y1, . . . , yn. With y−i denoting all but the
ith observation, one can compute the predictive distribution for a single observation given
a fully specified model and data y−i. How well yi is predicted by this distribution can then
be measured by the magnitude of this predictive distribution evaluated at yi. The total
predictive performance of the model could then be judged by combining all such measures
for i = 1, . . . , n. Geisser and Eddy (1979) introduced this idea and formalized it via what
they termed pseudo-marginal likelihood. Using f(·) to denote a predictive density and the
notation of Section 14.2 for a full Bayesian specification of a model, we have the following
definition of the Log Pseudo-Marginal Likelihood (LPML):

LPML =
n∑

i=1

log f(yi|y−i) (14.8)

where

f(yi|y−i) =

∫
Θ

p(yi|θ)π(θ|y−i)dθ . (14.9)
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This f(yi|y−i) is often called the Conditional Predictive Ordinate (CPOi); see Geisser
(1993). Plots of all n values of it have been proposed as a tool for model criticism by Gelfand
et al. (1992). In addition, plots of ratios under two models can be used for model comparison
as in Ibrahim et al. (2001a). Some computational aspects of CPOi are discussed in Chapter
10 of Chen, Shao and Ibrahim (2000).

Gelfand and Mallick (1995) use CPOi in the context of right-censored survival data mod-
els, using (14.9) for exact observations and the predictive survival probability

∫∞
yi

f(z|y−i)dz

if the observation is right censored at yi. For recurrent events models, Sinha et al. (2008)
use plots of CPOi for model diagnostic purposes, while Ryu et al. (2007) employ CPOi and
LPML for model diagnostics and choice in analysis of longitudinal studies with outcome-
dependent follow-up. The LPML criterion has also been used by Hanson and coauthors in
several articles: Jara et al. (2011); Zhao and Hanson (2011); Zhao et al. (2009); Hanson
et al. (2009). The exponentiated difference of LPML’s for two models has been termed the
Pseudo Bayes Factor by Hanson (2006) and Hanson and Yang (2007) and interpreted
in the manner of a predictive version of BF. It is well defined even under some improper
priors, has computational stability when computed from moderate sized MCMC samples,
and is reported by Hanson (2006) to be less sensitive to prior choice than is BF.

14.3.2.2 Replicate experiment prediction

A different approach that also uses predictive considerations as means to generate inferen-
tial procedures was advocated by Laud and Ibrahim (1995). They rely on a notion of an
imaginary replicate of the (current) experiment that resulted in the data at hand. With
Z denoting the future data in the replicate, they focus on the density of Z given the cur-
rent data y and call it the Predictive Density of a Replicate Experiment (PDRE),
defining it as

fZ|y(z) =
∫
Θ

p(z|θ)π(θ|y)dθ . (14.10)

In a wide variety of situations including various regression models, the notion of a replicate
experiment renders y and Z directly comparable, in fact, exchangeable a priori. Laud and
Ibrahim (1995) then define three criteria – K, L and M – for model selection based on
Kullback-Leibler information, Euclidean distance, and density ordinate measures of the
discrepancy (or agreement) between the observed data and the PDRE. They also go on to
propose calibration measures for L and M .

Among the three, the L measure has received the most attention as it is the simplest
to interpret and can be decomposed into a component involving predictive variances and
another that can be seen as a predictive bias. We only describe this measure and begin with
its definition:

L2
m = Em{(Z − y)′(Z − y)|y} . (14.11)

It is easy to see that L2 =
∑n

i=1{V ar(Zi|y) + (E(Zi|y) − yi)
2}. The criterion was used in

Ibrahim and Laud (1994) in the analysis of some designed experiments, for generalized linear
models by Ibrahim and Chen (2000), Chen, Ibrahim and Shao (2000), and Meyer and Laud
(2002). Gelfand and Ghosh (1998) used the replicate experiment formulation and considered
many different loss function-based choices of measuring discrepancy between observed data
and future replicates, obtaining the L criterion as a limiting case. They also reported that
this is an interpretable criterion and that it performs as well as others considered. For
generalized linear models, Chen et al. (2008) show relationships among various criteria and
devise a strategy for computing them.

For survival analysis, and also for other models, Ibrahim et al. (2001b) give a detailed
treatment of the L criterion. It utilizes the re-expression of the criterion as the sum of a
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predictive variance and a squared prediction error as

L2(y) =

n∑
i=1

V ar(Zi|y) + ν

n∑
i=1

(E(Zi|y)− yi)
2
.

Here ν is an additional tuning parameter which follows from a generalization and decision
theoretic justification given by Gelfand and Ghosh (1998). Allowing a transformation of the
data on time axis – typically a log transformation for survival analysis – the focus then is
on computing the criterion when y contains possibly censored observations. The approach
is to employ expectations of the censored observations with respect to their posterior pre-
dictive distribution. To see this more explicitly, let yD denote data as observed, including
exact observations for some individuals and censoring intervals for the rest. Let y∗ denote
predictions for the censored observations, restricted to their respectively observed censoring
sets. Then define

L2(yD) = Ey∗|yD
{L2(ypc)} =

∫
Θ

∫
y∗

L2(ypc)p(y
∗|θ)π(θ|yD)dy∗dθ

where ypc denotes the predictively completed collection of all exact observations. Moreover,
θ here denotes all parameters in the model, including the baseline hazard function that is
typically modeled via a stochastic process prior. Calculation of the criterion is implemented
in a relatively straightforward manner as part of the MCMC iterations for estimating the
model.

Ibrahim et al. (2001b) also provide a useful construction of a calibration distribution for
this criterion. Their illustrations include simulated data (parametric survival models), AIDS
data (logistic regression) and breast cancer data (semi-parametric Cox regression). In joint
modeling of longitudinal and survival data, Ibrahim et al. (2004) employ the L-measure
to justify a quadratic trajectory model over one with a linear trajectory and to conclude
that an important correlation between two antibody responses prior to relapse is nonzero
in high-risk melanoma patients. Recently, Gu et al. (2011) have proposed a new measure
that modifies the definition of the L-measure to suit censored data from a cure rate model
while maintaining the predictive loss feature of the measure. They illustrate the use of the
newly minted L-measure and compare it to DIC using breast cancer data.

14.4 Search-based variable selection

In the variable selection problem with p potential variables the number of models under
consideration is 2p. Calculating any of the criteria of the previous section, or posterior model
probabilities, for each model is feasible only for p up to around 20 or so, even in relatively
straightforward regression models. With the notation of Section 26.1 and Equations (14.1)
and (14.2) in mind, it is natural to look for a sampling scheme that would visit various
models in M with probabilities equal to the posterior probabilities. Indeed, it is possible to
design Markov chains that have this as the stationary distribution on M. It is also possible
to design other stochastic search schemes that approximate this behavior in some sense.
These developments originated with normal linear regression and spread to generalized
linear, nonlinear and survival models. Early methods were provided by Carlin and Polson
(1991), George and McCulloch (1993), Green (1995) and Carlin and Chib (1995). We give
brief descriptions of these (more details are available, for example, in Chapter 9 of Chen,
Shao and Ibrahim (2000)), and indicate their use in survival analysis. We also note that
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O’Hara and Sillanpää (2009) provide a review of stochastic search methods and also include
some performance comparisons.

14.4.1 Stochastic search variable selection

In order to conduct a stochastic search that automatically visits data-supported models
more frequently, one must have a strategy that considers the distribution on the model
space M as well as the likelihood for each model. This creates a difficulty as the model
parameter θm has dimension varying with m. George and McCulloch (1993) circumvented
this issue by constructing a prior for each regression coefficient that is a mixture of two
normals, one with a small variance around zero and another with a much larger variance.
This approach does not set a parameter value equal to zero, but then, if a posterior sample
comes from the first component, the variable is taken to be omitted. Using normal linear
regression for convenience, and following Chen, Shao and Ibrahim (2000), the method can
be described as below.

Suppose there are p potential covariates forming the columns of X, and the regression
coefficients make up the p×1 parameter θ so that y|X, θ, σ2 ∼ N(Xθ, σ2I). Now introduce
latent variables γj , j = 1, . . . , p such that

θj |γj ∼ (1− γj)N(0, τ2j ) + γjN(0, c2jτ
2
j ) (14.12)

where P (γj = 1) = 1−P (γj = 0) = pj . Setting τj small and cj large essentially allows θj to
be either near zero or away from zero with high probability. Assigning independent Bernoulli
prior to γj , j = 1. . . . , p assigns prior model probabilities to all 2p models in M. Now, with
an inverse-gamma conjugate specification for σ2|γ and an independent multivariate normal
for θ|γ, full conditionals needed for a Gibbs sampler are available in closed form. The
computational implementation successively samples θ|y, σ2, γj , j = 1, . . . , p, σ2|y, θ, γj , j =
1, . . . , p, and each γj |y, θ, σ2, γ−j where γ−j denotes all except the jth γ. It is interesting
to note that, because of the hierarchical nature of the prior specification, the conditional
for γj in the Gibbs cycle is free of the data y. It depends on it only through θ. In many
cases, this sampler converges rapidly to the posterior distribution of the γ’s, automatically
visiting higher posterior probability models more frequently.

A different approach to the varying dimension problem was proposed by Carlin and Chib
(1995) via the use of pseudo-priors. These are specified for θm,m �= m∗|m∗, so that, in a
Gibbs cycle, conditioned onm = M∗ and the data, θm∗ |data can be simulated from posterior
using the data, the likelihood in p(y|θm∗) and the prior π(θm∗) while θm,m �= m∗|data are
generated from the pseudo-prior. This is justified by the assumption that y is independent
of θm,m �= m∗ given m∗. We thus have the full set of parameters at each iteration. Kuo
and Mallick (1998) follow a similar prescription for linear and generalized linear models.

In the survival analysis context, Lee and Mallick (2004) consider Cox’s proportional
hazards model

h(ti|h0, Xi) = h0(ti)e
Wi , Wi = X ′

iβ + εi, εi ∼ N(0, σ2), i = 1, . . . , n.

With a gamma process prior on the cumulative hazard H0 with mean H∗
0 and weight a

representing confidence in the mean function, they analytically integrate out the hazard to
obtain a marginalized likelihood of the form

L(W |data) = e−
∑n

i=1 aBiH
∗
0 (ti)

n∏
i=1

{ah∗0(ti)Bi}δi .

Here h∗0 is the hazard function corresponding to H∗
0 , Bi = −log{1 − eWi/(a + Ai)}, Ai =
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l∈R(ti)

eWl , R(ti) is the set of individuals at risk just before time ti and δi is the usual
non-censoring indicator. For variable selection, they define a vector γ with elements γj
indicating βj = 0 and βγ as the vector of all nonzero elements of β. Then, with priors

σ2 ∼ InverseGamma(a0, b0/2), γi
ind∼ Bernoulli(πi),

βγ |σ2 ∼ N(0, cσ2(X ′
γXγ)

−1), W |βγ ∼ N(Xγβγ , σ
2I),

they proceed to derive Gibbs conditionals justifying the following sequence of draws:

1. W from density proportional to

e−
∑n

i=1 aBiH
∗
0 (ti)

{
n∏

i=1

{ah∗0(ti)Bi}δi
}
e−(W−Xγβγ)

′(W−Xγβγ)/(2σ
2)

2. γ from density proportional to

e−S(γ)/(2σ2)
n∏

i=1

πγi

i (1− π)1−γi

where S(γ) = W ′W − c
1+cW

′Xγ(X
′
γXγ)

−1X ′
γW

3. βγ from multivariate normal with mean VγX
′
γW and covariance matrix Vγ =

σ2 c
1+c (X

′
γXγ)

−1

4. σ2 from InverseGamma
(
n
2 + a, 1

2 [(W −Xγβγ)
′(W −Xγβγ) + b0]

)
.

It should be noted that the components of γ can be generated one at a time using conditional
distributions as provided by Lee and Mallick. The authors illustrate their method with
lymphoma and breast cancer datasets.

14.4.2 Reversible jump MCMC

Green (1995) tackled the varying dimension problem directly by showing that a Metropolis-
Hastings (M-H) chain can be designed on the space in which the pair (m, θm) takes values.
To take a glimpse at the idea, let us follow Green’s notation and consider a space X on which
we have a target distribution π(x) of interest. We wish to construct a Markov transition
kernel P (x, dx′) that is aperiodic, irreducible and satisfies∫

A

∫
B

π(dx)P (x, dx′) =
∫
B

∫
A

π(dx′)P (x′, dx) . (14.13)

Such a Markov chain is said to satisfy detailed balance. It specifies a certain reversibility
of the chain, going from A to B and from B to A, for any reasonable subsets A,B of X .
We can then simulate this chain and obtain approximate samples from π(dx). The M-H
algorithm uses a proposal distribution q(x′;x) to generate a next value x′ from the current
value x. The proposed value is accepted with probability

α(x, x′) = min

{
1,

π(x′)q(x;x′)
π(x)q(x′, x)

}
; (14.14)

otherwise, the chain remains at the current value x.
In the model selection case, the target distribution is p(m|y)π(θm|y,m). We need tran-

sitions from (m, θm) to (m′, θm′), where θm and θm′ may be of different dimension, that
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satisfy detailed balance. After explaining the intuition behind it via a simple example, Green
(1995) provides the Reversible Jump MCMC algorithm. He defines the transition mech-
anism in the M-H manner: a proposal distribution and an acceptance probability. We put
it in our context and notation as follows:
Let j(m′|m) be the probability of proposing a new model m′ from the current state (m, θm).
Generate a random vector u of dimension d from a proposal density qm,m′(u|θm). Associated
with the reverse move, from (m′, θm′) to (m, θm), there is a random vector u′ of dimension
d′ to be generated from qm′,m(u′|θm′) such that dimension(θm)+d = dimension(θm′)+d′.
Once u is generated, compute (θm′ , u′) = gm,m′(θm, u) deterministically through a bijection
gm,m′ . Now use the acceptance probability

min

{
1,

p(m′, θm′ |y)j(m|m′)qm′,m(u′|θm′)

p(m, θ|y)j(m′|m)qm,m′(u|θm)

∣∣∣∣∂gm,m′(θm, u)

∂(θm, u)

∣∣∣∣} . (14.15)

This achieves detailed balance and provides a general MCMCmethod for the variable/model
selection problem. Note that p(m, θ|y) = p(m|y)π(θm|y,m) and, while the expression for
p(m|y) given by (14.1) contains a sum in the denominator, it cancels out in the ratio above.

This algorithm has been used widely in various forms, and for a variety of applications.
Dellaportas and coauthors in Dellaportas et al. (2002), Ntzoufras et al. (2003) and Pap-
athomas et al. (2011) have pointed to special cases where particular simplifications lead
to efficiency gains. Performance comparisons by O’Hara and Sillanpää (2009) show some
advantages of this method. Godsill (2001) gives a good perspective on how the various
methods discussed above relate to each other and can be seen to emerge from a general
Metropolis-Hastings specification of a Markov chain on what he terms a composite model
space. This is a modification of the Carlin and Chib (1995) formulation that avoids drawing
samples from a very large number of pseudo-priors. He also shows that Green’s reversible
jump algorithm can be seen to follow from this general formulation.

Overall, the stochastic search methods of this section have been used in survival analysis
by only a few authors. As discussed above, the key to the method of Lee and Mallick (2004)
is the analytic marginalization made possible by a particular choice of the nonparametric
prior on the cumulative hazard function. Chen et al. (2009) jointly model categorical and
survival outcomes in colorectal cancer. Their model is parametric and they employ the usual
normal linear regression approach following a log transformation. Lee et al. (2011) carry out
variable selection in high-dimensional data in the presence of right censoring by employing
what they term as an adaptive jumping rule in their Markov chain transitions. It appears
that these stochastic search techniques, despite their popularity in many areas, have not
been widely adopted in survival analysis applications.

14.5 Discussion

Although this chapter focuses on the topic of Bayesian model selection, most Bayesians
would agree that, whenever possible in the context of the application, one should employ
Bayesian Model Averaging (BMA) rather than select a single model. From the predic-
tive as well as the decision theoretic viewpoint, one should fully account for any post-data
model uncertainty by averaging with respect to posterior model probabilities. Practical lim-
itations of many applications, however, often demand a model choice. Recognition of this
demand has led to the developments reported in this chapter. BMA has been discussed by
many authors: Madigan and Raftery (1994); Raftery et al. (1997); Hoeting et al. (1999) as



Bayesian Model Selection 295

well as Clyde et al. (1996); Clyde (1999). Dunson and Herring (2005) develop this for a
survival analysis scenario.

Adaptive shrinkage estimation techniques, generated via appropriate choices of pri-
ors, can guide variable selection. Casella and coauthors in Park and Casella (2008) and
Kyung et al. (2010) show, in a linear model, that a product Laplace prior on the regression
coefficients results in posterior median estimates similar to the Lasso and ridge regression
estimates. They term the model the Bayesian Lasso. They go on to compare Bayesian
point and interval estimates with frequestist penalized likelihood methods, and also sug-
gest that credible intervals for the regression parameters could be used to guide variable
selection. MacLehose and Dunson (2010) advance this idea substantially by using flexible
Bayesian nonparametric models to achieve shrinkage to multiple points that are automat-
ically determined by the data. They illustrate, for Parkinson’s disease, how the method
resulted in identifying two SNP’s from among 270 in their analysis. In survival analysis, Lee
et al. (2011) appears to be the only article to use a prior somewhat similar to the Bayesian
Lasso. Garcia et al. (2010) undertake variable selection in Cox regression with missing data
but choose a non-Bayesian solution, citing some difficulties with the Bayesian approach in
this case.

An emerging set of models suitable for variable selection in high dimensions employ
Bayesian Nonparametric (BNP) techniques such as the above cited model of MacLehose
and Dunson (2010). Mixtures of Dirichlet processes were used by Guindani et al. (2009),
and recently by Shahbaba and Johnson (2012) to identify gene signals. Giudici et al. (2003)
define mixtures of products of Dirichlet processes for variable selection. Product Partition
Models (PPM), being developed for the purpose of clustering in various applications – see
Müller et al. (2011) and references therein – also show some promise for variable selection.

The choice of priors – p(m),m ∈ M and π(θm) in (14.1) and (14.2) – is an important
consideration in determining the performance of the model selection procedures discussed
here. It turns out that certain priors have desirable consequences in automatically controlling
the problem of mutiple simultaneous decisions that are inherent in model selection. Scott
and Berger (2006, 2010) show that a suitable hierarchical prior for p(m), rather than fixed
numerical values, can account for multiplicity adjustment in the Bayesian sense. This is
a very appealing aspect of Bayesian model selection where priors can be used, not so much
to represent information external to data, but to achieve control of an otherwise vexing
problem. There is also considerable literature on the choice of the priors π(θm); see Liang
et al. (2008); Wang and George (2007) and the references therein. Mixtures of g-priors,
which are enhancements of Zellner’s g-priors, are recommended as suitable priors.
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15.1 Introduction

In recent years, quick developments in high-throughput biotechnology have enabled re-
searchers to generate thousands of potentially interesting measurements per subject. Espe-
cially in the field of survival analysis, these measurements are extremely valuable because
knowledge of the human genome could greatly enhance our understanding of many diseases
and could lead to more accurate survival prediction models. However, the advent of gene
expression data and other types of high-dimensional genomic data did not only give rise
to numerous new opportunities but also brought new computational and methodological
challenges. It is no longer possible to use standard survival prediction methods, such as
multivariate Cox regression, directly, when the number of covariates greatly exceeds the
number of subjects. Identifying influential covariates becomes more complicated because
thousands of hypotheses have to be tested simultaneously. To control the number of false
discoveries (i.e., the number of covariates that are believed to be influential while in fact
they are not), proper adjustments for the number of tests performed are needed, the so-
called multiple testing corrections.

In this chapter, the focus will be on answering the research question: “How to select
important covariates from a large set of candidates?” These covariates can for example be
genes, SNPs (single nucleotide polymorphisms), probes or proteins. In the remainder of
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this chapter we will often refer to them as genes, since our example datasets will be gene
expression microarray datasets.

Before we can address this question, we first have to make more precise what we mean
by “important.” Suppose we have gene expression measurements and survival outcomes for
patients diagnosed with a certain disease. Statistical methods are now essentially used for
two reasons: either to predict survival times for individual patients based on their gene
expression levels, or to identify genes whose expression levels differ between patients with
good and bad prognosis, to gain more insight in the nature of the disease. Although it might
seem plausible that genes that are differentially expressed between good and bad prognosis
patients will end up in a prediction model and, likewise, that the genes entered in such a
model are on itself predictive, this is not necessarily true. If several differentially expressed
genes are highly correlated, for example, it is not unlikely that only one of these will be
included in the prediction model, while all of them separately could be associated with
the outcome variable. Similarly, a covariate which is not related to the response might be
included in the prediction model because it can account for some variation in a second pre-
dictor which is related to the response. So although intertwined, the two questions of finding
the right variables for prediction or finding the right variables for understanding underlying
phenomena ask for different methods, as was already point out by Cox and Snell (1974).
Essentially the differences boil down to the difference between univariate and multivariate
regression.

In the remainder of this chapter we will discuss selection of important genes in a high-
dimensional setting both from the variable selection perspective and from the multiple
hypothesis testing perspective.

15.2 Selecting variables by fitting a prediction model

Suppose we have been given the, possibly censored, survival times for n individuals for which
we also have gene expression information onm genes. Our aim is to construct a parsimonious
model that accurately predicts survival time based on the gene expression measurements.
Assuming that the number of genes exceeds the number of individuals (m � n), we cannot
proceed by simply fitting the Cox proportional hazards model (Cox, 1972), but we first have
to tackle the high-dimensionality problem by some form of dimension reduction.

Much research has been done on finding methods that not only have good prediction er-
ror, but also estimate the true “sparsity pattern,” that is, the set of covariates with nonzero
regression coefficients (Wasserman and Roeder, 2009). The ability to (at least asymptot-
ically) find the underlying true model, is often referred to as the “oracle property.” If a
method possesses the oracle property, it will asymptotically select exactly those variables
that are present in the true model and the corresponding parameter estimates will be asymp-
totically unbiased. Thus, such a method will asymptotically perform as well as an “oracle”
that already knows the true set of relevant variables. Even though unbiasedness is a highly
desirable property of an estimator, selecting the right predictors, regardless of the precise
coefficient values, is of main importance in the context of variable selection. For that reason,
in the remainder of this section we will primarily look at a method’s ability to correctly
select all influential variables.

Suppose the true model is a Cox model of the form:

hi(t) = h0(t) exp(x
T
i β),
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where hi(t) is the hazard function for individual i, having covariate vector xi and h0(t) is
the baseline hazard. A method that correctly selects all influential variables is said to be
model selection consistent (Benner et al., 2010) which can be made precise as follows:

lim
n→∞P (M̂n = M) = 1 (15.1)

where M = {j : βj �= 0} is the set of indices of all variables present in the true model, and

M̂n = {j : β̂j �= 0} is the set of indices with parameter estimates unequal to zero, based on
the specific prediction method and a dataset of size n.

In this section we will discuss several methods known to be model selection consistent or
even known to possess the just described oracle property. The properties of these methods
are promising in theory, but less is known about their exact behavior in practical settings,
even though the methods are often used. For that reason the, sometimes very restrictive,
assumptions underlying these methods will not only be stated but also discussed from a
practical point of view, in order to clarify in which situations these methods can be ex-
pected to give reliable results and in which situations more caution has to be taken when
interpreting the final model.

15.2.1 Screening by penalized methods

Estimation methods that are often associated with oracle properties are the so-called pe-
nalized likelihood methods. In the high-dimensional setting, fitting a model by maximizing
the corresponding likelihood will result in severe overfitting. In order to still be able to use
the likelihood, methods that maximize the likelihood but at the same time put a penalty
on the parameters were developed. The function to maximize will have the form

l(β)− pλ(β),

where l(β) is the likelihood and pλ(β) is some penalty function that depends on a regu-
larization parameter λ. The exact specification of the penalty function will determine the
behavior of the final prediction rule. Fan and Li (2001) claim that a good penalty func-
tion should result in an estimator with three properties, namely unbiasedness, sparsity and
continuity. Again, for variable selection, unbiasedness is not the first priority, but sparsity
and continuity are. To fulfill these last two conditions, Fan and Li argue that only penalty
functions that are non-differentiable in the origin qualify.

A penalty function satisfying this condition is the well-known l1-norm penalty. The idea
to use this penalty in combination with a regression model was first published by Tibshirani
and resulted in a method that enabled estimation and variable selection simultaneously. For
this reason, the method was named the lasso, which stands for “least absolute shrinkage
and selection operator” (Tibshirani, 1996, 1997). The motivation for the lasso came from a
similar method invented by Breiman; the non-negative garotte (Breiman, 1995). The garotte
starts (in the linear model) by estimating the ordinary least squares (OLS) estimates and
subsequently shrinks them by non-negative factors whose sum is constrained. However, to
obtain the OLS estimates, the number of covariates cannot exceed the number of obser-
vations and these estimates can therefore not be calculated in high-dimensional problems.
The lasso on the other hand combines shrinkage and estimation into one calculation step.
For that reason it can easily be used with high-dimensional data.

The lasso can either be viewed as a penalized likelihood method, in which the penalty
function is given by

pλ(β) = λ

m∑
j=1

|βj |
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but also as a constrained likelihood optimization procedure, where the regression coefficients
result from the following optimization problem:

β̂ = argmax l(β), subject to

m∑
j=1

|βj | ≤ s.

Both s and λ are user-specified parameters. Given the likelihood function, the two definitions
are equivalent. Although first presented as a constrained optimization problem (as was
the non-negative garotte), the penalized likelihood representation is the most common at
present.

Because of the specific form of the penalty function, the lasso will shrink some coefficients
exactly to zero and will result in a sparse model. This selection property has been a major
reason for the method’s popularity, even though only recently progress has been made in
understanding the exact selection behaviour (Tibshirani, 2011). A very interesting question
is whether the lasso is model selection consistent according to the definition as given in
(15.1). In order for this criterium to hold, a necessary condition is that the true model is
sparse as well. The lasso will never select more parameters in the final model than there
are observations, and given that all true parameters are among those selected, the number
of truly relevant variables cannot exceed n. Let d = |M | be the number of variables in the
true model. In order for the lasso to be model selection consistent, we know we should at
least have d ≤ n. This bound is usually not tight enough, however. Generally, consistency
will require a sparsity assumption of the form

d ≤ c1

√
n

log(m)
, (15.2)

where c1 is some constant factor (Bunea et al., 2007). This implies d � n. Given that the
sparsity assumption holds, it can be shown that the lasso is model selection consistent, but
only under rather restrictive conditions. If we let m � n → ∞, the true model will be
recovered with probability tending to 1 if the following two conditions are met:

1. The neighbourhood stability condition for the design matrix X (Meinshausen and
Bühlmann, 2006) or the equivalent irrepresentable condition (Zhao and Yu, 2006; Zou,
2006), which basically says that the variables present in the true model M can neither
be too strongly correlated with each other nor with the noise variables (i.e., the variables
not in M) (Benner et al., 2010), and

2. The ‘beta-min’-condition (Bühlmann and van de Geer, 2011, p. 24) which states that
all non-zero coefficients in the true model are sufficiently large. The importance of this
condition is also illustrated by Leeb and Poetscher (2008).

Unfortunately, in genomics data it is rather unlikely for both assumptions to hold. Since
the first condition is not only a sufficient but also an (essentially) necessary condition for
model selection consistency, in general we cannot expect the selected set as retrieved by
the lasso to be the true set of variables. The condition already gives an indication when to
doubt the variables selected, namely in the situation where we have a strongly correlated
design. Strong correlations between gene expressions or other types of genomic data are
however the rule rather than the exception.

Retrieving all the relevant variables and none of the noise variables has proven to be
a (too) difficult task for the lasso. However, retrieving all variables from the true model,
whether or not accompanied by some noise variables is a desirable property in itself. We will
refer to this as the variable screening property (Bühlmann and van de Geer, 2011) which
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can be made formal as follows:

lim
n→∞P (M̂n ⊇ M) = 1

where M and M̂n are as before the index sets of the variables in the true and estimated
model, respectively. For this property to hold we again need the sparsity assumption and
the ‘beta-min’-condition, but the irrepresentable condition can be relaxed, leaving us with a
less strong assumption on the design, namely the restricted eigenvalue condition (Bühlmann
and van de Geer, 2011) which is technical but not overly restrictive in sparse problems. So
in a sparse setting, as given by the sparsity assumption in Equation (15.2), where the
true variables have corresponding coefficients above some detection limit (the ‘beta-min’-
assumption), the lasso has the ability to select them all. Even if there are some variables in
the true model with coefficients that are too small to detect, one could still argue that the
lasso is able to find the influential and for that reason most relevant variables.

Until now, we did not discuss the way to choose the specific value of the penalty parame-
ter λ which heavily influences the lasso’s screening behavior. Optimization of this parameter
in terms of prediction accuracy is often done by maximizing the cross-validated log partial
likelihood, as introduced by Verweij and Van Houwelingen (1993). Although the choice of
λ in this way is not motivated by the lasso’s screening property, it turns out that the lasso
based on this optimal λ value (which we will denote by λ̂cv) often does possess the screening
property:

M̂(λ̂cv) ⊇ M.

This result is not only established empirically but can, at least in the linear model context,
also be supported by theory (Bühlmann and van de Geer, 2011, p. 17).

One remark regarding the oracle and screening properties of the lasso that has to be made
here is that almost all work has been done for (generalized) linear regression models. Much
research on extending oracle results to censored survival data, especially in the m � n
case, remains to be done, even though the theory for the Cox and the linear model will
probably show many similarities. A recent article on this topic is written by Bradic et al.
(2011). Of course, model specific assumptions such as the assumption that the censoring
times are conditionally independent of the survival times given the covariates have to be
made in addition to the assumptions on sparsity, correlation structure and the minimal size
of coefficients. However, most of these assumptions are quite general.

In the situation that the assumptions of the screening property hold, the lasso provides us
with a selected group of variables, including the true but also noise variables. Is there a way
to remove the false positives from the selection? Valuable methods that attempt to do so are
the adaptive lasso (Zou, 2006), the relaxed lasso (Meinshausen, 2007) and smoothly clipped
absolute deviation (SCAD) variants (Fan and Li, 2001; Zou and Li, 2008). The motivation
behind the development of these methods was mainly two-fold. Firstly, it was observed
that the lasso in combination with a penalty parameter chosen by cross-validation often
resulted in a rather wide selection, potentially including many noise variables. Secondly,
the model’s coefficients as generated by the lasso are known to be biased towards zero.
The aim of reducing this bias and diminishing the number of noise variables in the final
selection resulted in the aforementioned methods. In the high-dimensional setting, these
methods generally use the regular lasso as a first pre-selection step. Subsequently, a penalized
likelihood which is only based on the remaining covariates is maximized. Not only will this
often result in a much sparser model, because there is a high probability that some of
the remaining coefficients will still get shrunk to zero, but the nonzero coefficients may
also be less biased, because the penalty can be less severe. Most noise variables are indeed
already eliminated by applying the lasso as a first step. For the SCAD and the adaptive
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lasso, especially the larger coefficients (i.e., those that correspond to the most influential
variables) will remain practically unbiased.

15.2.2 Screening by univariate selection

Although the just discussed sparse regression techniques have proved useful for dealing
with high-dimensional feature spaces, theoretical knowledge about their properties in so-
called “ultra-high dimensional settings,” where m grows at a non-polynomial rate with n, is
still in its infancy (Gorst-Rasmussen and Scheike, 2012). Besides, the computational costs
associated with these methods can be substantial in those situations. An ad-hoc approach
to deal with this type of ultra-high dimensionality is to use an initial univariate screening
step to reduce the number of covariates under consideration. Even though this procedure
has been employed very often, it was only recently that Fan and Lv (2008) showed that
this screening practice, which they named Sure Independence Screening (SIS), has desirable
theoretical properties in the linear model setting. Recent work on SIS in combination with
right-censored data has been conducted by Zhao and Li (2012) and Gorst-Rasmussen and
Scheike (2012).

Using SIS in the Cox framework as proposed by Zhao and Li (2012) essentially comes
down to fitting marginal Cox regressions for each covariate. Subsequently the final screened
model will equal

M̂n = {j : Ij(β̂j)
1
2 |β̂j | ≥ γn}

where Ij(β̂j) defines the information matrix at β̂j and γn is some pre-specified cutoff, that
depends on n. This procedure is termed a principled Cox sure independence screening pro-
cedure, abbreviated PSIS (Zhao and Li, 2012). To make the procedure less model-specific,
Gorst-Rasmussen and Scheike (2012) propose to use a model-free statistic instead, which
they call the “Feature Aberration at Survival Times” (FAST) and call their procedure
FAST-SIS.

Under specific assumptions, both PSIS and FAST-SIS have been shown to possess the
variable screening property. Moreover, the threshold γn can be chosen in such a way that
the false selection rate becomes asymptotically negligible. The first assumption concerns the
censoring mechanism. In order for the screening property to hold, the censoring times can
not depend on the relevant variables nor the survival times (Gorst-Rasmussen and Scheike,
2012). Although restrictive, this assumption is still rather general. However, as before strong
assumptions on sparsity and correlation structure are needed. The number of truly relevant
variables should typically lie in the order n/ log(n) and the covariates present in the true
model M have to be independent of the irrelevant covariates. Furthermore, the validity
of the proposed procedures hinges on whether the marginal Cox regressions or the FAST-
statistics can reflect the importance of the corresponding covariates in the joint model. For
this to hold, the design has to be close to orthogonal, which is an assumption that is easily
violated. This is already known from the literature on univariate gene selection where genes
are incorporated in a final multivariate model based on their marginal correspondence with
the outcome variable. In practice this often leads to a model, in which many of the selected
genes are mutually correlated and have an insignificant multivariate p-value (Van Wieringen
et al., 2009).

To at least partly account for possible correlation between variables, as an alternative
to univariate selection, stepwise variable selection procedures have been developed. See for
example (Wiegand, 2010) for an overview on classical methods. A similar strategy has been
suggested in the SIS literature as well. Fan and Lv (2008) propose to use an iterative SIS
procedure (ISIS) in the situation wherein the assumptions on the correlation structure un-
derlying regular SIS fail. Essentially, the first step of the ISIS procedure is just applying
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the SIS methodology. A small number of covariates is selected and within this subset, a
(multivariate) variable selection procedure such as the lasso is used to even reduce the size
of this initial selection. Secondly, the (univariate) relevance of the unselected covariates is
reassessed, this time adjusted for the already selected covariates. Subsequently a small num-
ber of the most relevant features among them can be added to the selection and the last
two steps are repeated until some stopping criterion is reached (Fan and Lv, 2008; Gorst-
Rasmussen and Scheike, 2012). A similar iterated FAST-SIS procedure has already been
developed for right-censored data (Gorst-Rasmussen and Scheike, 2012). Although heuristi-
cally appealing, theoretical support for the iterated SIS methods has not yet been developed.
Since the comparable stepwise variable selection procedures have often been related to in-
stability issues (Breiman, 1996), future research has to show the practical relevance of this
procedure.

15.2.3 Practical usefulness of methods possessing screening properties

To evaluate the practical use of the lasso and its successors for analyzing high-dimensional
data with the Cox proportional hazards model, Benner et al. (2010) conducted a study
where the SCAD and the adaptive lasso were compared to the “standard” applications
such as ridge regression, the lasso and the elastic net. The methods’ performances were
analyzed in various settings.

In the study of Benner et al. (2010), sparse methods are thus compared to methods not
possessing oracle properties. While the emphasis in all previous described procedures lay
on selecting as few variables as possible, using ridge regression or the elastic net will on the
other hand usually result in a less sparse model. Ridge regression (Hoerl and Kennard, 1970;
Van Houwelingen et al., 2006) is a shrinkage method with a quadratic penalty function. In
contrast to the lasso, ridge regression does not perform variable selection, but only results
in downward biased parameter estimates. Despite the fact that the final model incorporates
all covariates, ridge regression is often found to be an effective prediction method in high-
dimensional genomic applications (Bøvelstad et al., 2007; Van Wieringen et al., 2009). The
elastic net was introduced as a method that combines the properties of both ridge and lasso
regression. As mentioned before, the lasso will never select more than n parameters in the
final model. Moreover, if a number of covariates is highly correlated the lasso tends to se-
lect only one of them. Zou and Hastie (2005) argued that highly correlated covariates could
often be considered a group (e.g., a biological pathway) and that a variable selection method
should ideally include the whole group once one variable among them is selected. To be able
to select, if needed, more than n covariates and to select groups of variables instead of just
one of them, the elastic net penalty is a combination of the lasso and the ridge penalty.
Because of the lasso penalty, the elastic net is also a variable selection method and because
of the ridge penalty the elastic net tends to select more variables than the lasso, especially
when they are highly correlated. An interesting question is whether the methods connected
to oracle properties will outperform methods that do not have these characteristics.

Benner et al. (2010) simulated high-dimensional datasets where the true solution was
either very sparse (d = 5) or moderately sparse (d = 30). In the very sparse setting, the
SCAD variants and the adaptive lasso came very close to selecting the underlying true
model, while the lasso and the elastic net selected (as expected) too many variables. In
the moderately sparse scenario, however, the two-stage procedures still selected very sparse
models, only this time most true predictors were not included. The lasso and the elastic net
on the other hand, selected, in addition to noise variables, also most of the true variables.

Benner et al. (2010) conclude that the performance of the SCAD and the adaptive lasso
is highly dependent on the preselection procedure, for which the lasso is the natural choice.
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When the starting solution is not close enough to the true model, there seems to be a consid-
erable risk for SCAD and the adaptive lasso to break down completely, eventually resulting
in models which are far too small or even include no covariates at all. Since there is no
solution to this problem yet, the regular lasso and the elastic net are still the recommended
methods for variable selection and prediction in actual data applications. At the same time
it is pointed out that “in nonsparse and even moderately sparse situations, the task of simul-
taneously selecting the correct variables and estimating the parameters consistently, remains
an ongoing challenge.” This conclusion matches earlier findings from Bøvelstad et al. (2007)
and Van Wieringen et al. (2009) who found ridge regression to have best predictive per-
formance in high-dimensional gene expression data, even though the resulting prediction
model was far from sparse. Although the relaxed lasso was not included in the comparison
from the original paper (Meinshausen, 2007), it is already apparent that this method can
also be expected to perform best when the true model is very sparse.

We should keep in mind that the validity of the screening and oracle properties of all
lasso-type and SIS methods are based on a sparsity assumption. The question rises whether
this assumption is reasonable in the genomics area.

Before we can try to answer this question, we should first understand the precise mean-
ing of the sparsity assumption. The assumption that the underlying true model is sparse can
easily be confused with the assumption that there is a limited number of variables associ-
ated with the response. Although this second assumption could be perceived as “univariate
sparseness” which basically is the sparsity type demanded by SIS methods, the sparsity
assumed by the lasso and its successors should be seen as “multivariate sparseness.” Multi-
variate sparseness dictates the number of non-zero regression coefficients in the true model
to be small, but not all selected variables have to be predictive in itself. Non-predictive vari-
ables accounting for variation in truly predictive regressors will be part of the true model
as well. The issue of marginally uncorrelated, but jointly correlated variables, has been de-
scribed earlier as the phenomenon of unfaithfulness in the causality literature (Wasserman
and Roeder, 2009). When covariates are highly correlated, which is often the case in the
high-dimensional setting (e.g., in gene and protein expression data), it can be argued that
univariate as well as multivariate sparseness is not very plausible. If we consider a gene that
is associated with survival and look into the genes it is correlated with, a similar association
with survival can probably be demonstrated for those genes as well, contradicting univari-
ate sparsity. Multivariate sparseness is even less likely, because even if only one gene among
a group of correlated genes is associated with the response, the residual variation in this
gene will partly be explainable by the correlated genes, which as a consequence will also
be included in the true model, this time contradicting multivariate sparseness. Following
this reasoning, the sparsity assumption underlying the lasso’s oracle properties is unlikely
to be met when working with gene expression data or other highly correlated designs. Note
however that some data types, SNP data for example, can have a less strong correlation
structure, which may result in a situation where univariate and multivariate sparseness co-
incide and could even be considered probable. In these situations, SIS methods would also
be very well applicable.

Besides this theoretical argumentation which indicates that assuming true sparseness in
genomics applications might not always be reasonable, this theory also seems to be sup-
ported by data analysis. Ein-Dor et al. (2005) showed that for a single breast cancer survival
dataset, many equally predictive list of 70 genes could be constructed. So even though a
single set of covariates, as for example generated by the lasso, performs well in terms of
prediction, this does not necessarily mean that this set is unique or comes close to the
“true” model. From this perspective, it is even questionable whether the notion of a true
model is a useful one. Another indication that a true sparse model does not exist comes
from the observation that using a ridge penalty in real data settings often results in a good



Model Selection for High-Dimensional Models 309

prediction model. Since a ridge model can be considered the opposite of a sparse model, its
good predictive ability could indicate that the underlying model is not sparse either.

15.2.4 The Van de Vijver dataset

In order to further illustrate these findings, we made prediction models based on either a
lasso or a ridge penalty for a gene expression microarray dataset, with a survival outcome.
The dataset of Van De Vijver et al. (2002) consists of gene expression profiles of 4,919 gene
expression probes for 295 breast cancer patients. To measure the predictive performance
of both the lasso and the ridge models, we used the cross-validated partial log-likelihood
(cvpl), a measure suggested by Van Houwelingen et al. (2006). The specific values for the
penalty parameters were found by optimizing this same cvpl using Brent’s algorithm for
optimization. All calculations were made using the R-package penalized (Goeman, 2010).
Although common practice, we chose not to standardize the (zero-centered) covariates. It
is well known that the lasso has the disposition to firstly include variables that have a
large variance and for that reason it is often advised to normalize the variances beforehand.
However, if the measurements are made on the same scale, as is the case with gene expression
measurements, larger variances are mostly a sign of biological variation and this variation
might indeed point to better predictive ability, contradicting the need to standardize.

The following approach was taken; first a ridge and a lasso model were fitted based on
the full dataset. The corresponding cvpl-values were given by -476.2 and -479.5, respectively,
indicating that the ridge model predicts better than the lasso model. However, the ridge
model included all 4,919 covariates, while the lasso model only included 16 predictors.
To test whether most of the predictive information was indeed captured within these 16
predictors, we fitted a new lasso model, but this time based on all but the 16 just chosen
predictors. The new model was found to fit worse than the first one, but still predicted
considerably better than the null-model. We repeated the procedure of fitting a new model
after removing the old predictors and could conclude that the model created after the fifth
iteration (i.e., after removing approximately 60 predictors from the data) was hardly better
than the null-model. After having removed 112 covariates, the lasso was no longer able to
select any predictor. Fitting a ridge model on this stripped dataset instead, still resulted
in a model with a cvpl-value of -480.7. Although worse than the original ridge model, this
model still predicts almost as good as the first lasso model, indicating that the reduced
dataset is still a source of information. Clearly, there are many variables weakly associated
with the response, but their associations are individually too weak to get detected by the
lasso. There seems strong reason to doubt the sparsity assumption, at least in this particular
dataset.

Because it will be difficult to justify the sparsity assumption in many other real life
settings, we should wonder how to interpret the parsimonious models resulting from the
penalized or univariate screening methods. The answer could be that the resulting set of
variables is indeed very valuable, because, based on these predictors, reliable prognostic tools
can be produced for which only a restricted number of measurements have to be obtained.
In the Van de Vijver dataset for example, the cross-validated 5-year survival probability
calculated by either the lasso or a ridge model are quite similar, as illustrated by Figure
15.1.

Being able to derive sparse prediction models that still predict (almost) as well as models
relying on far more measurements can be greatly beneficial in terms of time and money.
However, although all screening methods discussed, under certain conditions, guarantee to
provide us with all truly relevant variables, this claim will usually not be realistic. For that
reason, one must be aware of the fact that, although the final models derived in this way
are often useful for prediction purposes, biologically important factors can be missed and
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FIGURE 15.1
Cross-validated survival prediction at 5 years of diagnosis, based on a lasso or ridge model.

membership in the final prognostic list is not necessarily indicative of the variable’s biological
importance. To cite the conclusion of Ein-Dor et al. (2005) regarding the generated gene lists
in the breast cancer study: “Rather, in order to study the potential targets for treatment,
one must scan the entire, wide list of survival-related genes.” This will be the subject of the
next section.

15.3 Selecting variables by testing individual covariates

Suppose our data consists as before of n, potentially censored, survival times and a covariate
matrix of size n by m. Where we previously wanted to select important variables based on
their presence in multivariate prediction models, we will now approach the problem of
selecting interesting covariates a little more directly, by formulating and testing m null-
hypotheses. The collection of null-hypotheses will be denoted by H = {H1, . . . , Hm}, and
the individual hypotheses of no association between covariate i and the response are given
by

Hi : βi = 0

where βi is the regression coefficient in a univariate Cox model where only the ith covariate
is included.

There are three tests that are commonly used to test this type of null-hypothesis, namely
the Wald test, the score test and the likelihood ratio test, each using a different test statistic.
Under the null-hypothesis, the asymptotic distributions of the test statistics are known,
which enables us to calculate a corresponding p-value pi for every value of the test statistic
Ti. Small p-values give reason to doubt the null-hypothesis which means that it is unlikely for
the true regression coefficient to equal zero, which in turn indicates that the corresponding
covariate is associated with the response and therefore important.
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TABLE 15.1
Rejection/acceptation versus truth/falsehood of hypotheses.

number not rejected number rejected

True null-hypotheses U V m0

False null-hypotheses T S m1

m−R R m

Given our set of hypotheses, an unknown subset T ⊆ H of size m0 corresponds to
the true hypotheses, while the remaining set F = H \ T of size m1 = m − m0 contains
the false hypotheses. Note that the terminology is reversed with respect to the previous
section. A false hypothesis corresponds to a truly relevant variable, whereas a true hypothesis
corresponds to a variable which does not (significantly) influence the survival probability.
Our goal of selecting influential covariates thus coincides with choosing a subset R ⊆ H of
hypotheses to reject. Ideally, this rejected set R is completely equivalent to the set F . Two
types of mistakes can be made, however: true hypotheses can get rejected, a so-called type I
error or a false positive and on the contrary, a false hypothesis might not get detected and
be accepted as a true one. This type of mistake is usually referred to as a type II error or a
false negative. Rejecting a hypothesis is considered a discovery and a false rejection is called
a “false positive.” The situation can be summarized by Table 15.1, where V represents the
number of type I errors and T the number of type II errors. The only quantities that are
observable are those in the last row.

Although being unable to discover an important variable is regrettable, in hypothesis
testing, identifying an effect that in reality is not present is usually considered more prob-
lematic. When there is only one hypothesis, the probability of making a type I error is
bounded by the significance level α, which is most often chosen to be 0.05. By choosing
α in this way, we can be reasonably confident that when we find an effect, this finding is
not due to chance. Problems arise, however, when we want to perform more than one test.
Because there is a risk of committing a type I error with every test, the chance of actually
making one or more mistakes grows with the number of tests. More precisely, even when all
m variables are in reality noise variables, the expected number of rejections will equal mα.
When m is a large number, which it will be in a high-dimensional data setting, the number
of false positives can thus be very high.

To still retrieve reliable results, the focus in multiple testing problems is on keeping
small either the number V of type I errors or the proportion of false rejections among all
rejections, known as the false discovery proportion Q, where Q is defined as

Q =
V

max(R, 1)
=

{
V/R if R > 0

0 otherwise.

Since both V and Q are random variables, we cannot control them directly, but we can
control relevant aspects of their distributions. Different error rates focus on different distri-
butional aspects (Shaffer, 1995), but the most popular ones are the Family-wise Error Rate
(FWER), given by

FWER = P(V > 0) = P(Q > 0),

and the False Discovery Rate (FDR) (Benjamini and Hochberg, 1995), given by

FDR = E(Q).

By controlling the FWER or the FDR on a pre-specified α-level, an upper bound is set
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respectively on the probability of making any error or on the expected proportion of errors
among the rejections. FWER control will automatically result in FDR control, but the
reverse does not hold. Usually, controlling the FDR will result in more rejections than
controlling the FWER.

The number of false positives we are willing to tolerate depends on the specific research
setting. Genomics experiments are in an early stage often highly exploratory in nature.
When using micro-arrays to measure gene expression levels, for example, the first step will
usually consist of testing every probe for differential expression, even though many probes
are not expected to be important for the specific disease under investigation. The desire to
test them all merely stems from their availability and to a lesser extent from the fear of
missing something important. The purpose of the experiment is often to come up with a
list of promising candidates, to be further investigated in later validation experiments.

Controlling the FWER is especially important in these validation experiments. Because
a validation experiment is usually the last step in a research project, the exploratory phase
has already ended and the project is in the confirmatory phase. In order to be able to
draw the right conclusions about which genes are truly associated with a particular disease,
FWER control is necessary. In the exploratory phase, however, one could argue that a few
false rejections are not that problematic, because these findings will probably be falsified in
a subsequent validation experiment. Of course, even in exploratory research, some form of
multiple testing correction should be used, because validation experiments are often costly
in terms of time and money and it would be wasteful to proceed with many findings which
will eventually turn out to be uninformative.

Controlling the FWER has as an advantage that, if you choose to follow up only on
a subset of the rejected set, maybe because of biological information or limited capacity,
the FWER is also controlled for this subgroup. This so-called subsetting property is not
guaranteed in an FDR setting, in which it can happen that the proportion of false positives
in a chosen subset exceeds the chosen α-level. However, when there is the opportunity of
validating almost every finding, FWER control might be too restrictive and controlling the
FDR can be more useful. The question of how to control the FWER and the FDR will be
addressed in the next subsections.

15.3.1 Methods for FWER control

Probably the most well known method to control the FWER is the method of Bonfer-
roni . When there are m null-hypotheses, using the Bonferroni method means testing the
hypotheses simultaneously on level α/m instead of on level α. It can be easily shown that
Bonferroni’s method controls the FWER without any further assumption on the underlying
number of true hypotheses (known as strong control) or on the dependency structure of the
individual p-values. This method can for that reason be used in any situation. However, a
drawback of the method is its conservativeness.

Holm’s method (Holm, 1979) also strongly controls the FWER and has the same advan-
tage as Bonferroni’s method, namely its applicability in every possible setting. Additionally,
this method will always reject at least as many hypotheses as Bonferroni’s method. The gain
in power lies in the sequential nature of Holm’s method as opposed to the single step Bon-
ferroni procedure. Holm’s method first places the p-values in ascending order p(1), . . . , p(m)

and subsequently compares each p-value p(i) to its corresponding critical value α/(m−i+1).
Holm’s method finds the smallest j such that p(j) exceeds α/(m − j + 1) and thereafter
rejects all j − 1 hypotheses with a p-value at most α/(m− j). The smallest p-value is thus
compared to α/m, as would be the case when using a Bonferroni correction. If this p-value is
smaller than α/m, the corresponding hypothesis gets rejected and the next p-value is tested
on level α/(m−1), etc. Because the overall α-level is not distributed among all hypotheses,



Model Selection for High-Dimensional Models 313

but only among the remaining hypotheses, Holm’s method is uniformly more powerful than
Bonferroni’s method and as it is valid under the same assumptions, Holm’s method should
always be preferred to Bonferroni’s method.

Again, we will use the Van de Vijver data to illustrate the just described multiple testing
methods. The number of covariates in this dataset equals 4919, so this is the number of null-
hypotheses we would like to test. Using the R-function coxph (from the survival-package),
we can calculate the p-values of respectively the Wald, the score and the likelihood-ratio
test statistic for all 4,919 hypotheses. We can subsequently use the R-function p.adjust to
find out how many of those p-values can be rejected using either a Bonferroni or a Holm
correction on level α = 0.05. Using the likelihood-ratio test, we can reject 203 hypotheses
according to the Bonferroni method and 206 hypotheses if we use Holm’s method. Similar
numbers of rejections are found by using the Wald test (230 and 232) or the score test (221
and 226). Although the differences in the number of rejections between Holm’s and Bonfer-
roni’s method are quite small, they are clearly present. Despite the fact that the three test
are asymptotically equivalent, it is clear that their finite sample performance can differ. The
likelihood-ratio test is generally believed to be the most reliable test (see also a simulation
study by Li et al. (1996)) and we will for that reason use this test throughout the rest of
this chapter.

Bonferroni’s and Holm’s methods make no assumptions on the dependency structure of
the p-values, which makes them generally applicable but sometimes unnecessarily conser-
vative. If we are willing to make assumptions on the joint distribution of the p-values, we
are often able to reject more hypotheses. One such assumption could be that the Simes
inequality (Simes, 1986) holds for the subset of true hypotheses. The Simes inequality says
that, for the ordered p-values of the m0 true null-hypotheses p(1), . . . , p(m0), the following
holds

P

(
m0⋃
i=1

{
p(i) ≤

iα

m0

})
≤ α.

This inequality is not true in general but is shown to be valid in common situations as for
example the situation in which the p-values arise from normal- or t-distributed one-sided
test statistics with non-negative correlations, or for two-sided tests under more general cor-
relation structures (Sarkar, 2008). Under the assumption that the inequality indeed holds,
more powerful FWER controlling methods can be used. Note that the inequality is not about
single hypotheses, but rather is a statement about a whole group of hypotheses, namely the
group of all true hypotheses. Still, it can be used to determine which individual hypotheses
should be rejected as shown independently by both Hommel (1988) and Hochberg (1988)
who for this purpose combined the Simes inequality with the closed testing procedure of
Marcus et al. (1976).

For m individual hypotheses H1, . . . , Hm, the closed testing procedure first defines in-
tersection hypotheses

HI =
⋂
i∈I

Hi,

for all index sets I ⊆ {1, . . . ,m}, with I �= ∅. An intersection hypothesis is true if and
only if all intersected hypotheses are true. Note that every individual hypothesis is an in-
tersection hypothesis in itself. After defining all intersection hypotheses, all can be tested
on level α, but only in a very specific order. A hypothesis HI can only be tested if all
hypotheses HJ with I ⊂ J are already rejected. To understand why the FWER will be con-
trolled in this way, even though every test is performed on level α, it is sufficient to realize
that the intersection of exactly all m0 true hypotheses, which will be denoted as HT , is
among the intersection hypotheses. Since this hypothesis corresponds to the largest group
of non-important covariates, all other true hypotheses, corresponding to smaller groups,
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can by the imposed testing order only be rejected after HT is rejected. If HT does not get
rejected, which will happen with probability at least 1 − α, this thus means that none of
the rejections is a false positive, which implies that the FWER is indeed controlled on level
α. If we assume the Simes inequality to be true, we can subsequently test every HI based
on this inequality, rejecting HI if, for some j, the jth ordered p-value among pi, i ∈ I, is
smaller than jα/|I|, knowing that this test will have the right α-level for all true intersection
hypotheses. Because the individual hypotheses H1, . . . , Hm are tested in the final steps of
the closed testing procedure, we will know which of them can be rejected.

When there are m hypotheses of interest, the number of intersection hypotheses will
equal 2m − 1 which can be an extremely large number. For large values of m, testing all
intersection hypotheses will be impossible. Fortunately, the specific form of the Simes in-
equality allows us to formulate shortcuts, which are methods that can be used to determine
which (individual) hypotheses can be rejected, without having to calculate all hypothesis
tests. Using a shortcut should never result in more rejections than those that would be de-
rived from carrying out the complete closed testing procedure, but still some shortcuts are
more powerful than others. This is exactly the situation when Hommel’s method (Hommel,
1988) is compared to Hochberg’s method (Hochberg, 1988); although based on the same
principle, the exact shortcut used by Hommel results in a more powerful procedure than
the approximate one used by Hochberg. Although the formulation of Hommel’s final pro-
cedure is quite complicated, Hochberg’s method is easily explained. Each ordered p-value
p(i) is compared to a critical value α/(m − i + 1), as was done in Holm’s procedure. This
time the largest j is found such that p(j) is smaller than or equal to α/(m − j + 1) and
subsequently this hypothesis and all hypotheses corresponding to smaller p-values will be
rejected. Compared to Holm’s method, it is clear that Hochberg’s method will result in at
least as much rejections. Since Hommel’s method is even more powerful, the same holds for
this method. Remember, however, that this gain in power comes at the price of an extra
assumption on the dependency structure of the p-values.

Applied to the Van de Vijver dataset, Hochberg’s method finds 206 rejections, using
the likelihood-ratio test. This number is identical to the number of rejections found with
Holm’s method. Although Hochberg’s method is more powerful, the actual hypotheses and
their corresponding p-values will determine if this power difference will also result in more
rejections. Likewise, Hommel’s method rejects 209 hypotheses. The advantage of using Hom-
mel’s method instead of Hochberg’s method is comparable to the earlier discussed advantage
of using Holm’s method as opposed to the Bonferroni procedure. Table 15.2 summarizes
the just described methods, their underlying assumptions and their corresponding outcome
when applied to the Van de Vijver dataset.

All four methods discussed either made a general assumption or no assumption at all on
the dependency structure of the p-values. However, it is also possible to adapt the procedure
to the dependency structure that is observed in the data, by replacing the unknown true
null-distribution with a permutation null-distribution. Westfall and Young (1993) propose
a method that brings this idea into practice. For certain underlying dependency structures,
permutation based methods can be a very powerful alternative to using Holm’s or Hommel’s
method. Nevertheless, not every problem is eligible for a permutation-based method.

A last remark on FWER controlling methods is that they can provide, in addition to
the information about which hypotheses to reject, a level of certainty about these rejections
being correct rejections, as given by the p-value in case of one single test. The direct analogue
of this p-value in the context of multiple testing is the adjusted p-value, which is defined
as the smallest α-level at which the multiple testing procedure would reject this specific
hypothesis. Adjusted p-values for the methods of Bonferroni, Holm, Hommel and Hochberg
are easily computable by the R-function p.adjust.
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TABLE 15.2
Overview of the different methods controlling the FWER, their underlying assumptions and
their corresponding number of rejections when applied to the Van de Vijver dataset, with
α-level 0.05.

FWER controlling methods

method underlying assumptions number of rejections

Bonferroni none 203

Holm none 206

Hochberg Simes inequality holds 206

Hommel Simes inequality holds 209

15.3.2 Methods for FDR control

As with the FWER-based methods, methods that control the FDR can also be divided into
methods that are generally valid, methods that are valid under the assumption that the
Simes inequality holds and methods based on permutations. Methods that control the FDR
(or the FWER) only under the assumption of independent p-values have been developed
as well, but those will not be discussed here, because this assumption is not tenable for
applications in genomics research.

The first and still most widely used method to control the FDR was developed by Ben-
jamini and Hochberg (1995). In contrast to the first methods to control the FWER, which
do not assume a special p-value dependency structure and are for that reason sometimes
quite conservative, the method of Benjamini and Hochberg is valid under assumptions that
are virtually identical to those required for Simes inequality (Sarkar, 2008). The method
uses the critical values suggested by the Simes inequality to test the individual hypothe-
ses directly. Each ordered p-value p(i) is compared with the critical value iα/m. Then the
largest j such that p(j) ≤ jα/m is found and subsequently the hypotheses corresponding
to the smallest j p-values are rejected. This method is the exact analogue of Hochberg’s
FWER controlling method, only the critical values are larger.

That higher critical values will normally lead to many more rejections can be illustrated
by applying the method to the Van De Vijver dataset again. Where Hochberg’s FWER con-
trolling method only rejected 206 hypotheses using the likelihood-ratio test at level 0.05,
Benjamini & Hochberg’s FDR controlling method rejects 1,340 hypotheses at this same
α-level. FDR controlling methods like the Benjamini and Hochberg method will especially
have higher power compared to FWER-based methods, when the number of rejections is
already high. In that case the denominator of the false discovery proportion Q gets large,
leaving more room for extra rejections while still controlling the FDR criterium.

Although the method of Benjamini and Hochberg is already very powerful, possible im-
provements have been examined. It has been shown that the procedure actually controls
the FDR not at level α, but at level π0α, where π0 is the proportion of true hypotheses. If
that proportion would be known to be smaller than one, the method’s performance could
be sharpened. In reality, however, this proportion will never be known, but will have to be
estimated. Methods that try to find more rejections by using such an estimator of π0 are
called adaptive procedures (Benjamini et al., 2006). The usefulness of these methods will
nonetheless heavily rely on the chosen estimation procedure, and it can even happen that
instead of more rejections less rejections can be made.

A different approach to controlling the FDR has been taken by Benjamini and Yekutieli
(2001). They propose a method that is valid under general p-value dependency structures
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TABLE 15.3
Overview of the different methods controlling the FDR, their underlying assumptions and
their corresponding number of rejections when applied to the Van de Vijver dataset, with
α-level 0.05.

FDR controlling methods

method underlying assumptions number of rejections

Benjamini & Yekutieli none 614

Benjamini & Hochberg Simes inequality holds 1340

and which thus does not depend on the validity of the Simes inequality. Each ordered p-value
p(i) is this time compared to the critical value iα/(m

∑m
k=1 1/k). As before, the largest j

is found such that p(j) is smaller or equal to its corresponding critical value and all j hy-
potheses with the j smallest p-values are subsequently rejected.

The loss in power relatively to the Benjamini & Hochberg procedure is immediately
visible when we look at Table 15.3 in which the behavior of the two methods on the Van
de Vijver dataset is summarized. The Benjamini & Yekutieli procedure results in 614 re-
jections, compared to 1,340 found by the Benjamini & Hochberg procedure. Where the
Benjamini & Hochberg procedure is strictly more powerful than Hochberg’s FWER-based
method, the same cannot be said for the Benjamini & Yekutieli procedure compared to
its FWER-controlling counterpart, Holm’s procedure. Although the Benjamini & Yekutieli
method will usually result in more rejections, as is the case in our example dataset, in
datasets with very few differentially expressed genes, it can happen that Holm’s procedure
rejects more. Because a FWER controlling method by definition also controls the FDR, in
such extreme situations, Holm’s method might be the preferred method to control the FDR,
if no assumptions can be made on the p-value dependency structure.

Several authors have worked on FDR control by permutation or other types of resampling
such as the bootstrap (Yekutieli and Benjamini, 1999; Romano et al., 2008). However, all
methods proposed so far can only provide asymptotic control, are usually based on the boot-
strap rather than on permutations, and often require substantial additional assumptions.
It seems that FDR control by permutations is much more difficult than permutation-based
FWER control. Although powerful permutation-based methods with exact finite sample
FDR control would be highly desirable, they are not yet available.

Just as with the FWER-based methods, FDR-based methods also allow for the calcu-
lation of adjusted p-values. For the Benjamini & Hochberg and the Benjamini & Yekutieli
methods these are also obtainable via the p.adjust-function. Interpreting the adjusted p-
values is nevertheless less natural than in the FWER-based setting. Where a FWER-based
adjusted p-value can be interpreted as a property of the hypothesis itself, this does not
hold for FDR-based adjusted p-values. FDR control only tells us something about sets of
hypotheses and not of individual hypotheses. In the same way, the adjusted p-values tell us
something about the whole rejection set up to this single hypothesis, not of this hypothesis
itself.

15.3.3 Confidence intervals for the number of true discoveries

Although the FDR is important in exploratory research, in the end it is only a statement
about an average over the full set of rejections. Unfortunately, it is impossible to determine
how many true or false rejections will (on average) be in an arbitrary subset of this final



Model Selection for High-Dimensional Models 317

rejection set R. However, this might be exactly what exploratory research would ideally
be about: the post hoc choosing of hypotheses to continue with in a future validation ex-
periment. Goeman and Solari (2011) propose a multiple testing method that does allow
for such post hoc inference. They show that the earlier described closed testing procedure
can be used to construct exact simultaneous confidence sets for the number of false rejec-
tions incurred when rejecting any specific set of hypotheses. What this means is that the
researcher, after having seen the results, can choose his favorite set of hypotheses for further
study, based on a confidence set for the number of false rejections or, if preferred, for the
number of true discoveries. Because the confidence sets are simultaneous over all possible
sets of rejected hypotheses, the researcher is free to optimize the selected set of hypotheses
based on these confidence sets.

The possibility of deriving confidence sets simultaneously stems from the fact that they
are derived from a single application of the closed testing procedure. Since all rejections of
intersection hypotheses are simultaneously valid with probability 1− α, the same holds for
all confidence sets derived from these rejections.

As mentioned before, using a closed testing procedure can lead to computational diffi-
culties when the number of individual hypotheses is large. However, using tests that allow
for shortcuts, as for example the test based on the Simes inequality as used by Hochberg
and Hommel, makes the procedure usable for a very large number of hypotheses as well.
With the R-package cherry it is possible to use the Simes inequality to make confidence
statements about the number of true discoveries for large sets of hypotheses. If we take
for example all 4,919 hypotheses of the Van de Vijver dataset, we find that the 95% con-
fidence interval for the number of true discoveries (i.e., false null-hypothesis) within these
4,919 probes is given by [640, 4919], which means that there are at least 640 relevant probes
among them, even though this does not imply that we will ever be able to pinpoint these
probes.

Although it is informative to know how many relevant probes are present in the full
dataset, it might be more interesting to make statements about the number of relevant
probes in specifically defined subsets. Imagine for example that we would like to do a
follow-up experiment on 500 probes. To increase the likelihood of finding truly relevant
probes, we choose the set of probes that have the smallest p-values, based on a univariate
Cox model and the likelihood-ratio test. The cherry-package again provides us with a 95%
confidence interval for the number of true discoveries in this set, which is this time given by
[476, 500]. So, assuming that the Simes inequality holds, we know that in the set of probes
with the smallest 500 univariate p-values, at least 476 are truly related to the response, at
a confidence level of 0.95.

Another subset we might be interested in is the subset of probes that the lasso selects
to be in the final model. In the Van de Vijver dataset, we saw that the lasso constructs a
model consisting of 16 predictors. Suppose we choose to follow up on these predictors in a
validation experiment, what can we expect about the number of true findings in this set?
Based on the simultaneous confidence set for the number of true findings, given by [10, 16],
we know that at least 10 probes selected by the lasso are also relevant from a univariate
point of view. In Figure 15.2, we can even see that in order to choose a set containing at
least 10 relevant probes, we only have to select the first 11 probes selected by the lasso,
where the probes are sorted on increasing univariate p-value.

Compared to FWER or FDR controlling methods that only allow the user to specify the
quality criterium and the α-level, resulting in a fixed set of rejected hypotheses, this new
method gives the researcher freedom to compose his or her own preferred set of hypotheses,
providing information about the risk of following up on this particular set.
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FIGURE 15.2
Number of correct rejections versus number of included probes for the 16 probes selected
by the lasso. In case of an annotated probe, the x-label corresponds to the gene.

15.4 Reducing the number of variables beforehand and incorpo-
rating background knowledge

Until now, we only discussed how to obtain relevant information from an available gene
expression dataset, without considering the possibility of first adding a few well-established
prognostic factors to our covariates. Very often, clinical factors or molecular markers are
already known to be prognostically relevant for the patient population under investigation
(Benner et al., 2010; Binder et al., 2011). Many of those factors are not only easily avail-
able, e.g., age or gender, but can also be very influential and should for that reason not be
ignored. Obtaining gene signatures, for example, that are actually predictive of age are, of
course, not the findings we are hoping for. To prevent discoveries that will turn out to be just
expensive ways to measure more easily accessible information, these “background” variables
or confounders should both be included in our penalized regression model, as well as added
to the null-hypotheses in the multiple testing framework. All penalized regression models
can easily be extended to incorporate additional unpenalized covariates. By not adding an
extra penalty term to these additional terms they will always be included in the final model.
From a testing perspective, adjustment of the test results for possible confounders is only
a manner of specifying these variables as covariates under the null-hypothesis.

Another point that has to be made here is that using the complete gene expression
dataset is not necessarily the most promising strategy. Especially in the multiple testing
framework, eliminating hypotheses beforehand, based on biological knowledge for example,
can lower the multiple testing penalty considerably. FWER controlling methods will al-
ways be more powerful when fewer hypotheses are being tested. For FDR-based methods,
this property does not hold in general, but if the discarded hypotheses were indeed true
hypotheses, the power is expected to increase as well. Fortunately, especially in the gene
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expression context, there are often many “uninteresting” hypotheses that could be excluded
in advance. Non-annotated probes for example are rarely considered interesting, since the
name of the associated gene is yet unknown. Still, these non-annotated probes can make
up for a considerable proportion of the complete set of measurements. In the Van de Vijver
data for example, 35% of the probes is of this type. In a regression setting as well, it should
be the rule rather than the exception to only include variables in which you would at least
be interested when they were to appear in the final model, even though the exact number
of variables to start with is less important in this situation.

A different approach to lower the multiple testing correction is by aggregating the data
in a reasonable way. This type of dimension reduction will not always be possible, but
in some situations it comes very naturally. Rather than testing every probe, for example,
aggregated tests can be performed at the gene level or even at the level of a larger chromo-
somal region. Sometimes, the gene level will in fact be the preferred level of inference and
in that case, conducting fewer tests on the gene level as opposed to more tests on the probe
level is recommended. Choosing a test for aggregated hypotheses should be done carefully,
however. Binder et al. (2011) discuss ways of data aggregation for lasso-type methods as
well.

15.5 Discussion

The most important message of this chapter is that the way to retrieve information from
a high-dimensional dataset should depend on the specific research question. If the aim is
to find a relatively sparse prediction model, a multivariate approach, such as using a lasso
model, is an appropriate choice. If, on the other hand, the aim is to find potential targets
for future treatment, a univariate approach is a more sensible option.

Under rather strict assumptions on the correlation structure between the covariates and
the sparsity of the underlying true model, the lasso approach will also lead to a set of
predictors that incorporates most of the (biologically) relevant variables. This set could be
compared to a set of predictors resulting from a multiple testing procedure. It is interesting
to note that, whereas the emphasis in multiple testing procedures lies mainly on preventing
type I errors, condoning the resulting type II errors, the lasso mostly focuses on including
every potential “true” predictor, taking some additional noise variables more or less for
granted. Again from a different perspective, this observation nicely illustrates the differences
between the two approaches; for prediction purposes, in view of minimizing bias, it is better
to include all true predictors with the risk of adding some extra noise variables whereas
actually proving association asks for a more rigorous procedure.
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16.1 Introduction

The usual censoring mechanism considered for survival models is one where the censoring is
independent of the failure time given the covariate value. Sometimes a stronger assumption
is needed in which we require independence between the censoring and failure times. Under
the weaker assumption, the partial likelihood estimator for the regression coefficient β in the
proportional hazards model was first shown to be consistent by Cox (1975) and later, more
formally, by Tsiatis (1981). Consistency can be established using a martingale approach
(Andersen and Gill, 1982). The two ways in which the main model assumptions may fail are
that where the covariate specification is incorrect or that where the constancy of regression
effect, β, is not respected by the observations. Either of these will result in a dependency
of the usual estimates on the censoring mechanism. In certain simplified cases, say a simple
binary grouping variable, the only thing we need consider is the time dependency. This is
because any transformation of the grouping variable that still allows us to distinguish the
groups will not change the model essentially; the only inadequacy we need consider is then
that of the constancy of regression effect. Again, this argument extends immediately, to p
groups, represented by p − 1 binary indicator variables. Moving away from this situation
to that of ordinal variables, or even continuous variables, then the covariate representation
can be crucial. Some transformation, for example using normal order statistics, or using a
uniform transformation of the scale, can produce a model that may be more robust to small
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departures from assumptions. If so, we would expect the impact of the censoring to be weak
if not almost absent.

The estimating equation derives from the model. If we modify our model by transforming
the covariate specification, then we will also change the estimating equation. That is fairly
obvious. What may be less obvious is that we can still maintain our model but modify the
estimating equation directly. If we are concerned that high covariate values may have an
undue influence on inference, in particular if only a few are represented in the data, we
could, for example, bound or transform the value in the equation itself without making any
such transformation in the actual model. Another example would be where we use the actual
covariate values in the model but where, for the purposes of robustness, we work with the
ranks of the covariates in the estimating equation. Under time dependent effects, expressed
as β(t), the partial likelihood estimator converges to some population parameter depending
in a complex way on the underlying censoring mechanism. In both cases we would like to
have procedures that reduce the impact of censoring on inference.

One reason for this is that the practical application of the estimator is otherwise limited.
When effects depend on time, although the partial likelihood estimator is consistent under
the proportional hazards model, it is not consistent for any meaningful parameter, i.e., one
that does not involve censoring, under broader models in which the regression effect β(t) is
not constant through time. Indeed, the effect of censoring on the partial likelihood estimate
can be considerable (Xu and O’Quigley, 2000), whereas, for the estimator described here,
not only does censoring not impact the population parameter to which we converge but also
the parameter can be given a concrete interpretation as “average effect.” The estimator can
be seen to be consistent in the more usual situation in which the data are generated by a
mechanism that is not exactly equal to but only approximated by the working model in
which hazard ratios are taken to be constant.

Lancaster and Nickell (1980), Gail et al. (1984), Struthers and Kalbfleisch (1986), Bretag-
nolle and Huber-Carol (1988), O’Quigley and Pessione (1989, 1991), Anderson and Fleming
(1995), and Ford et al. (1995) have all studied the fit of the model in the presence of time
dependency of regression effect. A general formulation of this, and a useful starting point,
is to write the model in the following way:

λ(t|Z(t)) = λ0(t) exp{β(t)Z(t)}, (16.1)

where Z(t) is a possibly time-dependent covariate, λ is the conditional hazard function,
λ0 is the baseline hazard and β(t) is the time-varying regression effect. For simplicity of
notation we first assume covariates of dimension one. Particular cases of multiple covariates
are considered later. Under this model, an estimator of average regression effect can be a
more suitable summary measure of effect, i.e., a quantity consistent for

∫
β(t)dF (t), where

F (t) is a distribution function, and in the following we take it to be that of the failure
time. This would be robust to censoring since it does not involve the censoring distribution.
With reasonably large datasets, relative to the number of studied covariates, it is possible
to estimate β(t) under model (16.1), as in Murphy and Sen (1991), Gray (1992), and Xu
and Adak (2002), among others. However, the interpretation of an average effect is usually
much more straightforward in applications, and also estimation of an average effect can be
used in a preliminary analysis of a dataset with time-varying regression effects.
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16.2 Impact of censoring on estimating equation

In order to fix the notation we take Ti, Ci and Zi(·), i = 1, ..., n, to be a random sample
from the distribution of T , C and Z(·) which satisfies model (16.1). Here T is the failure
time random variable and Z(·) the covariate as described in Section 16.1, C is a censoring
time random variable. The time-dependent covariate Z(·) is assumed to be a predictable
process and, for notational simplicity, assumed to be of dimension one. For each subject
i we observe Xi = min(Ti, Ci), and δi = I(Ti ≤ Ci). Define also Yi(t) = I(Xi ≥ t),
Ni(t) = I{Ti ≤ t, Ti ≤ Ci} and N̄(t) =

∑n
1 Ni(t). The useful concept of risk set is defined via

the set R(t) = {i ;Yi(t) = 1}. The size of the risk set at time t is denoted n(t) =
∑n

i=1 Yi(t).
We will first assume C to be independent of T and Z(·), and will refer to this assumption
as independent censorship. This assumption has been used under non-proportional hazards
models by Cheng et al. (1995) and Ying et al. (1995). For a dataset of n subjects, it is
useful to note the number of distinct failures k, so that k =

∑n
i=1 δi. The ordered failures,

from smallest to largest, are denoted T(i) , i = 1, ..., k and only when the original times are
ordered, and there is no censoring, do we have that Ti = T(i), otherwise they differ and the
index i has different ranges.

Suppose that Model (16.1) generates the observations but that we use the more re-
stricted proportional hazards model of which (16.1) is a generalization, for the purposes of
analysis. We might imagine that the resulting estimate would be interpretable as one of
average effect and, indeed, this is true when there is no censoring. Unfortunately though,
the partial likelihood estimator is not robust to censoring in this situation and we need
consider something else if we are to recover robustness, i.e., an estimator that is unaffected
asymptotically by an independent censorship. For this purpose the relevant distribution is
not, as we might guess, the distribution of T given the covariate but, in fact, it is the con-
ditional distribution of the covariate given the failure time T . This conditional distribution
enables us to view the score equation from the partial likelihood as an estimating equation
for the average effect and, as a result, suggests a way to obtain robustness to censoring.

16.2.1 Model-based expectations

Time plays two roles in model (16.1). First, Z(·) is a stochastic process with respect to
time, so that Z(t) is a random variable at any fixed t and may have different distributions
at different time points t. Secondly, the failure time variable T is a non-negative random
variable denoting time. While it is immediate to understand the distribution of T given the
covariates, at any fixed time t there are two different conditional distributions of Z(t) on
T that are of interest to us. First, the conditional distribution of Z(t) given T ≥ t, which
can be estimated by the empirical distribution of Z(t) in the risk set at time t under the
independent censorship assumption. The other conditional distribution is that of Z(t) given
that T = t, which can be interpreted as the distribution of Z(t) among individuals who fail
at time t in the population. Under the assumption that T has a continuous distribution we
usually observe only one failure at a time and it is difficult to estimate this latter conditional
distribution. We can, however, obtain a consistent estimate by using Model (16.1), as is
described in Theorem 1. Define

πi(β, t) =
Yi(t) exp{βZi(t)}∑n

j=1 Yj(t) exp{βZj(t)}
. (16.2)

The product of the π’s over the observed failure times gives the partial likelihood (Cox,
1972, 1975) under a proportional hazards model. When β = 0, {πi(0, t)}i is the empirical
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distribution that assigns equal weight to each sample subject in the risk set. The following
theorem (Xu, 1996; Xu and O’Quigley, 1999) states that {πi(β(t), t)}i provides a consistent
estimate of the conditional distribution of Z(t) given T = t under (16.1).

Theorem 1 Under Model (16.1) and an independent censorship, assuming β(t) is known,
the conditional distribution function of Z(t) given T = t is consistently estimated by

P̂ (Z(t) ≤ z|T = t) =
∑

{j:Zj(t)≤z}
πj(β(t), t).

Theorem 1 is mainly of theoretical interest here, as β(t) is not known in practice. In
addition, if we assume a general form of the relative risk r(t;Z) and define {πi}i through
r(t;Z) in place of exp(βZ), the proof of Theorem 1 can be easily modified to show that
the same result holds for general r(t;Z). This is of interest in its own right and useful for
the discussion of our estimator under other non-proportional hazards models. Expectations
with respect to πj(β, t) , j = 1, ..., n, are written,

E(Z : β, t) =
n∑

j=1

Zj(t)πj(β, t) =

∑n
j=1 Yj(t)Zj(t) exp{βZj(t)}∑n

j=1 Yj(t) exp{βZj(t)}
. (16.3)

In accordance with Theorem 1, E(Z : β(t), t) converges in probability to E{Z(t)|T = t}
under the model.

16.2.2 More robust estimating equations

We find the estimate β̂ for β from the score equation U(β̂) = 0 which in the case of no
censoring and time-invariant covariates, is given by,

U(β) =

n∑
i=1

{Zi − E(β,Xi)} = 0. (16.4)

Dividing both sides of (16.4) by n,
∑

Zi/n then converges in probability to the marginal
expectation of Z. The second term on the left-hand side, if we replace β by β(t), would
be
∑ E(Z : β(t), Xi)/n =

∫
E(Z : β(t), t)dFn(t) where Fn(t) is the empirical distribution

function of T . This is a double (empirical) expectation, and, since E(β(t), t) consistently
estimates E{Z|T = t} in this case, it again gives a consistent estimate of the marginal
expectation of Z under Model (16.1). Therefore (16.4) can be viewed as an estimating
equation (Godambe and Kale, 1991). In the presence of censoring and for time-dependent
covariates in general, we weight the summands in (16.4) (i.e., the Schoenfeld residuals) by
the increments of a consistent estimate of the marginal failure time distribution F (t), such
as the Kaplan and Meier (1958) estimate. Thus (16.4) is generalized to

n∑
i=1

δiW (Xi){Zi(Xi)− E(Z : β,Xi)} =

n∑
i=1

∫ ∞

0

W (t){Zi(t)− E(Z : β, t)}dNi(t) = 0,

(16.5)

where W (t) = Ŝ(t)/
∑n

1 Yi(t), and Ŝ(t) is the left continuous version of the Kaplan-Meier
estimate of the marginal survivorship function S(t) = 1− F (t). Assuming no ties it can be
verified that W (Xi) is the jump of the Kaplan-Meier curve at an observed failure time Xi.
In practice ties may be split randomly, or some other approaches can be adopted (Peto,
1972; Breslow, 1974). We denote the solution to (16.5) as β̃.
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Typically Zi(t) is defined as a function of measurements on the ith subject but we can
consider more general expressions and in particular those that may involve measurements
taken on other subjects. This would be the case, for example, when, in the interest of
robustness, we replace the Z by its rank in the risk set. The value of the rank can only
be determined by making use of the values of all subjects in the risk set at that time.
If, instead of being the observed covariate value, we redefine the quantity Zi(t) to be a
function of this value and any other information contained in Ft, the collective failure,
censoring and covariate information prior to time t on the entire study group, we can write;
Zi(t) = ψi(t,Ft) for some bounded function ψ. To keep things uncluttered we drop use of
the notation Ft in the definition of ψ but keep in mind that when we write ψi(t), however
defined, we only ever allow ourselves to make use of information contained in the set Ft.

n∑
i=1

δiW (Xi){ψi(Xi)− E(ψ : β,Xi)} =

n∑
i=1

∫ ∞

0

W (t){ψi(t)− E(ψ : β, t)}dNi(t) = 0,

(16.6)

Note that this is not the same as simply making the transform ψ on Z and then fitting a
proportional hazards model to the resulting observations. Under such a transform the model
is no longer the same and there is no reason to suppose that the regression coefficient(s),
β, would remain the same. They would not even necessarily have the same sign. In this
above expression, the relevant probabilities are still those given by Equation (16.2) and,

for any bounded ψ, the estimated β̂ converge (a.s.) to the same population value β. Recall
that we denote the distinct failures by; T(1) < T(2) . . . < T(k)(< t∗), leaving n− k censored

observations. Let Zi� denote the covariate value for the �th subject of the n(T(i)) at risk at
T(i), of which Zii denotes this value for the actual subject failing at T(i). Denote the rank
of Zi� among these n(T(i)) subjects as r(Zi�) . Let

pi� = r(Zi�)/n(T(i))− 1/2n(T(i)) , yi� = logit pi�

and

vi = n−1(T(i))
∑
j

log

(
2n(T(i))

2j − 1
− 1

)
, i = 1, . . . , n,

where the index j runs from 1 to n(T(i)). A robust test can be based upon comparing
pii i = 1, . . . , k with its expected value under the null hypothesis of 0.5. This corresponds
to O’Brien (1978) suggestion as a way to reduce the impact of potential outliers and,
thereby indirectly, to reduce the impact of censoring on the test. O’Brien also suggested
that for reasons of efficiency and computational tractability it may be preferable to compare
yii i = 1, . . . , k with the value zero, basing a test on

w =

k∑
i=1

yii/

(
k∑

i=1

vi

) 1
2

.

In the interests of robustness to scale of the covariate, and indirectly robustness to the
conditional independence, also known as the covariate dependent, censoring assumption,
O’Brien (1978) proposed the use of these tests. O’Quigley and Prentice (1991) showed how
such tests could be placed within the general framework of proportional hazards type mod-
els. This enables rank-based tests that are often only valid under an independent censoring
assumption to remain valid under these broader assumptions. Letting

I(β) =
n∑

i=1

∫ ∞

0

W (t){ψi(t)− E(ψ : β, t)}2dNi(t) = 0, (16.7)
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A score test based on the proportional hazards model but with covariate specification
Z�(t) = ψ�(t,Ft) = yi� when T(i−1) < t ≤ T(i) for i = 1, . . . , k, and is equal to yk� when

t > T(k) where T(0) = 0 and yi� = 0 at times at which the �th subject is not at risk, leads
exactly to the logit-rank test described by O’Brien (1978). Simple calcuations show that

U(0) =
∑k

i=1 yii , and that the information can be written under the null as,

I(0) =
k∑

i=1

ni∑
j=1

n−1
i

{
logit

(
jn−1

i − (2ni)
−1
)}2

=

k∑
i=1

vi.

Similarly, O’Quigley and Prentice (1991) showed how O’Brien’s original suggestion corre-
sponds to making use of an estimating equation arising under the model, when we obtain the
term

∑k
i=1 pii as a result of the coding; ψ�(t,Ft) = pi� when T(i−1) < t ≤ T(i) for i = 1, . . . , k

and, otherwise is equal to pk� when t > T(k), and where pi� = 0 at times at which the �th

subject is not at risk. Since
∑m

j=1 j = m(m+1)/2 and
∑m

j=1 j
2 = m(m+1)(2m+1)/6 there

is a simple expression for the variance of
∑n

i=1 pii from the above information equation as

var

(
k∑

i=1

pii

)
=

k∑
i=1

(4ni + 1)(ni − 1)/12ni.

Note that the mean of
∑k

i=1 pii under H0 is k/2 so that an easily evaluable approximate
test obtains by referring

36(2
∑k

i=1 pii − k)2∑k
i=1(4ni + 1)(ni − 1)/ni

to chi-square tables on one degree of freedom. In all of this we have taken the weights to
not vary with time and so, implicitly, we have W (Xi) = 1/k. However, we may gain yet
further in robustness to censoring in cases where we may not be that close to the null and
where there are time trends in the effect. It may then pay to use an inverse probability
weighting rather than a constant one, in particular to use W (t) = Ŝ(t)/

∑n
1 Yi(t) where

Ŝ(t) is the left continuous version of the Kaplan-Meier estimate of the marginal survival
S(t) = 1−F (t). This becomes more important when the question is one of estimation of an
effect that changes through time rather than the situation of small local departures from
a null hypothesis of no effect. This particular problem is developed in more detail below.
For tests based on different estimating equations note that there are a very large number
of possibilities of which the above are only the most immediate ones. One situation studied
by O’Quigley and Prentice (1991) was to consider ψ�(t,Ft) to not depend on information
on subjects i �= �, in which case scores chosen at the start of the study remain unchanged
throughout the study. This is easier to do in practice and turns out to be fully efficient.
Tests analogous to the logit-rank tests can be obtained by simply transforming the marginal
empirical distribution of the Zi to be some given distribution, e.g., the uniform over (0, 1).
The use of normal order statistics in place of the original measurements amounts to a
transformation to normality conditional on the risk sets or unconditionally if applied only
once at the start of the study. Given this interpretation of the effect of different kinds
of rankings, an another approach, although not rank invariant, would be to replace the
original zi measurements by G−1{F̃ (Zi)} where F̃ (·) is some consistent estimate of the
cumulative distribution function for Z and G(·) is the cumulative distribution function we
are transforming to, for example the standard normal. In order to compare different possible
transformations we can use the result of O’Quigley and Prentice (1991). Specifically, suppose
that the mechanism generating the observations is given by the model with ψi(t,Ft) but
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that the test is based on using ψ∗i (t,Ft). Then the asymptotic efficiency can be written

e(ψ, ψ∗) =
(
∫
φ[g{Z(t)}, g∗{Z(t)}]λ0(t)dt)

2∫
φ[g{Z(t)}, g{Z(t)}]λ0(t)dt

∫
φ[g∗{Z(t)}, g∗{Z(t)}]λ0(t)dt

,

where the integrals are over (0,∞),

φ(a(t), b(t)) = E{Y (t)a(t)b(t)} − E{Y (t)a(t)}E{Y (t)b(t)}/E{Y (t)},
and the expectations are taken with respect to the distribution of Ft and where

lim
n→∞ψ(t,Ft) = g{Z(t)}, lim

n→∞ψ∗(t,Ft) = g∗{Z(t)}

for continuous monotonic functions g(·) and g∗(·). Applying the above expression for
e(ψ, ψ∗), to time-independent covariates, we find that the asymptotic relative efficiency
is equal to one for the logit-rank procedure and the simplified logit-rank procedure (where
simplified means using a fixed non-time-dependent covariate equal to the initial ranking at
the beginning of the study). The same applies to other pairs of procedures, the normal-rank
and simplified normal rank for instance. Using normal scores instead of logit scores and vice
versa leads to an asymptotic relative efficiency of 0.97 in the absence of censoring.

16.3 Robust estimator of average regression effect

Define

S(r)(β, t) = n−1
n∑

i=1

Yi(t)e
βZi(t)Zi(t)

r, s(r)(β, t) = ES(r)(β, t),

for r = 0, 1, 2, where the expectations are taken with respect to the true distri-
bution of (T,C, Z(·)). Then E(Z : β, t) = S(1)(β, t)/S(0)(β, t). From Theorem 1,
s(1)(β(t), t)/s(0)(β(t), t) = E{Z(t)|T = t}, and s(1)(β, t)/s(0)(β, t) is what we get when
we impose a constant β through time in place of β(t). Define also

V (β, t) =
S(2)(β, t)

S(0)(β, t)
− S(1)(β, t)2

S(0)(β, t)2
, v(β, t) =

s(2)(β, t)

s(0)(β, t)
− s(1)(β, t)2

s(0)(β, t)2
. (16.8)

16.3.1 The robust estimator

When there are time trends and the true mechanism generating the observations involves
β(t), not a constant, then the usual partial likelihood estimator is not consistent. It is also
very non-robust to an independent censoring mechanism and the population quantity to
which the estimator converges depends very strongly on the level of censoring. We can
again consider the estimating equation and it turns out to be easy to not only obtain
an estimator of average effect - when β(t) depends on t - but the estimator itself is very
robust to an independent censoring mechansim. Using the weights W (t) = Ŝ(t)/

∑n
1 Yi(t)

in the estimating equation leads to the estimator β̃ rather than the usual partial likelihood
estimate β̂. Xu (1996) showed the following theorem.

Theorem 2 Under Model (16.1) the estimator β̃ converges in probability to a constant β∗,
where β∗ is the unique solution to the equation∫ ∞

0

{
s(1)(β(t), t)

s(0)(β(t), t)
− s(1)(β, t)

s(0)(β, t)

}
dF (t) = 0, (16.9)
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provided that
∫∞
0

v(β∗, t)dF (t) > 0.

The equation does not involve censoring, and thus neither does the limit β∗. In this sense
it can be considered to be robust to an independent censoring mechanism. In contrast the
maximum partial likelihood estimator β̂PL was shown by Struthers and Kalbfleisch (1986)
to converge to the solution of the equation∫ ∞

0

{
s(1)(β(t), t)

s(0)(β(t), t)
− s(1)(β, t)

s(0)(β, t)

}
s(0)(β(t), t)λ0(t)dt = 0. (16.10)

In general this solution is not robust to censoring, even when independent and the unknown
censoring mechanism impacts the limit through the factor s(0)(β(t), t). It is not then easy to
obtain any kind of useful interpretation under non-proportional hazards. The dependence
of β̂PL on censoring is also clear from simulation results and we will recall some of those
later.

Theorem 3 Under Model (16.1)
√
n(β̃−β∗) is asymptotically normal with mean zero and

variance σ2 given in Xu and O’Quigley (2000).

A variance estimator based on empirical influence function was developed by Xu and Har-
rington (2001).

The fact that β∗ is free of censoring requires that the censoring distribution be inde-
pendent of the covariates. For two-group comparisons Boyd et al. (2009) and Hattori and
Henmi (2012) further incorporated weights in the definitions of S(1) and S(0), so that the
resulting population parameter is not affected by a censoring mechanism that is indepen-
dent of the failure time distribution conditional on the covariates. Hattori and Henmi (2012)
also considered improving efficiency of the estimator by applying the covariate adjustment
method of Lu and Tsiatis (2008) based on the semiparametric theory.

16.3.2 Interpretation of average regression effect

The solution β∗ to Equation (16.9) can be viewed as an average regression effect.
In the equation s(1)(β(t), t)/s(0)(β(t), t) = E{Z(t)|T = t} from Theorem 1, and
s(1)(β∗, t)/s(0)(β∗, t) results when β(t) is restricted to be a constant; the difference be-
tween these two is zero when integrated out with respect to the marginal distribution
of failure time. Suppose, for instance, that β(t) decreases over time, then earlier on
β(t) > β∗ and s(1)(β(t), t)/s(0)(β(t), t) > s(1)(β∗, t)/s(0)(β∗, t); whereas later β(t) < β∗

and s(1)(β(t), t)/s(0)(β(t), t) < s(1)(β∗, t)/s(0)(β∗, t). Applying a first-order Taylor series
approximation to the integrand of (16.9), we have∫ ∞

0

v(t){β(t)− β∗}dF (t) ≈ 0, (16.11)

where v(t) = v(β(t), t) = Var{Z(t)|T = t} according to Theorem 1. Therefore

β∗ ≈
∫∞
0

v(t)β(t)dF (t)∫∞
0

v(t)dF (t)
(16.12)

is a weighted average of β(t) over time. According to (16.12) more weights are given to those
β(t)’s where the marginal distribution of T is concentrated; and more weights are given to
those β(t)’s where the conditional distribution of Z(t) has larger variance. In (16.12) if v(t),
the conditional variance of Z(t), changes relatively little with time apart from for large t,
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when the size of the risk sets becomes very small, we can make the approximation v(t) ≡ c
and it follows that

β∗ ≈
∫ ∞

0

β(t)dF (t) = E{β(T )}. (16.13)

In general when β(t) is close to zero, we know that the distribution of Z(t) does not change
much over time because there is very little seletive elimination from the risk set due to the
covariate effect (Prentice, 1982). The approximate constancy of this conditional variance is
also used in the sample size calculation for two-group comparisons (Kim and Tsiatis, 1990).
In practice v(t) will often be approximately constant, an observation supported by our own
practical experience as well as with simulated datasets. For a comparison of two groups
coded as 0 and 1, the conditional variance is of the form p(1 − p) for some 0 < p < 1,
and this changes relatively little provided that, throughout the study, p and 1 − p are not
too close to zero. In fact we only require the weaker condition that Cov(v(T ), β(T )) = 0 to
obtain (16.13), a constant v(t) being a particular example. Even when the condition does
not hold we would still anticipate the approximation as being valuable and the best way to
see this is via simulations.

Xu and Harrington (2001) showed that (16.13) holds exactly for two-group log-logistic
(i.e., proportional odds) models with equal group memberships. In particular, for ρ ≥ 0,
define survival function

H0(t) = exp(−et), ρ = 0;

Hρ(t) = (1 + ρet)−1/ρ, ρ > 0.

This is the Gρ family distribution of Harrington and Fleming (1982). Consider a linear
transformation model of the form

g(T ) = αZ + ε, (16.14)

where g(·) is an unspecified strictly increasing function, and ε is from the Gρ family. For a
binary group indicator Z, (16.14) is a special case of model (16.1), since for any two-group
case we simply have β(t) = log{λ1(t)/λ0(t)}. It is well-known that when ρ = 0, (16.14) is
the proportional hazards model with β = −α; when ρ = 1, (16.14) is the log-logistic model,
which is also called the “proportional odds model.” Model (16.14) is also related to the
gamma frailty model for ρ > 0: it is equivalent to

λ(t|z) = λ0(t) exp(−αZ)ω,

where ω is the unobserved gamma frailty with mean one and variance ρ. In general (16.14)
provides a much broader class of models than the proportional hazards. Xu and Harrington
(2001) showed that under model (16.14), β∗ = −α/(ρ+ 1); and for ρ = 1 and P (Z = 0) =
P (Z = 1) = 1/2, this further equals to

∫∞
0

β(t)dF (t). This way the interpretation of the
average regression effect over time is directly equivalent to the treatment effect under this
broad class of models.

16.3.3 Simulations

In Xu and O’Quigley (2000) simulations were used to study the finite sample behavior of

the estimator β̃ with the partial likelihood estimator β̂PL, as well as to investigate the
accuracy of the approximation of

∫
β(t)dF (t). Data were generated from a simple two-step

time-varying regression coefficients model with β(t) = β1 when t < t0 and β2 otherwise.
The details are described in Xu and O’Quigley (2000) and, here, we simply reproduce Table
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TABLE 16.1
Comparison of β̂PL, β̃, β

∗ and
∫
β(t)dF (t).

β1 β2 t0 % censored β̂PL β̃ β∗
∫
β(t)dF (t)

1 0 0.1 0% 0.155 (0.089) 0.155 (0.089) 0.156 0.157

17% 0.189 (0.099) 0.158 (0.099) 0.156 0.157

34% 0.239 (0.111) 0.160 (0.111) 0.156 0.157

50% 0.309 (0.130) 0.148 (0.140) 0.156 0.157

67% 0.475 (0.161) 0.148 (0.186) 0.156 0.157

76% 0.654 (0.188) 0.161 (0.265) 0.156 0.157

3 0 0.05 0% 0.716 (0.097) 0.716 (0.097) 0.721 0.750

15% 0.844 (0.107) 0.720 (0.106) 0.721 0.750

30% 1.025 (0.119) 0.725 (0.117) 0.721 0.750

45% 1.294 (0.133) 0.716 (0.139) 0.721 0.750

60% 1.789 (0.168) 0.716 (0.181) 0.721 0.750

67% 2.247 (0.195) 0.739 (0.255) 0.721 0.750

Note: λ0(t) = 1, β(t) = β1 when t < t0 and β2 otherwise, Z ∼ U(0,1), point censoring at t0. In the (·) are

standard errors. Sample size 1,600 with 200 simulations each.

1 from that paper: 200 simulations were carried out with sample size 1,600 for each set
of the results. Clearly, β̂PL is very non-robust under independent censoring, the value to
which it converges changing substantially as the rate of censoring increases. This underlines
the difficulty in the interpretation of the partial likelihood estimate under non-proportional
hazards, a fact that has been alluded to in the literature. The estimate β̃, on the other hand,
consistently estimates the population average β∗ regardless of the censoring. The bracketed
figures in Table 16.1 give the standard errors of the estimates from the 200 simulations.
An important observation is that between β̃ and β̂PL, for the cases studied, any gains in
efficiency of the partial likelihood estimate are very quickly lost to the potentially large
biases caused by the censoring.

Next we consider a more gradually changing β(t). We simulate data from a two-sample
log-logistic model (16.14). This model has an attenuating hazard ratio, i.e., a monotone
β(t) that tend to zero as t → ∞. The censoring distribution is uniform (0, τ). For various
combinations of group differences α = 1, 2 and 3 and censoring percentages, we see from
Table 16.2 that β̃ always consistently estimates β∗, while the bias of β̂PL is typically one
standard deviation or larger. Notice that for this model, as mentioned earlier, it was shown
in Xu and Harrington (2001) that β∗ =

∫∞
0

β(t)dF (t), and in fact they both equal to −α/2.
In the table β∗τ reflects the finite follow-up time under the uniform (0, τ) censoring. Table
16.2 reflects the types of non-proportionality and censoring distributions that are likely to
arise in practice, and it is important to be aware of the behavior of the partial likelihood
estimator under these situations.
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TABLE 16.2
Comparison of β̂PL, β̃, β

∗
τ and

∫
β(t)dF (t) — log-logistic model.

α % censored β̂PL β̃ β∗τ
∫
β(t)dF (t)

1 0% -0.505 (0.048) -0.505 (0.048) -0.500 -0.500

35% -0.645 (0.067) -0.580 (0.081) -0.578 -0.584

57% -0.746 (0.076) -0.670 (0.111) -0.676 -0.684

2 0% -1.000 (0.060) -1.000 (0.060) -1.000 -1.000

35% -1.258 (0.064) -1.141 (0.082) -1.143 -1.195

56% -1.480 (0.084) -1.339 (0.106) -1.339 -1.409

3 0% -1.508 (0.077) -1.508 (0.077) -1.500 -1.500

35% -1.843 (0.079) -1.694 (0.091) -1.684 -1.838

53% -2.124 (0.089) -1.940 (0.117) -1.941 -2.151

Note: log(T ) = αZ + ε, ε ∼ Logistic, P (Z = 0) = P (Z = 1) = 0.5, uniform (0, τ) censoring. Sample size

1,600 with 200 simulations each.

16.4 When some covariates have non-PH

The non-robustness issues considered in this chapter arise when the proportional hazards
(PH) assumption is violated. These issues have been so well recognized in the literature
that the top medical journals today require verifying the proportional hazards assumption
whenever the model is used. It is also known, however, unlike the linear regression models,
the proportional hazards regression models are typically not nested; dropping or adding a
covariate to an existing PH model can result in non-proportional hazards (Ford et al., 1995).
The only known exception is when the covariate under consideration follows a positive stable
distribution.

Proportional hazards regression models are often applied in biomedical studies to com-
pare treatments in randomized clinical trials, or to study exposure effects in observational
studies. In the former it is always more efficient asymptotically to adjust for covariates
(Schoenfeld, 1983; Lagakos and Schoenfeld, 1984), while in the latter it is crucial to adjust
for uncontrolled confounders for the purpose of causal inference.

Strandberg et al. (2012) considered the case where the main treatment or exposure effect
follows the proportional hazards assumption, while the effects of additional covariates do
not necessarily. More specifically, they consider

λ(t|Z1, Z2) = λ0(t) exp {β1Z1 + β2(t)Z2} . (16.15)

The above, of course, can be seen as a special case of Model (16.1) with multiple covariates,
and the general theory under Model (16.1) as described earlier extends in a straightforward
fashion. In particular, (16.10) is now a system of equations whose solution, βPL, is the
population limit of the partial likelihood estimator as n → ∞. An approximate equation
similar to that of (16.11) can be written down:∫ ∞

0

v(t){β(t)− βPL}s(0)(β(t), t)λ0(t)dt ≈ 0, (16.16)
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where v(t) is the same as before. Since s(0) and λ0 are scalars, if v(t) is a diagonal matrix,
then components of βPL are weighted averages of the corresponding components of β(t)

over time. In particular, under Model (16.15), since β1 is constant, then β
(1)
PL = β1 if v(t) is

diagonal.
Strandberg et al. (2012) carried out extensive simulations to study the commonly used

partial likelihood estimator of β1 under various shapes of β2(t) and λ0(t). It is perhaps not
surprising that the shape of λ0(t) has very little impact on the estimated β1. When Z1 and

Z2 are independent like in randomized clinical trials, the bias of β̂1 is typically no more than
15%. This can be explained by the fact that v(t) should be close to diagonal for most of
the t values, when Z1 and Z2 are independent. But when Z1 and Z2 are dependent, which
is typically the case in observational studies between exposure and potential confounders,
the bias can be very severe. In Table 16.3 we give some results that are consistent with the
findings of Strandberg et al. (2012), but were nonetheless not included in the paper due to
space limitation.

For the table, data were generated as piecewise constant to approximate different shapes
of β2(t): (a) increasing, (b) decreasing, (c) increasing then decreasing, and (d) decreasing
then increasing. Ten change points were used resulting in 11 steps for β2(t). The change
points in each case were chosen so that approximately equal numbers of events fell in each
interval. The baseline hazard function λ0(t) was constant. The covariate Z1 was binary
with equal probabilities of group membership, and Z2 was continuous: Z2 ∼ U(-2,0) if
Z1 = 0, and Z2 ∼ U(0,2) if Z1 = 1. Censoring was generated using U(0,τ), where τ was
chosen so there was approximately 20-40% censoring in each case. Each simulation was run
with 1,000 repetitions. In each repetition the proportional hazards model with constant β1

and β2 was fitted. The average and standard deviation over the repetitions of the partial
likelihood estimate β̂1 were tabulated, together with the coverage probabilities (CP) of the

95% confidence intervals for β1 based on β̂1 and its estimated standard error. ‘% Bias’ was
calculated using (β̂1 − β1)/β1 × 100 when β1 �= 0 and averaged over the 1,000 repetitions.

In Table 16.3 different strengths of the main effect were considered: β1 = 2, 0.5 and 0.
When β1 = 2, the percentage of bias ranged from -43% to 17%, and the 95% confidence
interval coverage probability varied from 45% to 96%, with the most severe bias and the
lowest coverage probabilities occurring for case (d). For β1 = 0.5, the percent bias ranged
greatly from -94% to 51%, and the coverage probabilities ranged from 75% to 95%. Although
there were relatively good coverage probabilities even when the bias was as much as 50%,
they were probably reflections of over-estimated standard errors. When β1 = 0, the coverage
probability was between 83% and 97%, indicating an often inflated type I error rate for
testing β1 = 0. Although censoring has some tendency to lessen the time-varying effect of
β2(t) by making the later observations unobservable, it can worsen the bias and the coverage
probability of the 95% confidence intervals in some cases.

Anderson and Fleming (1995) showed that in randomized clinical trials when β1 = 0

under Model (16.15), the asymptotic bias of the partial likelihood estimator β̂1 is zero. This
is no longer the case when Z1 and Z2 are dependent. The above findings have important
implications in observational studies when the proportional hazards model is used to adjust
for potential confounders. Since the proportional hazards assumption is often likely violated
in practice, an estimator that is robust and interpretable becomes crucial.
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TABLE 16.3
Effect of non-PH on estimation of β1 when Z(1) and Z(2) are strongly dependent, n = 100.

No Censoring Censoring

β1 β̂1 (SD) CP % Bias β̂1 (SD) CP % Bias

(a) 2 1.42 (0.36) 0.79 -29% 1.82 (0.42) 0.96 -9%

(b) 2.11 (0.84) 0.72 5% 1.76 (0.76) 0.79 -12%

(c) 2.33 (0.52) 0.88 17% 2.05 (0.54) 0.96 3%

(d) 1.13 (0.38) 0.45 -43% 1.29 (0.47) 0.70 -35%

(a) 0.5 0.61 (0.38) 0.95 22% 0.76 (0.48) 0.91 51%

(b) 0.05 (0.44) 0.75 -89% 0.03 (0.48) 0.77 -94%

(c) 0.42 (0.41) 0.94 -16% 0.45 (0.46) 0.95 -9%

(d) 0.25 (0.37) 0.93 -50% 0.26 (0.47) 0.92 -48%

(a) 0 0.34 (0.39) 0.86 - 0.40 (0.50) 0.86 -

(b) -0.35 (0.39) 0.86 - -0.43 (0.47) 0.83 -

(c) 0.07 (0.40) 0.95 - 0.07 (0.45) 0.94 -

(d) -0.05 (0.37) 0.97 - -0.08 (0.45) 0.95 -

16.5 Proportional hazards regression for correlated data

The proportional hazards regression model has been extended to correlated survival data,
first as the frailty model which contains a random intercept on the baseline hazard func-
tion, then more generally, as the mixed-effects model which allows random effects on ar-
bitrary covariates. The proportional hazards mixed-effects model (PHMM) is parallel to
the linear, non-linear and generalized linear mixed-effects models (LMM, NLMM, and
GLMM). For clustered data let i = 1, ..., n denote the clusters, and j = 1, ..., ni denote
the observations from a cluster. The observed data for individual ij is (Xij , δij , Zij), where
Xij = min(Tij , Cij), δij = I(Tij ≤ Cij), and the notation are otherwise the same as earlier
for independent and identically distributed (i.i.d.) data. The proportional hazards mixed-
effects model can be written as

λij(t) = λ0(t) exp(β
′Zij + b′iWij), (16.17)

where compared to Model (16.1), we have the addition of the random effects bi for cluster i,
and Wij is usually a sub-vector of Zij corresponding to those covariates that have random
effects. W may also include a ‘1’ if there is a random effect on the baseline hazard itself.
WhenW = 1, (16.17) becomes the shared frailty model. The inclusion of the b′W term in the
model represents cluster by covariate interactions, such as a treatment by center interaction
in multi-center clinical trials. The random effects bi’s are assumed to be i.i.d. according to
some distribution; in this way the estimation of the random effects is different from the
fixed effects when cluster itself is treated as a categorical variable. This is often referred to
as “borrowing strength,” since the estimation of bi makes use of the whole dataset, and not
just the data from cluster i. Typically the bi’s are assumed to be from N(0,Σ).
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Inference under Model (16.17) can be carried out using nonparametric maximum likeli-
hood (Vaida and Xu, 2000, NPMLE) or penalized partial likelihood (Ripatti and Palmgren,
2000, PPL). Gamst et al. (2009) established the consistency and asymptotic normality of
the NPMLE, and carried out extensive comparisons of the NPMLE and the PPL using sim-
ulations. The PPL is faster to compute, but is less accurate when the sample size is small,
and also its variance estimation is not straightforward. The NPMLE is numerically stable
and accurate, but is more computationally intensive. The two estimators are implemented
in R packages phmm and coxme, respectively.

Under the special case of frailty model O’Quigley and Stare (2002) demonstrated the
robustness in the fixed effects estimation against frailty distribution misspecifications. Xu
and Gamst (2007) studied the effect of non-proportional hazards on the estimation of the
parameters. They considered data generated under

λij(t) = λ0(t) exp{β(t)′Zij + b′iWij}, (16.18)

where the fixed regression effect β was allowed to vary with time t. Parallel to the develop-
ments in Section 16.3, denote

S(r)(β; t, θ) =
1

N

n∑
i=1

ni∑
j=1

Yij(t) exp(β
′Zij)Z

⊗r
ij Eθ(e

b′iWij |yi), (16.19)

for r = 0, 1, 2, where N =
∑n

i=1 ni, θ = (β,Σ, λ0) contains all the parameters under the
PHMM (16.17), and a⊗0 = 1, a⊗1 = a and a⊗2 = aa′ for a vector a. Consider the NPMLE

θ̂ = (β̂, Σ̂, λ̂0), which can be estimated using a Monte Carlo EM algorithm (Vaida and Xu,

2000). It can be verified that at the convergence of the EM algorithm, β̂ satisfies

n∑
i=1

ni∑
j=1

∫ ∞

0

{
Zij −

S(1)(β; t, θ)

S(0)(β; t, θ)

}
dNij(t) = 0. (16.20)

The above equation can be seen directly from the equations that are solved at the M-steps;
it can also be derived as the score equation via direct differentiation of the log likelihood
using one-dimensional submodels, as in Murphy (1995).

Denote s(r)(β; t, θ) = E{S(r)(β; t, θ)}, r = 0, 1, 2, and v(β; t, θ) = s(2)(β; t, θ)/s(0)(β; t, θ)−
{s(1)(β; t, θ)/s(0)(β; t, θ)}⊗2 is the derivative of s(1)/s(0) with respect to the first argument
β.

Theorem 4 Under regularity conditions and assuming that
∫
v(β; t, θ)s(0)(β(t); t, θ)λ0(t)dt

is positive definite, as n → ∞ the NPMLE β̂ converges in probability to β∗, which is the
unique zero of the following equation:∫ ∞

0

{
s(1)(β(t); t, θ(t))

s(0)(β(t); t, θ(t))
− s(1)(β; t, θ)

s(0)(β; t, θ)

}
s(0)(β(t); t, θ(t))λ0(t)dt = 0, (16.21)

where θ(t) = (β(t),Σ, λ0).

The asymptotic normality of β̂ under Model (16.18) was established in Dupuy (2009).
Using a first-order Taylor expansion of {·} in (16.21), we have∫ ∞

0

{β(t)− β∗}v(β̃(t); t, θ̃(t))s(0)(β(t); t, θ(t))λ0(t)dt = 0, (16.22)

where β̃(t) is between β(t) and β∗, and θ̃(t) = (β̃(t),Σ, λ0). Solving (16.22) for β∗ we



Robustness of Proportional Hazards Regression 337

see that the population value β∗ underlying β̂ is a weighted average of β(t) over time.
Meanwhile from (16.20) we see that when there is censoring, the censored observations
lose their contribution to the estimating equation; therefore, the equation gives insufficient
weights to the later censored observations. This results in an average β value that is biased
towards the earlier values of β(t), as compared to the uncensored case.

The above findings are consistent with the fixed-effects-only case discussed earlier in the
chapter. What is perhaps more curious is how the estimates of the variance components
in Σ are affected by non-proportionality. Xu and Gamst (2007) gave analytic results for a
single covariate with both non-proportional and random effects:

λij(t) = λ0(t) exp[{β(t) + bi}Zij ]. (16.23)

Under the PHMM we fit λij(t) = λ∗0(t) exp{(β∗ + b∗i )Zij}. Earlier results of this chapter
imply that in the absence of censoring the least-false parameter value

β∗ + b∗i ≈
∫
{β(t) + bi}dFi(t) =

∫
β(t)dFi(t) + bi, (16.24)

where Fi(t) is the marginal distribution function of the failure times in cluster i. If we assume
for the moment that the covariate values are non-negative, then a larger bi implies higher
relative risks and shorter failure times in cluster i, i.e., Fi(·) puts more weight on earlier
times. If β(t) is decreasing, this shows that bi and

∫
β(t)dFi(t) are positively correlated,

therefore Σ∗ = Var(b∗i ) = Var(β∗ + b∗i ) > Var(bi) = Σ. When allowing censoring in general,
Fi(·) is replaced by the intensity of the counting process, which also puts more weight on
the earlier values of β(t) under larger bi. The above argument does not rely on the positivity
of the covariate values, and it shows that Σ∗ > Σ if β(t) is decreasing. A similar argument
shows that Σ∗ < Σ if β(t) is increasing.

When there are more than one covariates the effect of non-proportional hazards on
the estimation of Σ is more complex. Xu and Gamst (2007) provided simulation results
to illustrate various scenarios, as well as a method for checking the proportional hazards
assumption in Model (16.17).
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Part IV deals with estimation for models with more complex censoring and sampling
schemes than simple right censoring. Many of these censoring schemes have problems in
deriving inference techniques since the counting process techniques used in the study of
inference techniques for right-censored data no longer hold true. This is particularly true
for interval (Chapter 18) and current status data (Chapter 19).

In Chapter 17 by Borgan and Samuelsen the focus is on estimation based on one of
two sampling schemes. In these two sampling schemes there are cases that have failed
and controls that are still alive. Often for all patients we need to confirm diagnosis, collect
additional data or examine some biological sample to check on the assignment of patients to
treatment or control and make comparisons. This confirmatory data analysis may be quite
expensive and often uses up individual patient biological material which may be useful in
other experiments. Clearly in such a situation a design that uses up the least amount of
data is the best. In particular this is a concern when we have a large cost of verifying some
biological covariate.

There are two common cost effective designs for rare diseases, the nested case-control
study and the case-cohort study. For both designs complete covariate information is collected
on all failures (cases) and on a sample of survivors (controls). In a nested case-control study
complete information is collected on each case and on a small sample of survivors at the
time of the case’s failure. For a case-cohort design a subcohort is randomly selected from
the full cohort and these are used as controls at all event times at which they are at risk.
Chapter 17 looks at classical versions of the two designs using simple random sampling.

In the remaining two chapters of this part we look at two other censoring schemes. In
Chapter 18 by Sun and Li the problem of interval censoring is examined. Interval censoring
arises when for some individuals all we know is that the event of interest is in an interval
(L,R]. This type of censoring arises in many studies when the event of interest can only be
detected at a visit to the physician. Interval censoring is more general than right censoring
or left censoring which are special cases of this scheme. In this type of censoring, since the
counting process approach does not work, many of the estimators are obtained using an EM
algorithm. The chapter studies the usual interval censored case as well as some modified
interval censoring schemes and examines how one can estimate the survival function and
regression coefficients in the Cox model.

In the final chapter of this part, Jewell and Emerson present a special case of interval
censoring, namely current status data. This type of censoring occurs when the subject is
observed only once for the occurrence of failure. At this single planned time we know only
the observation time and the failure status. The failure time is either right censored (subject
alive) or left censored (subject dead) at the observation time. They look at how one can
estimate a survival curve or regression models for the survival probability using current
status by studying a dataset of avalanche victims.
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17.1 Introduction

In cohort studies, regression methods are commonly applied to assess the influence of risk
factors and other covariates on mortality or morbidity; in particular Cox-regression is much
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used. Estimation in Cox’s model is based on a partial likelihood, which at each observed
death or disease occurrence (“failure”) compares the covariate values of the failing individ-
ual to those of all individuals at risk. Thus Cox regression requires collection of covariate
information for all individuals in the cohort, even when only a small fraction of these actu-
ally get diseased or die. This may be very expensive, or even logistically impossible. Further
when covariate measurements are based on biological material stored in biobanks, it will
imply a waste of valuable material that one may want to save for future studies.

Cohort studies are considered to be the most reliable study design in epidemiology, while
traditional case-control studies are easier and quicker to implement, but statistically less
efficient. Further the modeling framework of traditional case-control studies (contingency
tables, logistic regression) does not consider the time aspect of the development of a disease.
The cohort sampling methods considered in this chapter are developed to provide study
designs that, like cohort studies, take the time aspect into account and at the same time
maintain the cost-effectiveness of traditional case-control studies.

There are two main types of cohort sampling designs: nested case-control studies and
case-cohort studies. For both types of designs, covariate information is collected for all failing
individuals (“cases”), but only for a sample of the individuals who do not fail (“controls”).
This may save valuable biological material and drastically reduce the workload of data
collection and error checking compared to a full cohort study. Further, as most of the
statistical information in a rare disease situation will be contained in the relatively few
cases (and the controls), such studies may still be sufficient to give reliable answers to the
questions of interest.

The two types of cohort sampling designs differ in the way controls are selected. For
nested case-control sampling, one selects for each case a small number of controls from
those at risk at the case’s failure time, and a new sample of controls is selected for each case.
For the case-cohort design a subcohort is selected from the full cohort, and the individuals
in the subcohort are used as controls at all failure times when they are at risk. In their
original forms, the designs use simple random sampling without replacement for the selection
of controls and subcohort (Thomas, 1977; Prentice, 1986). Later the designs have been
modified to allow for stratified random sampling (Langholz and Borgan, 1995; Borgan et al.,
2000).

The purpose of the chapter is to review and discuss the classical versions of the nested
case-control and case-cohort designs using simple random sampling and their modifications
with stratified sampling. Our main focus is on estimation of relative risks using partial
likelihoods and pseudo-likelihoods or weighted likelihoods that resemble the full cohort
partial likelihood. But we also consider other topics like estimation of absolute risk and
maximum likelihood estimation for the entire cohort, treating unobserved covariates as
missing data.

17.2 Cox regression for cohort data

We first review Cox regression for cohort data. Consider a cohort C = {1, . . . , n} of n
independent individuals, and let hi(t) be the hazard rate for the ith individual with vector
of covariates xi = (xi1, . . . , xip)

′. The covariates may be time-fixed or time-dependent, but
we have suppressed the time-dependency from the notation. We assume that the covariates
of individual i are related to its hazard rate by Cox’s regression model:

hi(t) = h(t |xi) = h0(t) exp(β
′xi). (17.1)
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Here β = (β1, . . . , βp)
′ is a vector of regression coefficients describing the effects of the co-

variates, while the baseline hazard rate h0(t) corresponds to the hazard rate of an individual
with all covariates equal to zero. In particular we may interpret eβj as a hazard ratio (or
more loosely a relative risk). We will focus on model (26.4), which adopts the exponential
relative risk function r(β,xi) = exp(β′xi). But it should be noted that most results for Cox
regression carry over to other relative risk functions, one example being the excess relative
risk function r(β,xi) =

∏p
j=1 {1 + βjxij}.

The individuals in the cohort may be followed over different periods of time, from an
entry time to an exit time corresponding to failure or censoring. The risk set R(t) is the
collection of all individuals who are under observation just before time t, and n(t) = #R(t)
is the number at risk at that time. We denote by t1 < t2 < · · · < td the times when failures
are observed and, assuming no tied failure times, we let ij denote the individual who fails
at tj .

We assume throughout that late entries and censorings are independent in the sense
that the additional knowledge of which individuals have entered the study or have been
censored before time t does not carry information on the risks of failure at t, cf. Kalbfleisch
and Prentice (2002, Sections 1.3 and 6.2). Then the vector of regression coefficients in (26.4)

is estimated by β̂, the value of β maximizing Cox’s partial likelihood

L(β) =

d∏
j=1

exp(β′xij )∑
k∈R(tj)

exp(β′xk)
. (17.2)

It is well known that β̂ can be treated as an ordinary maximum likelihood estimator (An-

dersen and Gill, 1982). In particular, β̂ is approximately multivariate normally distributed
around the true value of β with a covariance matrix that may be estimated by the inverse
information matrix.

17.3 Nested case-control studies

In this section we consider the original form of the nested case-control design, where the con-
trols are selected by simple random sampling. A modification of the design using stratified
sampling is discussed in Section 17.8.1.

17.3.1 Sampling of controls

The nested case-control design was originally suggested by Thomas (1977), but see also
Prentice and Breslow (1978). For this design, if a case occurs at time t, one selects m − 1
controls by simple random sampling from the n(t)− 1 non-failing individuals in the risk set
R(t). The set consisting of the case and these m−1 controls is called a sampled risk set and

denoted R̃(t). Covariate values are ascertained for the individuals in the sampled risk sets,
but are not needed for the remaining individuals in the cohort. Figure 17.1 illustrates the
basic features of a nested case-control study for a hypothetical cohort of seven individuals
when one control is selected per case (i.e., when m = 2).

Note that the selection of controls is done independently at the different failure times.
Thus subjects may serve as controls for multiple cases, and a case may serve as control
for other cases that failed when the case was at risk. For example, the case at time t4
in the figure had been selected as control at the earlier time t1. A basic assumption for
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FIGURE 17.1
Nested case-control sampling, with one control per case, from a hypothetical cohort of
seven individuals. Each individual is represented by a line starting at an entry time and
ending at an exit time corresponding failure or censoring. Failure times are indicated by
dots (•), potential controls are indicated by bars (|), and the sampled controls are indicated
by circles (◦).

valid inference is that not only delayed entries and censorings, but also the sampling of
controls are independent in the sense that the additional knowledge of which individuals
have entered the study have been censored or have been selected as controls before time t
does not carry information on the risks of failure at t. This assumption will be violated if,
e.g., in a prevention trial, individuals selected as controls change their behavior in such a
way that their risk of failure is different from similar individuals who have not been selected
as controls.

17.3.2 Estimation and relative efficiency

For nested case-control data the vector of regression coefficients in (26.4) may be estimated

by β̂ncc, the value of β maximizing the partial likelihood

Lncc(β) =

d∏
j=1

exp(β′xij )∑
k∈R̃(tj)

exp(β′xk)
, (17.3)

cf. Thomas (1977), Oakes (1981) and Section 17.7.1 below. Note that (17.3) is similar to
the full cohort partial likelihood (17.2), except that the sum in the denominator is only
over subjects in the sampled risk set. Also note that (17.3) coincides with a conditional
likelihood for matched case-control data under a logistic regression model (Breslow, 1996).

Inference concerning the regression coefficients, using usual large sample likelihood meth-
ods, can be based on the partial likelihood (17.3). More specifically, under weak regularity
conditions, one may prove that (Goldstein and Langholz, 1992; Borgan et al., 1995)

√
n
(
β̂ncc − β

)
d→ N(0,Σ−1

ncc), (17.4)

and that Σncc may be estimated consistently by n−1Incc(β̂ncc), where Incc(β) =
−∂2 logLncc(β)/∂β

′∂β is the observed information matrix. An outline of the main steps
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in the proof is given in Section 17.7.1. Furthermore nested models may be compared by
likelihood ratio tests. For computing one may use standard software for Cox regression (like
coxph in the survival package in R), formally treating the label of the sampled risk sets as
a stratification variable in the Cox regression, or software for conditional logistic regression.

The relative efficiency of a nested case-control study compared to a full cohort study
is the ratio of the variance of the estimator for full cohort data to the variance of the
estimator based on nested case-control data. If there is only one covariate in the model,
and its regression coefficient equals zero, the relative efficiency of the nested case-control
design compared to a full cohort study is (m−1)/m, independent of censoring and covariate
distributions (Goldstein and Langholz, 1992). When the regression coefficient differs from
zero, and when more than one regression coefficient has to be estimated, the efficiency may
be lower (Borgan and Olsen, 1999).

17.3.3 Example: radiation and breast cancer

For illustration we will use data from a cohort of female patients who were discharged from
two tuberculosis sanatoria in Massachusetts between 1930 and 1956 to investigate breast
cancer risk of radiation exposure due to fluoroscopy (Hrubec et al., 1989). Radiation doses
have been estimated for 1,022 women who received radiation exposure to the chest from
X-ray fluoroscopy lung examinations. The remaining 698 women in the cohort received
treatments that did not require fluoroscopic monitoring and were radiation unexposed. The
patients had been followed up until the end of 1980, by which time 75 breast cancer cases
were observed.

For this cohort radiation data have been collected for all 1,720 women. But the workload
of exposure data collection would have been reduced if the investigators had used a cohort
sampling design. To illustrate the methods of this chapter, we will here and in Section 17.4.5
select nested case-control and case-cohort samples from the cohort and analyse the sampled
data.

To model the effect of radiation dose on breast cancer risk, it is common to adopt an
excess relative risk model (e.g., Preston et al., 2002). However, for our illustrative purpose,
we choose to stay within the framework of Cox’s regression model, and we will use x =
log2(dose + 1), with dose measured in grays (Gy), as covariate. Table 17.1 gives parameter
estimates for cohort data and nested case-control data with two controls per case (i.e.,
m = 3) when age is used as time scale in (26.4). The cohort estimate is based on radiation
data for all 1,720 women, while we only need radiation information for 211 women (75
cases and 136 controls) for the nested case-control data. (The number of women selected
as controls is less than 150, since 14 women were members of two sampled risk sets.)
Nevertheless, the parameter estimates are fairly similar for the two designs, and the standard

TABLE 17.1
Estimates of the effect of the covariate x = log2(dose + 1) on breast cancer risk for cohort
data and nested case-control data with two controls per case.

Study design Parameter Standard Wald test P-value

estimate error statistic

Cohort data 0.491 0.162 3.04 0.002

Nested case-control data 0.539 0.231 2.34 0.019
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error of the nested case-control estimate is only 40% larger than the standard error of the
cohort estimate.

17.3.4 A note on additional matching

In order to keep the presentation simple, we have so far considered the proportional hazards
model (26.4), where the baseline hazard rate is the same for all individuals. Often this will
not be reasonable. To control for the effect of one or more confounding factors, one may
adopt a stratified version of (26.4), where the baseline hazard differs between population
strata generated by the confounders. For instance, for the breast cancer example of Sec-
tion 17.3.3, one may control for calendar time and age at first treatment by allowing the
baseline to depend on these covariates. The regression coefficients are, however, assumed
to be the same across population strata. Thus the hazard rate of an individual i from
population stratum c is assumed to take the form

hi(t) = h0c(t) exp(β
′xi). (17.5)

When the stratified proportional hazards model (17.5) applies, the sampling of controls in
a nested case-control study should be restricted to those at risk in the same population
stratum as the case. We say that the controls are matched by the stratification variable(s).
In particular if an individual in population stratum c fails at time t, one selects at random
m− 1 controls from the nc(t)− 1 non-failing individuals at risk in this population stratum.
Then the partial likelihood (17.3) still applies, and the estimation of the vector of regression
coefficients is carried out as described in Section 17.3.2.

17.4 Case-cohort studies

Case-cohort studies are considered in this section. We start out with the original version
of the design, where the subcohort is selected by simple random sampling, and discuss two
ways of analysing the case-cohort data. Then the modification with stratified sampling of
the subcohort is considered, and finally some comments on post-stratification are given.

17.4.1 Sampling of the subcohort

The case-cohort design was originally suggested by Prentice (1986), although related de-
signs without taking a time-perspective into consideration had previously been considered
(Kupper et al., 1975; Miettinen, 1982). For the case-cohort design one selects a subcohort

C̃ of size m̃ from the full cohort by simple random sampling, and the individuals in the
subcohort are used as controls at all failure times when they are at risk. Covariate values
are ascertained for the individuals in C̃ as well as for the cases occurring outside the subco-
hort, but they are not needed for the non-failures outside the subcohort. Similarly to nested
case-control sampling, an assumption for valid inference is that individuals sampled to the
subcohort do not change their behavior in such a way that their risk of failure is different
from (similar) individuals who have not been selected to the subcohort. Figure 17.2 illus-
trates a case-cohort study for the hypothetical cohort of Figure 17.1 with subcohort size
m̃ = 3.
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FIGURE 17.2
Case-cohort sampling, with subcohort size m̃ = 3, from the hypothetical cohort of Fig-
ure 17.1. Failure times are indicated by dots (•), and the individuals in the subcohort are
indicated by thick lines.

17.4.2 Prentice’s estimator

Different methods have been suggested for estimating the regression coefficients in (26.4)
from case-cohort data. The original suggestion of Prentice (1986) consists of maximizing
what is referred to as a pseudo-likelihood:

LP(β) =

d∏
j=1

exp(β′xij )∑
k∈S(tj) exp(β

′xk)
. (17.6)

Here the sum in the denominator is over the set S(tj) consisting of the subcohort individuals
at risk with the case ij added when it occurs outside the subcohort. A modification of
Prentice’s pseudo-likelihood, where a case outside the subcohort is not included in S(tj)
was considered by Self and Prentice (1988). However, their main aim was to study large
sample properties of the case-cohort estimator, not to provide an alternative to (17.6) for
practical use.

Each factor of the product in (17.6) is of the same form as a factor of the product
in the partial likelihood (17.3). In (17.6), however, controls from the subcohort are used
over again for each case and thus the factors are dependent. This has the consequence that
(17.6) is not a partial likelihood (Langholz and Thomas, 1991). Thus standard errors cannot
be computed directly from the information matrix of (17.6) and likelihood ratio statistics
will not follow chi-square distributions. But (17.6) provides unbiased estimating equations

(Prentice, 1986), and one may show that the maximum pseudo-likelihood estimator β̂P is
approximately normally distributed (Self and Prentice, 1988).

More specifically, for the information matrix IP(β) = −∂2 logLP(β)/∂β
′∂β we have

under standard assumptions that n−1IP(β̂P) → Σ in probability, where Σ is the same limit
as for the cohort information matrix. For the case-cohort estimator we then have that

√
n(β̂P − β)

d→ N(0,Σ−1 +
1− p

p
Σ−1ΔΣ−1), (17.7)

where p is the (limiting) proportion of the cohort that is sampled to the subcohort, and Δ
is the limit in probability of the covariance matrix of the individual score-contributions. An
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outline of the proof is given in Section 17.7.2. An interpretation of the covariance matrix
for β̂P is that it is the sum of the covariance matrix for the cohort estimator and a term
that accounts for additional variation due to sampling of the subcohort.

For testing simple associations in Cox’s model (26.4), the relative efficiency of a nested
case-control study with m−1 controls per case is (m−1)/m when compared to a full cohort
study (cf. Section 17.3.2). It does not seem possible to derive a similar simple result for the
case-cohort design (Self and Prentice, 1988). But although published results are somewhat
conflicting (Langholz and Thomas, 1991; Barlow et al., 1999), the relative efficiencies of
nested case-control and case-cohort studies seem to be about the same when they involve the
same number of individuals for whom covariate information has to be collected. However,
case-cohort studies may be more sensitive to large amounts of right censoring and left
truncation (Langholz and Thomas, 1991).

The covariance matrix of the case-cohort estimator can be estimated by a straightforward
plug-in procedure using (17.7). The estimate of Σ is obtained directly from IP(β̂P) and in
programs that allow for calculation of score-contributions and dfbetas the covariance matrix
Δ is just replaced by the empirical counterpart; see Therneau and Li (1999) for details. An
alternative to this model based estimator is simply to use a robust sandwich type estimator
(Lin and Ying, 1993; Barlow, 1994).

17.4.3 IPW estimators

Prentice’s pseudo-likelihood (17.6) can be calculated for time-dependent covariates also
when covariate information for cases outside the subcohort are ascertained only at their
failure times. This may be useful in some situations. However, with fixed covariates (or
when the full covariate paths of time-dependent covariates are easily retrieved) it would
seem that information may be lost by this estimating procedure. Another proposal for
case-cohort studies, first suggested by Kalbfleisch and Lawless (1988), is to maximize the
weighted likelihood (or, more precisely, weighted pseudo-likelihood)

LW(β) =

d∏
j=1

exp(β′xij )∑
k∈S̃(tj) exp(β

′xk)wk
, (17.8)

where S̃(tj) is the set consisting of the subcohort individuals at risk at time tj together
with all cases that are at risk at that time. The weights are wk = 1 for cases (whether in
the subcohort or not) and wk = 1/pk for non-failures in the subcohort, where the pk’s are
appropriate inclusion probabilities. Note that we have assumed that cases are sampled with
probability one, so inverse probability weighting (IPW) is used. The estimator is thus an
application of the Horvitz-Thompson method.

Kalbfleisch and Lawless (1988) assumed that the inclusion probabilities pk were known.
Later Borgan et al. (2000), in the context of stratified case-cohort studies (Section 17.4.4),
suggested to set pk equal to the proportion of non-failures in the subcohort compared
to all non-failures. We denote the estimator thus obtained by β̂W. For a standard case-
cohort study with simple random sampling of the subcohort, this estimator coincides with
a suggestion by Chen and Lo (1999). We may show that

√
n(β̂W − β)

d→ N(0,Σ−1 +
q(1− p)

p
Σ−1Δ0Σ

−1), (17.9)

where Σ and p are defined in connection with (17.7), q is the (limiting) proportion of non-
failures in the cohort, and Δ0 is the limit in probability of the covariance matrix of the
individual score-contributions among non-failures. The result is a special case of (17.10)
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below. Since q < 1 and the variance of score-contributions over non-failures is smaller than
over the full cohort we find, by comparing (17.7) and (17.9), that the variance of β̂W is

smaller than the variance of the original Prentice estimator β̂P. However, in practice this
matters little unless there is a fairly large proportion of cases, and in such situations the
case-cohort design will typically not be chosen.

Estimation of the covariance matrix of the IPW estimator may be performed by a
slight modification of the plug-in procedure described at the end of Section 17.4.2; see
e.g., Langholz and Jiao (2007). We may also use the robust estimator, although now this
estimator is theoretically conservative.

17.4.4 Stratified sampling of the subcohort

In the presentation of case-cohort sampling in Section 17.4.1, we assume that covariate
information is collected only for the cases and the non-failures in the subcohort. However,
since a case-cohort study is performed within a well-defined cohort, there will typically
be additional background data that are available for all cohort members. For instance a
surrogate measure of an exposure of interest may be available for everyone. Such background
data may be used to classify the cohort individuals into S distinct strata. With ns individuals
in stratum s, one then selects a random sample of m̃s individuals to the subcohort C̃ from
each stratum s; s = 1, 2, . . . , S. By selecting the subcohort by stratified sampling, one may
increase the variation in the subcohort of a covariate of main interst, and thereby achieve
a more efficient estimation of the effect of this covariate (Samuelsen, 1989; Borgan et al.,
2000).

As for the simple case-cohort design, there are different options for analysing stratified
case-cohort data. Borgan et al. (2000) discussed three estimators. We will here restrict

attention to their Estimator II, denoted β̂II, which is a generalization of the IPW estimator
of Section 17.4.3. We then use the weighted likelihood (17.8) with weights wk = 1 for cases
and wk = n0

s/m̃
0
s for non-failing subcohort members from stratum s. Here n0

s and m̃0
s are

the number of non-failures in the cohort and subcohort, respectively, who belong to stratum
s.

For Estimator II we have (Borgan et al., 2000; Samuelsen et al., 2007)

√
n(β̂II − β)

d→ N(0,Σ−1 +

S∑
s=1

qs(1− ps)

ps
Σ−1Δ0sΣ

−1). (17.10)

Here qs is the (limiting) proportion of non-failures who belong to stratum s and ps is the
(limiting) proportion of non-failures in this stratum who are sampled to the subcohort.
Furthermore Δ0s is the limit in probability of the covariance matrix of the individual score-
contributions among non-failures in stratum s. We may estimate the covariance matrix of
Estimator II by a plug-in procedure using (17.10); details are provided in Langholz and Jiao
(2007) and Samuelsen et al. (2007). For stratified case-cohort data, one should avoid using
the robust covariance estimator as this tends to give variance estimates that are quite a bit
too large.

17.4.5 Example: radiation and breast cancer

We consider the data from Section 17.3.3 on radiation and breast cancer. To illustrate the
case-cohort methodology, we first select at random a subcohort of 150 individuals from
the full cohort. There were 7 cases in the selected subcohort, so for a case-cohort analysis
radiation data are needed for 218 women. Table 17.2 gives Prentice’s estimate and the IPW
estimate obtained by maximizing (17.6) and (17.8). The estimates were computed using the
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TABLE 17.2
Estimates of the effect of the covariate x = log2(dose + 1) on breast cancer risk for cohort
data and case-cohort data where the subcohort is selected by simple random sampling (for
Prentice’s estimator and the IPW estimator) or stratified random sampling (for Estimator
II). See the text for details.

Estimator Parameter Standard Wald test P-value

estimate error statistic

Cohort estimator 0.491 0.162 3.04 0.002

Prentice’s estimator 0.519 0.215 2.41 0.016

IPW estimator 0.524 0.211 2.48 0.013

Estimator II 0.509 0.184 2.75 0.006

cch command in the survival package in R (version 2.13.0) with options method=”Prentice”
and method=”LinYing”, respectively. The two case-cohort estimates are very close, and so
are their standard errors. Comparing the case-cohort estimates with the nested case-control
estimate of Table 17.1, we note that the estimates and their standard errors are fairly
similar. This is a common observation for situations where case-cohort data and nested case-
control data contain about the same number of individuals for whom covariate information
is ascertained.

For the breast cancer cohort, information on the number of fluoroscopic examinations
is available for each woman. The number of examinations may be used as a surrogate for
the radiation exposure in situations where the latter is costly to obtain. So to illustrate
a stratified case-cohort study, we stratify the cohort into three strata: (i) the 698 women
with no fluoroscopic examinations (i.e., the unexposed women), (ii) the 765 women with
1-149 examinations, and (iii) the 257 women with 150 examinations or more. From each
stratum we select a random sample of 50 women to the subcohort, thereby selecting a
higher proportion of the women with many fluoroscopic examinations. From the stratified
case-cohort data we obtain Estimator II of Section 17.4.4 by the cch command with option
method=”II.Borgan”. The estimate is given in the last line of Table 17.2. We see that the
estimate is close to the cohort estimate and that its standard error is clearly smaller than
the standard errors for the estimates from the non-stratified case-cohort data.

17.4.6 Post-stratification and calibration

When describing the stratified case-cohort design in Section 17.4.4 we assume, for the ease of
presentation, that the cohort is stratified according to some background information (like a
surrogate measure for exposure) that is available for everyone. However, all information that
is recorded for every cohort member may be used for stratification, including information
on entry and follow-up times and whether an individual is a case or not. When follow-up
information is used to stratify the cohort, it is common to say that the cohort is post-
stratified.

Note that we may use stratified sampling to select the subcohort at the outset of the
study, and later redefine the strata by post-stratification. In fact, this is what we do in
Section 17.4.4 when we define the cases as a separate stratum. Another possibility is to
post-stratify on follow-up time (appropriately partioned). As shown by Samuelsen et al.
(2007), this corresponds to the “local averaging” estimator of Chen (2001b).

The idea of post-stratification can also be applied to background variables known for
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the entire cohort. Suppose a simple or stratified case-cohort sample has been selected at
the outset of a study. At the analysis stage, one may then post-stratify according to known
background variables, thereby modifying the sampling fractions. Such an approach may lead
to improved efficiency when the background variables are strongly related to the covariates
of the Cox model. In particular, if the background variables are included as covariates
in (26.4), the efficiency of the corresponding regression coefficients will improve greatly.
But obviously such an approach will break down with very fine post-stratification. Then
one option is to modify the weights using the double weighting method of Kulich and Lin
(2004) or the calibration technique of Breslow et al. (2009a,b) so that they better reflect
the full cohort information.

17.5 Comparison of the cohort sampling designs

If one wants to apply a cohort sampling design, a choice between a nested case-control and a
case-cohort study has to be made. The choice between the two designs depends on a number
of issues, and it has to be made on a case-by-case basis. We here discuss some issues that
should be considered to arrive at a useful design for a particular study.

17.5.1 Statistical efficiency and analysis

As mentioned in Section 17.4.2, the statistical efficiencies of the nested case-control and
case-cohort designs seem to be about the same when they involve comparable numbers of
individuals for whom covariate information has to be ascertained. Thus efficiency considera-
tions are usually not important for design decisions when studying a single disease endpoint.
If multiple endpoints are of interest, the situation may be different; cf. Section 17.5.2.

The statistical analysis of nested case-control data by Cox’s regression model (26.4) par-
allels the analysis of cohort data, and it may be performed by means of the usual likelihood
based methods and standard Cox regression software (or by software for conditional logistic
regression). For case-cohort data likelihood methods do not apply, and even though stan-
dard Cox regression software may be “tricked” to do the analysis (Therneau and Li, 1999;
Langholz and Jiao, 2007), this has made inference for case-cohort data more cumbersome.
But with the development of specialized computer software for case-cohort data (like cch
in the survival package in R), this drawback has become less important.

In a nested case-control study, the controls are sampled from those at risk at the cases’
failure times. Therefore one has to decide the time scale to be used in the analysis (e.g.,
age or time since employment) before the controls are sampled. This does not apply to a
case-cohort study, where the subcohort is selected without consideration of at risk status.
Moreover, while other failure time models than (26.4) may be used to analyze case-cohort
data (cf. Section 17.9), the analysis options for nested case-control data are more restricted.
Thus case-cohort data allow for more flexibility in model choice at the analysis stage (see,
however, Section 17.6).

17.5.2 Study workflow and multiple endpoints

Cohort sampling is useful both for prospective studies, like disease prevention trials, and for
retrospective studies, where the events have already happened, but covariate information
is costly to retrieve (e.g., from paper files). For the former case, the workflow can be made
more predictable with a case-cohort design. Since the subcohort is sampled at the outset
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of the study, more efforts can be used in early phases on processing subcohort information,
while the information on the cases may be processed later. For a nested case-control study,
however, control selection and ascertainment of covariate values for the controls have to
wait until the cases occur.

In a nested case-control study, as described in Section 17.3, the controls are matched to
their cases. So if one wants to study more than one type of endpoint (e.g., more than one
disease), new controls have to be selected for each endpoint. Here a case-cohort design may
give large savings by allowing the subcohort individuals to be used as controls for multiple
endpoints. However, in Section 17.6 we describe a method that also allows the controls in
a nested case-control study to be used for more than one endpoint.

Cohort sampling designs are often used in studies of biomarkers from cohorts with stored
biological samples. For such studies one should be aware of possible effects of analytic batch
and long-term storage. If these effects are substantial, a case-cohort study may give biased
results, and it is advisable to use a nested case-control design with matching on storage
time with the cases and their controls analyzed in the same batch. Otherwise a case-cohort
design may be the preferred approach, since it allows us to re-use the biomarkers for other
endpoints (Rundle et al., 2005).

17.5.3 Simple or stratified sampling

In Section 17.4.4 we discuss the possibility of selecting the subcohort for a case-cohort study
by stratified random sampling, and in Section 17.8.1 we consider a stratified version of the
nested case-control design. Stratified sampling may be a useful option when stratification
can be based on a surrogate measure of an exposure of main interest. One should be aware,
however, that there is “no free lunch” so the efficiency gain for the exposure of main interest
will often be accompanied by a loss in efficiency for other covariates. Thus stratified sampling
may be a useful option for studies with a focused research question, but less so for a
subcohort that is assembled to serve as controls for multiple endpoints.

17.6 Re-use of controls in nested case-control studies

In the partial likelihood (17.3), a case and its controls are included only at the failure time
of the case. When the covariate information obtained for cases and controls is time-fixed
(or the full trajectories of time-dependent covariates can be obtained), one may consider to
break the matching between a case and its controls and analyse the nested case-control data
as if they were case-cohort data (with a non-standard sampling scheme for the subcohort).
In this way the covariate information for cases and controls may be used whenever the
individuals are at risk. Such re-use of controls may lead to more efficient estimators and
counter some of the limitations of nested case-control studies discussed in Section 17.5. One
should be aware, however, that in some situations the matching is needed to avoid bias
(Section 17.5.2), and then one should avoid breaking the matching between a case and its
controls.

One way one may re-use the controls is by estimating the probability that an individual
is ever sampled as control, and then apply the weighted likelihood (17.8). For instance
Samuelsen (1997), see also Suissa et al. (1998), suggested using the weights wk = 1/pk,
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where pk = 1 for cases and

pk = 1−
∏(

1− m− 1

n(tj)− 1

)
(17.11)

for control individual k. The product in (17.11) is over failure times tj when individual
k is at risk. As for case-cohort data, the weighted likelihood does not possess likelihood
properties, so variance estimation requires special attention. Samuelsen (1997) developed a
variance estimator with the weights (17.11) which implies that the robust variance tends to
be conservative. However, other authors have found the robust variance to be adequate in
most situations (Samuelsen et al., 2007; Saarela et al., 2008; Støer and Samuelsen, 2012).

We have applied the weighted likelihood (17.8) with weights (17.11) for the nested case-
control data of Section 17.3.3. We then obtain the estimate 0.474 with standard error 0.207
(using Samuelsen’s variance estimator), corresponding to a Wald test statistic of 2.30.

The inclusion probability (17.11) may be modified in several ways. Additional matching
(Section 17.3.4) can be accounted for by replacing the number at risk n(tj) by the number
at risk who satisfy the matching criteria and by also restricting the product to be over
failure times satisfying the matching criteria (Salim et al., 2009; Cai and Zheng, 2012).
Furthermore nested case-control studies from partly overlapping cohorts can be combined
(Salim et al., 2009), and with controls sampled for multiple endpoints, one may calculate
an overall inclusion probability by taking the product in (17.11) to be over event times for
all endpoints (Saarela et al., 2008).

Alternative weights or inclusion probabilities have been suggested. Chen (2001b) consid-
ered “local averaging” based on partitioning the follow-up time into disjoint intervals. The
weights are the inverse sampling fractions among non-failures in each of the intervals. It has
been argued (Samuelsen et al., 2007) that Chen’s estimator can be seen as post-stratification
(Section 17.4.6) on the censoring interval, and that variances can be obtained from (17.10).
It has also been suggested to estimate the inclusion probabilities by logistic regression using
the indicator of being sampled among non-cases as response and the right-censoring time
as covariate (Robins et al., 1994; Samuelsen et al., 2007; Saarela et al., 2008). The local
averaging approach can be seen as a special case of this approach using censoring interval as
a categorical covariate. If there is a strong dependency between an exposure and censoring,
these estimators can give efficiency improvements compared to weights using (17.11); see
Chen (2001b) and Samuelsen et al. (2007).

17.7 Theoretical considerations

In Section 17.7.1 we derive the partial likelihood (17.3) for nested case-control data and
sketch the main steps in the derivation of the large sample properties of the maximum
partial likelihood estimator of β. Further in Section 17.7.2 we give an outline of the proof
of the large sample properties of the estimator for β based on pseudo-likelihoods for case-
cohort data.

17.7.1 Nested case-control data

For nested case-control data we adopt the counting process formulation of Borgan et al.
(1995). To this end we introduce, for all individuals i and all possible sampled risk sets r,
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the counting process

Ni,r(t) =
∑
j≥1

I{tj ≤ t, ij = i, R̃(tj) = r}. (17.12)

This process has a jump at time t if the ith individual fails at that time and the set r
is selected as the sampled risk set. Therefore, assuming Cox’s model (26.4), the intensity
process of (17.12) takes the form

λi,r(t) = Yi(t)hi(t)π(r | t, i) = Yi(t)h0(t) exp(β
′xi)π(r | t, i). (17.13)

Here Yi(t) is an at risk indicator for the ith individual and π(r | t, i) is the conditional
probability that r is selected as the sampled risk set, given “the past” and given that
individual i fails at time t. When the controls are selected by simple random sampling
without replacement

π(r | t, i) = 1(
n(t)−1
m−1

) (17.14)

for all subsets r of the risk set R(t) = {i |Yi(t) = 1} that contain i and are of size m. (For
all other subsets, π(r | t, i) = 0.)

To derive the partial likelihood, we first note that

π(i | t, r) = λi,r(t)∑
k∈r λk,r(t)

(17.15)

is the conditional probability that individual i fails at time t given “the past” and given that
a failure occurs for an individual in r at that time. When the controls are selected by simple
random sampling, we obtain from (17.13) and (17.14) that the conditional probability takes
the form

π(i | t, r) =
Yi(t) exp(β

′xi)π(r | t, i)∑
k∈r Yk(t) exp(β′xk)π(r | t, k)

(17.16)

=
Yi(t) exp(β

′xi)∑
k∈r Yk(t) exp(β′xk)

.

The partial likelihood is obtained by multiplying together such conditional probabilities
over all failure times tj , cases ij , and sampled risk sets R̃(tj):

Lncc(β) =

d∏
j=1

π(ij | tj , R̃(tj)) =

d∏
j=1

exp(β′xij )∑
k∈R̃(tj)

exp(β′xk)
. (17.17)

The at risk indicators may be omitted from (17.17) since the case and the sampled controls
are all at risk. This gives a justification of (17.3).

The maximum partial likelihood estimator β̂ncc solves Uncc(β) = 0, where Uncc(β) =
∂ logLncc(β)/∂β is the score function. Using (17.12), we may write

Uncc(β) =
∑
r

∫ τ

0

∑
i∈r

{
xi −

∑
k∈r Yk(t)xk exp(β

′xk)∑
k∈r Yk(t) exp(β′xk)

}
dNi,r(t), (17.18)

where τ is the upper time limit of the study. For the true value of β, standard counting
process theory (e.g., Aalen et al., 2008) gives the decomposition dNi,r(t) = λi,r(t)dt +
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dMi,r(t), where the Mi,r(t) are orthogonal martingales. Using this decomposition, (17.13)
and (17.14), we find that the score function takes the form

Uncc(β) =

∫ τ

0

∑
r

∑
i∈r

{
xi −

∑
k∈r Yk(t)xk exp(β

′xk)∑
k∈r Yk(t) exp(β′xk)

}
dMi,r(t) (17.19)

when evaluated at the true value of β. Thus the score (17.19) is a sum of stochastic integrals,
and hence a mean zero martingale. By the martingale central limit theorem, one may

then prove that n−1/2Uncc(β)
d→ N(0,Σncc) where Σncc is the limit in probability of the

predictable variation process of n−1/2Uncc(β). Further one may prove that 1/n times the
observed information matrix Incc(β) = −∂2 logLncc(β)/∂β

′∂β converges in probability to
Σncc. These results are key to prove (17.4). The formal proof is similar to the one of Andersen
and Gill (1982) for cohort data; see Borgan et al. (1995) for details.

17.7.2 Case-cohort data

We will now indicate how one may derive the large sample properties of case-cohort estima-
tors. For ease of presentation, we focus on the estimator of Self and Prentice (1988), which is
asymptotically equivalent to the Prentice estimator of Section 17.4.2. The Self and Prentice
estimator β̂SP is obtained by maximizing the pseudo-likelihood LSP(β) obtained from (17.8)

when cases outside the subcohort C̃ are not included in the sums in the denominator. The
large sample properties of the IPW estimator of Section 17.4.3 and the stratified estimator
of Section 17.4.4 may be derived along similar lines (Borgan et al., 2000; Samuelsen et al.,
2007).

To derive the large sample properties of β̂SP, we note that the normalized score
USP(β) = ∂ logLSP(β)/∂β of the Self and Prentice pseudo-likelihood may be decomposed
as

n−1/2USP(β) = n−1/2U(β) + n−1/2
n∑

i=1

(
1− n

m̃
Vi

)
Zi, (17.20)

where U(β) is the score of the full cohort partial likelihood (17.2), Vi is an indicator that
individual i is selected to the subcohort, and

Zi =

d∑
j=1

Yi(tj)

{
xi −

∑n
k=1 Yk(tj)xk exp(β

′xk)∑n
k=1 Yk(tj) exp(β′xk)

}
exp(β′xi)

S
(0)

C̃
(β, tj)

. (17.21)

In (17.21), Yi(tj) is an indicator that individual i is at risk at time tj , and

S
(0)

C̃
(β, tj) =

n

m̃

∑
k∈C̃

Yk(tj) exp(β
′xk).

The leading term on the right-hand side of (17.20) is the normalized score of the full cohort
partial likelihood, and converges weakly to a mean zero multivariate normal distribution
with covariance matrix Σ (Andersen and Gill, 1982). For the second term we may, con-
ditional on the complete cohort history and after approximating (17.21) by a quantity Z∗i
that only depends on observations from individual i, apply a central limit theorem for finite
populations (e.g., page 353 in Lehmann, 1975). The result is that the second term on the
right-hand side of (17.20) converges weakly to a mean zero multivariate normal distribution
with covariance matrix {(1−p)/p}Δ, where p is the limit of m̃/n andΔ is the limit in proba-
bility of the finite population covariance matrix of the Z∗i ’s. Further the two terms in (17.20)

are asymptotically independent. It follows that n−1/2USP(β)
d→ N(0,Σ + {(1 − p)/p}Δ).
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Further one may prove that 1/n times ISP(β) = −∂2 logLSP(β)/∂β
′∂β converges in prob-

ability to Σ. These results are key to prove that the normalized Self and Prentice estimator
converges weakly to the limiting multivariate normal distribution of (17.7). Further details
are given in Borgan et al. (2000), while Self and Prentice (1988) provide a formal proof.

17.8 Nested case-control: stratified sampling and absolute risk es-
timation

In Section 17.3 we discuss the classical nested case-control design, where the controls are
selected by simple random sampling, and show how we may estimate relative risks. Here we
will consider stratified (or counter-matched) sampling of the controls and describe estima-
tion of absolute risks.

17.8.1 Counter-matching

In Section 17.4.4 we discuss stratified sampling for the case-cohort design. In a similar
manner one may adopt a stratified version of nested case-control sampling (Langholz and
Borgan, 1995). For this design, called counter-matching, one applies information available for
all cohort subjects to classify each individual at risk into one of S distinct strata. We denote
by Rs(t) the subset of the risk set R(t) that belongs to stratum s, and let ns(t) = #Rs(t)
be the number at risk in this stratum just before time t. If a failure occurs at time t, we
want to sample our controls such that the sampled risk set will contain a specified number
ms of individuals from each stratum s = 1, . . . , S. This is obtained as follows. Assume
that an individual i who belongs to stratum s(i) fails at t. Then for s �= s(i) one samples
randomly without replacement ms controls from Rs(t). From the case’s stratum s(i) only
ms(i) − 1 controls are sampled. The failing individual is, however, included in the sampled

risk set R̃(t), so this contains a total of ms from each stratum. Even though it is not made
explicit in the notation, we note that the classification into strata may be time-dependent;
e.g., one may stratify according to the quartiles of a time-dependent surrogate measure
of an exposure of main interest. It is crucial, however, that the information on which the
stratification is based is known just before time t.

Inference for counter-matched nested case-control data may be based on a partial like-
lihood similar to (17.3); however, weights have to be inserted in the partial likelihood in
order to reflect the different sampling probabilities. To see how this should be done, we
take the approach of Section 17.7.1. To this end we note that, in probabilistic terms, the
counter-matched design may be desribed as follows. Consider a set r ⊂ R(t) with i ∈ r and
assume that r∩Rs(t) is of size ms for s = 1, . . . , S. Then, if individual i fails at time t, the
probability that r is selected as the sampled risk set becomes

π(r | t, i) =

⎧⎨⎩
(
ns(i)(t)− 1

ms(i) − 1

) ∏
s=s(i)

(
ns(t)

ms

)⎫⎬⎭
−1

=
ns(i)(t)

ms(i)

{
S∏

s=1

(
ns(t)

ms

)}−1

.

When inserting these sampling probabilities in (17.16), we obtain after cancellation of com-
mon factors

π(i | t, r) = Yi(t) exp(β
′xi)wi(t)∑

k∈r Yk(t) exp(β′xk)wk(t)
, (17.22)
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where wk(t) = ns(k)(t)/ms(k). This yields the partial likelihood

Lcm(β) =

d∏
j=1

π(ij | tj , R̃(tj)) =

d∏
j=1

exp(β′xij )wij (tj)∑
k∈R̃(tj)

exp(β′xk)wk(tj)
. (17.23)

Inference concerning the regression coefficients, using usual large sample likelihood methods,
can be based on this weighted partial likelihood (Borgan et al., 1995; Langholz and Borgan,
1995). Moreover, software for Cox regression can be used to fit the model provided the
software allows us to specify the logarithm of the weights as “offsets.”

17.8.2 Estimation of absolute risk

In Sections 17.3.2 and 17.8.1 we discuss how to estimate the regression coefficients in (26.4)
from simple and counter-matched nested case-control data. From these we immediately get
estimates of the hazard ratios (relative risks) eβj . We will here indicate how we may estimate
absolute risks.

Consider an individual with vector of covariates x who has not failed by time s. We
here assume that the covariates are fixed, but note that the results may be generalized
to external time-varying covariates (Langholz and Borgan, 1997). Assuming Cox’s model
h(t |x) = h0(t) exp(β

′x), the absolute risk (i.e., probability) that the individual will fail
before time t > s is given by

p(s, t |x) = 1− exp

{
− exp(β′x)

∫ t

s

h0(u)du

}
. (17.24)

To estimate the absolute risk, we need to estimate both the vector of regression coefficients
β and the cumulative baseline hazard H0(t) =

∫ t

0
h0(u)du. The latter may be estimated by

the Breslow type estimator (Borgan and Langholz, 1993; Borgan et al., 1995)

Ĥ0(t) =
∑
tj≤t

1∑
k∈R̃(tj)

exp(β̂′xk)wk(tj)
. (17.25)

Here the weights wk(tj) depend on the sampling scheme for controls. When controls are
selected by simple random sampling we use the weights wk(tj) = n(tj)/m, while for the
counter-matched design the weights are given just below (17.22). Then (17.24) may be
estimated by the Kaplan-Meier type estimator

p̂(s, t |x) = 1−
∏
tj≤t

{
1− exp(β̂′x)ΔĤ0(tj)

}
, (17.26)

where ΔĤ0(tj) is the increment of (17.25) at time tj . Alternatively we may use the asymp-
totically equivalent estimator

p̃(s, t |x) = 1− exp
{
exp(β̂′x)

(
Ĥ0(t)− Ĥ0(s)

)}
. (17.27)

Variance estimation and large sample properties of (17.26) are studied in Borgan and
Langholz (1993) and Borgan et al. (1995). Generalizations of the absolute risk estimator
(17.26) to competing risks and Markov chain models are studied in Langholz and Borgan
(1997) and Borgan (2002), respectively. The estimator (17.27) may not be generalized in a
similar way.
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17.9 Case-cohort and IPW-estimators: absolute risk and alterna-
tive models

Absolute risk can be estimated from case-cohort data using an IPW or Horvitz-Thompson
approach. Thus Prentice (1986) suggested to estimate the cumulative baseline hazard func-
tion H0(t) by the Breslow type estimator

H̃0(t) =
∑
tj≤t

1∑
k∈C̃(tj) exp(β̂

′xk)(n/m̃)
,

where C̃(tj) is the set of subcohort members at risk at time tj and n and m̃ are the sizes of
the cohort and subcohort, respectively. The individual contributions to the denominator are
thus weighted by the inverse of the subcohort sampling fraction m̃/n. Large sample result

for H̃0(t) was developed by Self and Prentice (1988).
Alternatively one may base estimation on the full case-cohort sample consisting of all

cases and the subcohort using

Ĥ0(t) =
∑
tj≤t

1∑
k∈S̃(tj) exp(β̂

′xk)wk

with S̃(tj) and wk as in (17.8). This formula immediately generalizes to stratified case-
cohort studies (Section 17.4.4) and to nested case-control studies with estimated weights
wk = 1/pk (Section 17.6). Large sample theory for such estimators for stratified case-cohort
studies was provided by Kulich and Lin (2004) and Breslow and Wellner (2007). One may
then estimate the absolute risk (17.24) by plug-in rules corresponding to (17.26) or (17.27).

The Horvitz-Thompson approach can quite generally be applied when fitting failure time
models other than the proportional hazards model. For instance Kalbfleisch and Lawless
(1988) worked with fully parametrically specified failure time models with individual like-
lihood contributions lk(θ) (with model parameters θ) suggesting to maximize a weighted
likelihood

l̃(θ) =
∑
k∈S

lk(θ)wk

under case-cohort and other sampling plans, where S is the set of individuals (cases and
controls) sampled. Kalbfleisch and Lawless (1988) also suggested large sample properties

based on l̃(θ) similar to (17.10) and with a derivation along the lines of Section 17.7.2.
Kulich and Lin (2000) considered an additive hazard model hi(t) = h0(t) + β′xi and

developed a weighted version of the Lin-Ying estimator (Lin and Ying, 1994) under a
stratified case-cohort design. They thereby developed parallel results to those presented in
Borgan et al. (2000) for Cox regression.

Several other models have been addressed with various sampling plans and similar IPW
approaches, such as proportional odds models (Chen, 2001a), accelerated failure time models
(Kong and Cai, 2009), semi-parametric transformation models (e.g., Kong et al., 2004; Lu
and Tsiatis, 2006; Chen et al., 2012) and correlated failure time models (Lu and Shih, 2006;
Kang and Cai, 2009). When we weight the cases and controls with IPW, the underlying
idea is to reconstruct the full cohort by letting each control represent a number of the
individuals not sampled. This has the implication that methods developed for cohort data
can usually be modified to case-cohort data and other types of case-control data where
inclusion probabilities can be calculated. Often large sample results follow in the same vein
as for case-cohort data (see Section 17.7.2), but special care may have to be taken to account
for the structure of the estimating equations or sampling plan.
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17.10 Maximum likelihood estimation

In the previous sections we have estimated the regression coefficients using partial likeli-
hoods and weighted pseudo-likelihoods; see, e.g., (17.3), (17.6), (17.8), and (17.23). Then
we only use data for the cases and the sampled controls/subcohort. Another approach is
a full maximum likelihood solution, where the entire cohort is used in the estimation and
unobserved covariates are treated as missing data. We here give an outline of this approach
and discuss some of its strengths and limitations.

For ease of presentation we restrict attention right-censored survival data; see Saarela
et al. (2008) and Støer and Samuelsen (2012) for a discussion on how the results may be
extended to cover left-truncation as well. The situation is as follows. We consider a cohort
C = {1, . . . , n} of n independent individuals. Each individual is observed until failure or
censoring. For individual i ∈ C we denote by vi the time of failure or censoring, and let δi be
an indicator taking the value 1 if the individual is observed to fail at vi and the value 0 if the
individual is censored. We now assume that some covariates are observed for all individuals
in the cohort, and we denote by xo

i the vector of these covariates for the ith individual.
Additional covariate information is collected for all cases and for a number of controls. The
controls may be selected by nested case-control or case-cohort sampling. We let Oi be a
case-control indicator that is 1 if individual i is a case or a control and 0 otherwise. Then
O = {i ∈ C : Oi = 1} is the set of individuals for whom additional covariate data are
obtained. We denote by xu

i the vector of these additional covariates for the ith individual.
Thus the available data for all cohort members (i.e., for i ∈ C) are (vi, δi,x

o
i ), while for all

cases and controls (i.e., for i ∈ O) we additionally observe xu
i .

In order to derive the likelihood for the data, we assume that all covariates are time-fixed
and make the following assumptions (Saarela et al., 2008):

(i) The random vectors (vi, δi,x
o
i ,x

u
i ); i ∈ C; are independent.

(ii) The conditional distribution of the vector (O1, . . . , On) of case-control indicators de-
pends only on data observed for all i ∈ C.
Assumption (i) is common in the survival analysis literature, but stronger than the inde-
pendent censoring assumption imposed in the previous sections. Assumption (ii) ensures
that the xu

i are missing at random for i ∈ C \ O, and the assumption is fulfilled for the
nested case-control and case-cohort designs. Assuming (i) and (ii) the likelihood takes the
same form regardless of what kind of sampling scheme has been used to determine the set
O; see Saarela et al. (2008) for a detailed argument. The likelihood becomes (conditional
on the covariates xo

i ):

L =
∏
i∈O

p (vi, δi |xu
i ,x

o
i ) dG (xu

i |xo
i )

×
∏

i∈C\O

∫
Xu

p (vi, δi |xu
i ,x

o
i ) dG (xu

i |xo
i ) . (17.28)

Here p (vi, δi |xu
i ,x

o
i ) is the conditional density of (vi, δi) given (xu

i ,x
o
i ), and G (xu

i |xo
i ) is

the conditional distribution of xu
i given xo

i . Further the integral in (17.28) is over the space
Xu of all possible values of the covariate vector xu

i .
To achieve a full maximum likelihood solution, we need to specify the conditional dis-

tributions in (17.28). We assume a Cox model for the hazard of the ith individual, i.e.,

hi(t) = h0(t) exp (β
′
ox

o
i + β′ux

u
i ) . (17.29)
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Then the conditional density of (vi, δi) given (xu
i ,x

o
i ) takes the form

p (vi, δi |xu
i ,x

o
i ) = {h0(vi) exp (β

′
ox

o
i + β′ux

u
i )}

δi (17.30)

× exp

{
− exp (β′ox

o
i + β′ux

u
i )

∫ vi

0

h0(u)du

}
.

In (17.29) we may choose between a non-parametric specification of the baseline hazard
(as in the ordinary Cox regression model) or a parametric specification, e.g., assuming a
Weibull baseline h0(t) = ακ(αt)κ−1. For a full likelihood solution, we also need to specify
the conditional distribution of xu

i given xo
i . Again we may adopt a non-parametric or a

parametric specification.
Inspired by Kulathinal and Arjas (2006), Saarela et al. (2008) take a fully parametric

approach by assuming a parametric baseline hazard and a parametric specification of the
conditional distribution of xu

i given xo
i . The logarithm of the likelihood (17.28) may then be

maximized by a suitable optimization routine. The optimization may be very time consum-
ing, however, since the integrals in (17.28) typically will have to be evaluated numerically
or by Monte Carlo integration. But substantial computational savings may be obtained by
grouping individuals in C \O with similar values of vi and xo

i (Støer and Samuelsen, 2012).
Scheike and Juul (2004) consider a semi-parametric model for nested case-control data,

where the baseline hazard in (17.29) and the distribution of xu
i given xo

i are given non-
parametric specifications. When maximizing the likelihood using the EM algorithm, it is
assumed that the cumulative baseline hazard is a step function with jumps at the observed
failure times and that the distribution of xu

i given xo
i has point masses at the observed

covariate values. A similar approach for case-cohort data is considered by Scheike and
Martinussen (2004). We should also mention that Zeng and Lin (2007) have developed a
general framework for maximum likelihood estimation in semi-parametric regression models
for censored data, which may be adopted to nested case-control and case-cohort data (Zeng
et al., 2006).

Maximum likelihood estimation may give an efficiency gain compared to estimation
based on partial likelihoods and weighted pseudo-likelihoods. The gain may be substantial
for estimation of the effect of xo

i . When xo
i and xu

i are correlated, one may also get an
improved estimation of the effect of xu

i ; see e.g., Støer and Samuelsen (2012). However, the
increased efficiency comes at a cost. The computations may be quite extensive, and the
maximum likelihood approach is vulnerable to misspecification of the conditional distribu-
tion of xu

i given xo
i (Støer and Samuelsen, 2012). At the time of writing of this chapter,

there is limited practical experience with the full maximum likelihood approach for nested
case-control and case-cohort data. So even though the methodology shows promise, it is too
early to say if it will be of importance for epidemiological practice in the future.

17.11 Closing remarks

Nested case-control and case-cohort designs are increasingly being used in epidemiology
and biomarker studies. In this chapter we have surveyed methods for analysing nested case-
control and case-cohort data. In our survey we have chosen to focus on partial likelihood
and weighted pseudo likelihood methods for Cox regression when the controls/subcohort are
selected by simple or stratified random sampling. This choice is motivated by our belief that
these are the methods that are most useful for practitioners. But some other material, like
absolute risk estimation, IPW estimation for general failure time models, and maximum
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likelihood estimation for sampled cohort data, have also been discussed. However, many
important topics are not discussed in our survey, and in this final section we mention some
of them.

For nested case-control studies, we have discussed simple and counter-matched sampling
of controls. However, the counting process framework of Section 17.7.1 allows for quite
general control sampling schemes. Two examples are quota sampling and counter-matched
sampling with additional randomly sampled controls (Borgan et al., 1995). The partial
likelihood for a specific sampling scheme may be derived in a similar manner as (17.23).
All that is needed is to use the appropriate sampling probabilities in the partial likelihood
(Langholz and Goldstein, 1996; Langholz, 2007).

Instead of a case-cohort design with a sampled subcohort, one can sometimes take a
sample only of the individuals who do not fail. This has been referred to as a “classical
case-control” design (Chen and Lo, 1999; Chen, 2001b). Such data can be analysed with an
IPW-approach with the limiting distribution given by (17.9) under the proportional hazards
model (26.4).

When studying a rare disease, one will commonly include all cases in a nested case-
control or case-cohort study, and we have made this assumption throughout. However, if
the disease is more common, it could be useful not to include all cases. If we in a case-cohort
study (with a randomly selected subcohort) have a random sample of the cases, the pseudo
likelihood (17.6) may be adopted without specifying the sampling fraction of cases. The
weighted likelihood (17.8) can also be extended to allow for a random sample of cases. But
then the sampling fraction (or an estimate of it) needs to be inserted in (17.8). An additional
term also needs to be added to the large sample covariance matrix and its estimate (Chen
and Lo, 1999; Breslow and Wellner, 2007; Gray, 2009). For nested case-control studies,
Langholz and Borgan (1995) provide a brief discussion of case sampling.

The weights in a counter-matched nested case-control study will change over time ac-
cording to the numbers at risk in the various strata. In a similar manner, and in the spirit
of Barlow (1994) and Lin and Ying (1994), Borgan et al. (2000) proposed time-dependent
weighting schemes for stratified case-cohort sampling. So at time t the weights wk = n0

s/m̃
0
s

in (17.8) are replaced by the number of non-case cohort members in stratum s who are at
risk at t divided by the number of non-case subcohort members in the stratum who are at
risk at that time. Kulich and Lin (2004) also considered time-dependent weights and devel-
oped large sample results for these also incorporating auxiliary cohort information. However,
unless incidence or censoring is strongly dependent on covariates, this modification will not
increase efficiency much.

The estimators for case-cohort data based on (17.6) and (17.8) are not fully efficient,
and it is then a question of how much one may lose by using these estimators compared
to fully efficient estimators. This question has been addressed by Nan et al. (2004) and
Nan (2004). They consider the situation where the only covariates in (26.4) are the ones
observed for the cases and the subcohort members, and compare the asymptotic variances
of the case-cohort estimators with the asymptotic information bound and with an efficient
estimator for case-cohort data, respectively. Their results indicate that the efficiency loss is
modest when the proportion of cases in the cohort is fairly small (not more than 10%, say)
and the sampling fraction is at least as large as the proportion of cases. We are not aware of
corresponding studies for nested case-control data, but conjecture that similar results hold
here as well.

In our discussion of estimation of regression coefficients and relative risks, we have as-
sumed that the regression model (26.4) is correctly specified. However, any model is an
approximation to reality and, even when the model does not fully capture the relation be-
tween the covariates and the hazard, it may still provide a useful framework for summarizing
covariate effects. But this makes it important to understand the behaviour of parameter
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estimates when the presumed model is misspecified. Struthers and Kalbfleisch (1986) and
Hjort (1992) have studied the behaviour of the maximum partial likelihood estimator for co-

hort data, and they show that when the model is misspecified β̂ will converge in probability
to a “least false parameter” β∗. Their arguments go through with only minor modifications
for the case-cohort estimators of Section 17.4 and the IPW estimator for nested case-control
data of Section 17.6, so for a misspecified model these estimators will also converge to β∗.
However, the traditional estimator β̂ncc for nested case-control data obtained from (17.3),
will converge to a “least false parameter” β∗ncc that differs from β∗ (Xiang and Langholz,
1999). As a consequence, the traditional approach to nested case-control data may give esti-
mates that differ systematically from those of the corresponding cohort study. However, the
magnitude of the misspecification must be quite large in order to produce bias of practical
importance (Xiang and Langholz, 1999).
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The literature on the statistical analysis of interval-censored failure time data has grown
rapidly in last twenty years or so and among others, one relatively complete review is
given by Sun (2006), one of only two books currently available on interval-censored data.
The other book is the edited volume given by Chen et al. (2012). Interval-censored data
include the usual right-censored failure time data as a special case, but have much more
complex structure and provide less relevant information than the right-censored data. We
will discuss several types of interval-censored data including univariate interval-censored
data, multivariate interval-censored data and competing risks interval-censored data. For
each topic, the focus will be on the discussion of some basic concepts and issues that
commonly occur in the analysis of such data and the review of some recent advances or
literature, mainly after Sun (2006).

18.1 Introduction

Interval-censored failure time data are a special type of failure time data, which involve
interval censoring and have drawn more and more attention during last 20 years or so. It
is well known that one essential and special feature of failure time data is censoring and
there exist different types of censoring. Among them, the type that has been studied most
in the literature is right censoring and an extensive literature including many textbooks
have been established for the analysis of right-censored failure time data (Kalbfleisch and
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Prentice, 2002; Klein and Moeschberger, 2002). In contrast, the literature on the analysis of
interval-censored failure time data is quite limited and in particular, there currently exist
only two books on it: one is Sun (2006), which gives a relatively complete review of the
literature, and the other is Chen et al. (2012), an edited volume. In addition, a couple
of review papers have been published including Gómez et al. (2009) and Zhang and Sun
(2010b). In the context of failure time data, interval censoring means that the failure time
variable of interest is observed or known only to lie within some intervals or windows instead
of being observed exactly (Finkelstein, 1986; Kalbfleisch and Prentice, 2002; Sun, 2006). If
the interval includes only or reduces to a single time point, one obtains the exact failure
time.

One field that often produces interval-censored failure time data is medical or health
studies that entail periodic follow-ups. In this situation, an individual due for the pre-
scheduled observations for a clinically observable change in disease or health status may
miss some observations and return with a changed status. Accordingly, we only know that
the true event time is greater than the last observation time at which the change has not
occurred and less than or equal to the first observation time at which the change has been
observed to occur, thus giving an interval which contains the real (but unobserved) time of
occurrence of the change.

A more specific example of interval-censored data arises in the acquired immune de-
ficiency syndrome (AIDS) trials (De Gruttola and Lagakos, 1989) that, for example, are
interested in times to AIDS for human immunodeficiency virus (HIV) infected subjects. In
these cases, the determination of AIDS onset is usually based on blood testing, which can be
performed obviously only periodically but not continuously. In consequence, only interval-
censored data may be available for AIDS diagnosis times. A similar case is for studies on
HIV infection times. If a patient is HIV positive at the beginning of a study, then the HIV
infection time is usually determined by a retrospective analysis of his or her medical history.
Therefore, we are only able to obtain an interval given by the last HIV negative test date
and the first HIV positive test date for the HIV infection time.

In reality, interval censoring can occur in different forms and each form represents one
type of interval-censored failure time data. Among them, an important type of interval-
censored failure time data is the so-called current status data (Jewell and van der Laan,
1995; Sun and Kalbfleisch, 1993). This type of interval censoring means that each subject
is observed only once for the status of the occurrence of the failure event of interest. In
other words, one does not directly observe the occurrence of the failure event of interest,
but instead only knows the observation time and whether or not the event has occurred
at the time. In consequence, the failure time is either left- or right-censored. One type of
studies that usually produce current status data is cross-sectional studies on failure events
(Keiding, 1991). Another type is tumorigenicity studies and in this situation, the time to
tumor onset is usually of interest, but not directly observable (Dinse and Lagakos, 1983).
In these cases, one only knows or observes the exact value of the observation time, which is
usually the death or sacrifice time of the subject. Note that for the first example, current
status data occur due to the study design, while for the second case, they are often observed
because of the inability of measuring the failure variable directly and exactly. Sometimes
we also refer current status data to as case I interval-censored data and the general case as
case II interval-censored data (Groeneboom and Wellner, 1992).

Another type of interval-censored data is the so-called doubly censored data (De Gruttola
and Lagakos, 1989; Sun, 2002). By this, we mean that the failure time of interest is defined
as or represents the time between two related events and the observed data on the times to
the occurrences of both events are interval-censored. In contrast, the interval-censored data
discussed above can be regarded as a special case of such doubly censored data in which
one observes the times to the first event exactly and thus can treat them being zero for
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simplicity. An example of doubly censored data is provided by the AIDS studies discussed
above when the variable of interest is AIDS incubation time (De Gruttola and Lagakos,
1989), the time from HIV infection to AIDS diagnosis, with both the HIV infection time
and the AIDS diagnosis time being right- or interval-censored.

Grouped failure time data, which will not be discussed here, is another special case of
interval-censored data and often arise in, for example, large animal studies. By grouped fail-
ure time data, we usually mean that the intervals for any two subjects either are completely
identical or have no overlapping. It is easy to see that for the analysis of such data, one
could readily employ the methods available for right-censored data and no new methods are
needed in theory. In other words, the statistical inference about grouped failure time data
is relatively straightforward. In the following, the focus will be on general interval-censored
data in which the observed intervals for the failure times of interest may overlap in any way.

The remainder of this chapter is organized as follows. We will begin in Section 18.2
with describing the commonly used likelihood function and the fundamental and important
assumption behind it, noninformative interval censoring. It means that the censoring mech-
anism does not contribute to the likelihood function. A specific example of interval-censored
data is then provided to illustrate what was discussed. Sections 18.3-18.8 will be organized
according to the types or structures of the data. For completeness, we will first briefly
discuss in Section 18.3 the analysis of univariate current status data, as the next chapter
will provide more details on it. Section 18.4 will consider the analysis of general or case II
univariate interval-censored data followed by the analysis of multivariate interval-censored
failure time data such as bivariate failure time data in Section 18.5. Section 18.6 will inves-
tigate the analysis of competing risks interval-censored failure time data and the analysis
of informatively interval-censored data will be the focus of Section 18.7. Section 18.8 will
briefly cover a few other types of interval-censored data that are not touched on above.
These include doubly censored data, interval-censored data from multi-state models and
interval-censored data with missing or mismeasured covariates. In all of the sections, the
discussion will be mainly on the existing literature on three basic topics in analyzing failure
time data: nonparametric estimation of a survival function, nonparametric comparison of
survival functions and regression analysis, with the focus on some of the recent advances
primarily after Sun (2006). To conclude, we will briefly review some software packages,
especially R packages, available for the analysis of interval-censored data and give some
general remarks in Section 18.9.

18.2 Likelihood function and an example

To describe the likelihood function, we will first define some notation. In the following, we
will use T to denote the failure time of interest. By saying that T is interval-censored, we
mean that only available information for T is an interval denoted by I = (L,R] such that
T ∈ I. Using this notation, we see that current status data correspond to the situation
where either L = 0 or R = ∞. Interval-censored data reduce to right-censored data if
L = R or R = ∞ for all subjects in the study. Note that a more general way to describe
interval-censored data is to assume that the observation on T is given by a group of intervals
(Turnbull, 1976). However, we will not discuss this general representation as the resulting
likelihood functions in both cases have essentially the same structure.

Now suppose that there is a failure time study consisting of n independent subjects
and let Ti and Ii = (Li, Ri] be defined as above but associated with subject i. Define
F (t) = P (T ≤ t), the cumulative distribution function of T , and S(t) = 1 − F (t), the
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survival function of T . Let 0 = t0 < t1 < ... < tm < tm+1 = ∞ denote the unique ordered
elements of {0, {Li}ni=1, {Ri}ni=1,∞}, αij the indicator of the event (tj−1, tj ] ⊆ Ii, and
pj = S(tj−1) − S(tj). Then for inference about S or for p = (p1, ..., pm+1)

′, the likelihood
function that is commonly used has the form

LS(p) =
n∏

i=1

[
S(Li)− S(Ri)

]
=

n∏
i=1

m+1∑
j=1

αij pj . (18.1)

In reality, there may exist some covariates denoted by Z and in this case, the likelihood
function above becomes

LS(p |Z ′is) =
n∏

i=1

[
S(Li|Zi) − S(Ri |Zi)

]
=

n∏
i=1

m+1∑
j=1

αij pj(Zi) . (18.2)

Of course, the likelihood functions given above come with some assumptions. The most
fundamental and important one is perhaps the so-called “noninformative interval censoring,”
which can be described by the following equality Sun (2006)

P (T ≤ t|L = l, R = r, L < T ≤ R) = P (T ≤ t|l < T ≤ r) . (18.3)

The assumption above essentially says that, except for the fact that T lies between l and
r which are the realizations of L and R, the interval (L,R] (or equivalently its endpoints
L and R) does not provide any extra information for T . In other words, the probabilistic
behavior of T remains the same except that the original sample space T ≥ 0 is now reduced
to l = L < T ≤ R = r. In the existence of covariates, the assumption (18.3) becomes

P (T ≤ t|L = l, R = r, L < T ≤ R,Z = z) = P (T ≤ t|l < T ≤ r, Z = z) . (18.4)

One could also employ different ways to characterize the noninformative interval censor-
ing assumption. For example, one can use a stochastic process to describe the underlying
interval censoring mechanism by assuming that there exists a sequence of observation times
or an observation process. Then the noninformative assumption means that the process
is independent of the failure time or process of interest (Groeneboom and Wellner, 1992;
Lawless and Babineau, 2006). In practice, one question of interest is the conditions under
which the assumption (18.3) or (18.4) holds and for this, the readers are referred to the
discussion given in Oller et al. (2007) among others. In the following, all discussion will be
based on the assumption (18.3) or (18.4) unless specified otherwise.

It is worth noting that in the case of right-censored failure time data, the noninformative
censoring can be described in a much simpler format. In this case, it means that the censoring
time or variable is independent of the failure time of interest completely or conditionally
given covariates. It is clear that the two censoring mechanisms are quite different as only
one variable is involved or needed with respect to right censoring. In the case of interval
censoring, two variables L and R are needed and furthermore, they together with T have a
natural relationship L < T ≤ R.

To help understand and illustrate the concepts and discussion above, we now consider a
specific example of interval-censored data arising from an AIDS clinical trial, AIDS Clinical
Trial Group 181, on HIV-infected individuals. The study is a natural history substudy of a
comparative clinical trial of three anti-pneumocystis drugs and concerns the opportunistic
infection cytomegalovirus (CMV). During the study, among other activities, blood and urine
samples were collected from the patients at their clinical visits and tested for the presence
of CMV, which is also commonly referred to as “shedding” of the virus. These samples
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and tests provide observed information on the two variables of interest, the times to CMV
shedding in blood and in urine.

The observed dataset is given in dataset I of Appendix A in Sun (2006) and contains
the observed intervals for the times to CMV shedding in blood and urine from 204 patients
who provided at least one urine and blood sample during the study. More specifically, for
the two failure times of interest, only interval-censored data are available with the intervals
given by the last clinical visit time at which the shedding had not happened and the first
clinical visit time at which the shedding had already occurred. Note that in this case, we
actually have bivariate interval-censored data. If it is reasonable to assume that the clinical
visit times of the patients have nothing to do with their disease status, then we would have
noninformative interval censoring. Otherwise, one may have to consider the existence of
informative interval censoring and this latter situation could be the case if, for example,
the patients paid clinical visits because they felt their disease got worse. Among others,
Goggins and Finkelstein (2000) discussed this dataset.

18.3 Current status data

In this section, we will briefly discuss statistical analysis of current status data. Let T , F (t)
and S(t) be defined as above and suppose that one observes only current status data on T ,
which are usually denoted by {Ci, δi = I(Ti ≤ Ci)}ni=1, where Ci represents the observation
time on subject i. Note that in this case, the noninformative censoring means that Ti and
Ci are independent completely or given covariates. For the situation, it is easy to see that
the likelihood function given in (1) reduces to

LS(p) =

n∏
i=1

[
1− S(Ci)

]δi [
S(Ci)

]1−δi
.

To find the nonparametric maximum likelihood estimator (NPMLE) of S or maxi-
mize the likelihood function above, let the tj ’s denote the ordered observation times as
defined above and Qj the set of subjects who are observed at tj , j = 1, ...,m. Define
dj =

∑
i∈Qj

1(Ti ≤ tj) and let nj denote the number of elements in Qj . Then the NPMLE

of S can be shown (Sun, 2006) to be equal to the isotonic regression of {d1/n1, ..., dm/nm}
with weights {n1, ..., nm}. Using the max-min formula for the isotonic regression Barlow
et al. (1972), one can derive the NPMLE of S as

Ŝ(tj) = 1−max
u≤j

min
v≥j

(
v∑

l=u

dj/
v∑

l=u

nj) .

One question of both practical and theoretical interest about the NPMLE of S is its asymp-
totic properties such as the convergence rate. For this, many studies have been performed
including a sequence of papers by Groeneboom and his collaborators (Groeneboom and
Wellner, 1992; Groeneboom et al., 2010; Groeneboom et al., 2012). For more complete
discussion and recent references on this, the readers are referred to Banerjee (2012) and
Chapter 19 of this book.

With respect to nonparametric comparison of survival functions based on current status
data, several procedures have been proposed including the ones given in references (Ander-
sen and Ronn, 1995; Groeneboom (2012): Sun, 1999; Sun and Kalbfleisch, 1993). Here we
remark that most of the existing procedures including the ones for general interval-censored
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data assume that the censoring mechanism is the same for different treatments. More specif-
ically for current status data, this means that the observation times Ci’s follow the same
distributions for subjects in different arms. One exception is the test procedure given in
Sun (1999), which allows the distributions of the Ci’s to depend on the treatment arms.

One needs to perform regression analysis if there exist covariates and one is interested
in, for example, quantifying the effect of some covariates on the failure time of interest
or predicting survival probabilities for new individuals (Zhang, 2009). For this, the first
step is usually to specify an appropriate regression model. For failure time data, the most
commonly used model is perhaps the proportional hazards model (Cox, 1972) given by

λ(t|Z = z) = λ0(t) e
β′z (18.5)

with respect to the hazard function of T given covariates Z = z. Here λ0(t) denotes the
unknown baseline hazard function and β the vector of unknown regression parameters.
To fit current status data to the model, Huang (1996) provided an ICM-type algorithm
for estimation of unknown parameters in addition to investigating the properties of the
resulting estimates of the unknown parameters. For the same problem, a Newton-Raphson
algorithm could also be used (Sun, 2006) and a more recent discussion on it is given by
Zhang (2012).

In addition to the proportional hazards model (18.5), of course, there exist many other
models that may be used. For example, another attractive semiparametric regression model
often used in practice is the additive hazards model given by

λ(t|Z = z) = λ0(t) + β′z (18.6)

again with respect to the hazard function of T given Z = z. It specifies that the effects of the
covariates are additive rather than multiplicative as in model (18.5). For inference about this
model based on current status data, among others, Lin et al. (1998) and Martinussen and
Scheike (2002) developed some estimating equation approaches and Chen and Sun (2008)
gave a multiple imputation procedure. More recently, Wang and Dunson (2011) considered
the fitting of the proportional odds model described below to current status data in the
Bayesian framework. Zhang (2012) also discussed the fitting of the proportional odds model
as well as the linear transformation model described below to current status data. We
remark that unlike most methods developed for right-censored data, estimating regression
parameters under interval censoring usually involves estimation of both the parametric and
the nonparametric parts. In other words, for interval-censored data, one has to deal with
estimation of some unknown baseline functions in order to estimate regression parameters.

There are many other issues in analyzing failure time data. One is that in dealing with
failure time data, a basic assumption that is usually not explicitly described is that the
failure is always assumed to occur. In some situations, this may not be the case and the
so-called cure model is often employed. Among others, Ma (Ma, 2009; Ma, 2011) recently
studied the fitting of the cure model to current status data. Another issue of practical
interest is the misclassification problem and, among others, McKeown and Jewell (2010)
discussed it in the context of current status data.

18.4 Univariate interval-censored data

Now we will consider statistical analysis of general univariate interval-censored failure time
data. As mentioned above, we will mainly discuss the three basic topics: nonparametric
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FIGURE 18.1
Nonparametric estimation of survival functions for breast cancer data: Rad=Radiation;
RadChem=Radiation plus Chemotherapy.

estimation of a survival function, nonparametric comparison of survival functions and re-
gression analysis, with the focus on some of the recent advances.

For nonparametric estimation, one can easily see that given general interval-censored
data, the problem of finding the NPMLE of S becomes that of maximizing LS(p) given

in (18.1) under the constraint that
∑m+1

j=1 pj = 1 and pj ≥ 0, where j = 1, ...,m + 1 (Li
et al., 1997). Obviously, the likelihood function LS depends on S only through the values
{S(tj)}mj=1. Thus the NPMLE Ŝ of S can be uniquely determined only over the observed
intervals (tj−1, tj ] and the behavior of S within these intervals will be unknown. Several
methods have been proposed for maximizing LS(p) with respect to p. The first and simplest
one is perhaps the self-consistency algorithm given by Turnbull (1976). One drawback of
the algorithm is that the convergence can be slow. Corresponding to this, Groeneboom and
Wellner (1992) developed an iterative convex minorant (ICM) algorithm, which can be seen
as an optimized version of the well-known pool-adjacent-violator algorithm for the isotonic
regression (Robertson et al., 1998). Another faster algorithm, a hybrid one that combines the
two approaches above, is the EM-ICM algorithm given in Wellner and Zhan (1997). The
other authors who recently investigated the same problem include Yavuza and Lambert
(2010) and Dehghan and Duchesne (2011). The former employed Bayesian penalized B-
splines to obtain the smooth estimation, while the latter generalized the self-consistency
algorithm to the case where there exists a continuous covariate. To give a graphical idea
about the nonparametric estimation based on interval-censored data, Figure 18.1 displays
the estimated survival functions given by the self-consistency algorithm on a well-known
set of the interval-censored data arising from a breast cancer study (Finkelstein and Wolfe,
1985). The study consists of 94 patients given either radiation therapy alone or radiation
therapy plus adjuvant chemotherapy.

It is worth to emphasize that all algorithms mentioned above are iterative as for general
interval-censored data, there is no closed form for the NPMLE of S unlike with current
status data. Also it should be noted that for general interval-censored data, the NPMLE
may not be unique and the solutions derived from the algorithms mentioned above may not
be the NPMLE. One sufficient condition for the uniqueness of the NPMLE is that the log
likelihood is strictly concave. Another important but difficult issue related the NPMLE of
S is the consistent variance estimation as the standard Fisher information matrix approach



376 Handbook of Survival Analysis

does not work here. For this, one way is to employ the profile likelihood approach (Murphy
and van der Vaart, 1999; Murphy and van der Vaart, 2000), which is often computationally
intensive. Recently Huang et al. (2012) proposed a least-squares approach based on the
efficient score function. For detailed discussion on these issues and the asymptotic properties
as well as the differences between right-censored and interval-censored data, the readers are
referred to references Groeneboom and Wellner (1992), Maathuis and Wellner (2008) and
Zhang and Sun (2010b) among others.

The comparison of different treatments or survival functions is another primary objective
in most medical or clinical studies. To formalize the problem, suppose that there are K
treatment arms in a clinical study and let S(k)(t) denote the survival function of the kth
arm with k = 1, ...,K. Then the problem becomes testing the null hypothesis

H0 : S(1)(t) = S(2)(t) = ... = S(K)(t) for all t .

In the case of right-censored data, many nonparametric test procedures have been developed
and most of them can be classified into two categories: rank-based tests and survival-based
tests. The fundamental difference between them is that the former relies on the differ-
ences between the estimated hazard functions, while the latter bases the comparison on
the differences between the estimated survival functions. Among them, the log-rank test
is perhaps the most widely used method and a few of them have been generalized to the
case of interval-censored data (Sun, 2006; Zhu, 2008a). For example, recently Fay and Shih
(2012) and Oller and Gómez (2012) proposed some generalized rank-based and survival-
based test procedures, respectively, for interval-censored data. To give a representative of
such procedures, in the following, we describe the one proposed by Zhao et al. (2008).

Consider a survival study consisting of n independent subjects with nk subjects from
treatment arm k, k = 1, ...,K. Let the Ti’s and Ii’s be defined as before and Dk1 and
Dk2 denote the sets of indices of the subjects in treatment arm k whose failure times are
observed exactly and interval-censored, respectively. Define nk1 = |Dk1|, nk2 = |Dk2|,
n1 =

∑K
k=1 nk1 and n2 =

∑K
k=1 nk2, and let Ŝ denote the NPMLE of the common

survival function under the hypothesis H0. To test the hypothesis H0, Zhao et al. (2008)

proposed to use the test statistic Uξ = (U
(1)
ξ , · · · , U (K)

ξ )T , where

U
(k)
ξ =

n1

nk1

∑
i∈Dk1

ξ{Ŝ(Ti−)} − ξ{Ŝ(Ti)}
Ŝ(Ti−)− Ŝ(Ti)

+
n2

nk2

∑
i∈Dk2

ξ{Ŝ(Li)} − ξ{Ŝ(Ri)}
Ŝ(Li)− Ŝ(Ri)

and ξ is a positive known function over (0, 1). In practice, different ξ can be used and
will yield different test statistics. The statistics above were motivated by the log-rank test
given in Peto and Peto (1972), which has a similar form with ξ(x) = x log(x), for right-
censored data. Under some regularity conditions and H0, Zhao et al. (2008) showed that
as n → ∞, nk1/n → pk1, nk2/n → pk2 with 0 < pkj < 1, Uξ/

√
n has an asymptotic

normal distribution with mean zero. They also gave a consistent estimate of the asymptotic
covariance matrix. For an illustration, the application of the test procedure described above
with ξ(x) = x log(x) to the breast cancer data used in Figure 16.1 gives a p−value being
0.007 for comparing the two treatment groups. The result suggests that the patients given
the radiation therapy alone had a higher survival rate than the other patients.

With respect to regression analysis of general interval-censored data, as with other types
of failure time data, the proportional hazards model (18.5) and the additive hazards model
(18.6) are commonly used. Among recent work on this, Zhang et al. (2010) and Heller
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(2011) investigated the fitting of model (18.5) to interval-censored data. The former stud-
ied the spline-based maximum likelihood approach in which monotone B-spline were used
to approximate the baseline cumulative hazard function, while the latter gave a weighted
estimating equation method. To fit model (18.6) to interval-censored data, Chen and Sun
(2010a) and Wang et al. (2010) developed a multiple imputation procedure and an estimat-
ing equation approach, respectively.

Many other semiparametric models have been employed for regression analysis of
interval-censored data. One such model is the proportional odds model (Sun, 2006; Sun
et al., 2007) expressed as

log

{
F (t|z)

1− F (t|z)

}
= h(t) + β′z (18.7)

with respect to the CDF F (t|z) of the failure time T of interest given Z = z. Here h(t) is an
unknown monotone-increasing function, also referred to as the “baseline log odds,” and β
represents a vector of regression parameters as in models (18.5) and (18.6). The accelerated
failure time model (Betensky et al., 2001; Li and Pu, 2003) has also been considered for
analyzing interval-censored data and it assumes that T and Z have the following relationship

log(T ) = β′Z + ε . (18.8)

In the above, β is defined as before and ε is an error term whose distribution is usually
unspecified.

It is easy to see that the four semiparametric models (18.5–18.8) are all specific models in
terms of the functional form of the effects of covariates. Sometimes one may prefer a model
that gives more flexibility. One such model that has been investigated for interval-censored
data is the linear transformation model that specifies the relationship between the failure
time T and the covariate Z as

h(T ) = β′Z + ε . (18.9)

Here h : R+ → R (R denotes the real line and R+ the positive half real line) is an
unknown strictly increasing function and the distribution of ε is assumed to be known.
It is apparent that model (18.9) gives different models depending on the specification of
the distribution of ε and especially, it includes models (18.5) and (18.7) as special cases.
Among others, Zhang et al. (2005) and Chen and Sun (2010b) considered the fitting of model
(18.9) to interval-censored data and proposed an estimating equation-based procedure and
a multiple imputation approach, respectively. Applying the estimating equation procedure
to the breast cancer data discussed above again, we obtained the estimate of the group
effect parameter β being −0.697 with the estimated standard error of 0.251 by specifying
model (18.5). If assuming model (18.7), one would get the estimate of −1.04 with the
estimated standard error being 0.372. Both results indicate that the adjuvant chemotherapy
significantly increased the hazard rate. These results are similar to those given by others
such as Finkelstein (1986) and Chen and Sun (2010b).

For a practical problem, of course, one may also employ some parametric models such as
piecewise exponential models (Zhang and Sun, 2010b) if there exists some prior information
about the appropriateness of the parametric model. A main advantage of adopting a para-
metric model is that one can readily apply the maximum likelihood approach for inference.
On the other hand, it is well known that parametric models usually may be too difficult to
be verified and are less flexible than semiparametric models.

Other recent work on regression analysis of interval-censored data includes Kim and
Jhun (2008) and Liu and Shen (2009), who considered the fitting of a cure model to
interval-censored data, and Wang et al. (2012b) and Wang et al. (2012c), who discussed
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the application of Bayesian approaches to the problem. In addition, Zhu et al. (2008b)
proposed a transformation approach; Lin and Wang (2010) studied the fitting of a probit
model to interval-censored data; Lee et al. (2011) examined the use of three imputation
approaches for the problem. Also Sun et al. (2007) developed a model checking procedure
for model (18.7) based on interval-censored data, Zhang and Davidian (2008) proposed a
group of smooth semiparametric regression models, and Zhang (2009) discussed the survival
prediction under model (18.9).

18.5 Multivariate interval-censored data

Multivariate interval-censored data arise if a failure time study involves several related
failure time variables of interest and some of them suffer interval censoring. It is apparent
that the analysis would be straightforward if the variables are independent and when they
are not independent of each other as usually the case, one needs and should employ the
inference procedures that can take into account the correlation among the failure time
variables. Another difference between univariate and multivariate interval-censored data is
that for the latter, a new and unique issue that does not exist for the former is to make
inference about the association between the failure time variables. In the following, we will
first discuss a couple of basic issues related to the analysis of multivariate interval-censored
data and then some recent advances with the focus on bivariate interval-censored data.

As with univariate interval-censored data, nonparametric estimation of a survival func-
tion is also one of the primary objectives of interest in practice for the analysis of multivariate
interval-censored data. To discuss this, consider a survival study that involves n indepen-
dent subjects from a homogeneous population with each subject giving rise to two failure
times denoted by T1i and T2i, i = 1, ..., n. Let F (t1, t2) = P (T1i ≤ t1, T2i ≤ t2) denote
their joint cumulative distribution function and suppose that only interval-censored failure
time data in the form

{Ui = (L1i, R1i] × (L2i, R2i] , i = 1, . . . , n }

are available, where (L1i, R1i] and (L2i, R2i] represent the intervals to which T1i and T2i

belong, respectively. It is easy to see that the observation on each subject could be a point,
line segment or rectangle. If one treats points as rectangles that are degenerate in both
dimensions and line segments as rectangles that are degenerate in one dimension, then the
observed data consist of a collection of n rectangles.

For the determination of the NPMLE of F , note that as with univariate data, it will be
a step function. Let

H = {Hj = (r1j , s1j ] × (r2j , s2j ] , j = 1, ...,m }

denote the disjoint rectangles that constitute the regions of possible support of the NPMLE
of F , and define

αij = I(Hj ⊆ (L1i, R1i] × (L2i, R2i])

and
pj = F (Hj) = F (s1j , s2j) − F (r1j , s2j) − F (s1j , r2j) + F (r1j , r2,j) ,

i = 1, ..., n, j = 1, ...,m. Then the likelihood function has the form

LF (p) =

n∏
i=1

F (Ui) =

n∏
i=1

m∑
j=1

αij pj (18.10)
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with p = (p1, ..., pm)′, and the NPMLE of F can be determined by maximizing (18.10)
over the pj ’s subject to pj ≥ 0 and

∑m
j=1 pj = 1. One can easily see that the likelihood

functions given (18.1) and (18.10) actually have the same structure and thus the algorithms
developed for the maximization of (18.1) could be employed here for the maximization of
(18.10) assuming that H is known. However, for a given dataset, the determination of H is
actually difficult or not straightforward and for this, some algorithms have been developed
and need to be used (Sun, 2006). It is apparent that the same holds for general multivariate
interval-censored data.

As mentioned above, the estimation of the association between related failure time vari-
ables is often of interest for multivariate failure time data. To discuss this in the context of
bivariate data, let S1(t) and S2(t) denote the marginal survival functions of possibly related
T1 and T2, respectively, and S(t1, t2) = P (T1 > t1, T2 > t2) their joint survival function.
For the problem, one common way is to assume that S(t1, t2) can be expressed by a copula
model as S(t1, t2) = Cα(S1(t1), S2(t2)), where Cα is a distribution function on the unit
square and α ∈ R is a global association parameter. One attractive feature of the above
expression is its flexibility as it includes as special cases many useful bivariate failure time
models such as the Archimedean copula family. Another attractive feature is that under
this expression, the marginal distributions do not depend on the choice of the association
structure and thus one can model the marginal distributions and the association separately.
Among others, Wang and Ding (2000) and Sun et al. (2006) discussed this approach for bi-
variate interval-censored data. Of course, by using higher order copula models instead of the
bivariate model, one can apply the same approach to general multivariate interval-censored
data.

The copula model approach discussed above can be employed for regression analysis of
multivariate interval-censored data too. For example, Wang et al. (2008) and Zhang et al.
(2008) recently applied it to the fitting of models (18.5) and (18.7), respectively, to bivariate
current status data and developed efficient estimates of regression parameters. To describe
the relationship among correlated failure time variables, instead of using the copula model,
another commonly used approach is to employ frailty or latent variable models in which
some latent variables are used to characterize the correlation. Among others, Hens et al.
(2009) and Jonker et al. (2009) considered this approach for regression analysis of bivariate
interval-censored data, and Chen et al. (2009a) and Nielsena and Parner (2010) applied it
to regression analysis of general multivariate interval-censored data. A third approach that
is often adopted for multivariate failure time data is the marginal approach that leaves the
correlation arbitrary. Among others, Chen et al. (2007) and Tong et al. (2008) developed
such approaches for fitting models (18.7) and (18.6), respectively, to general multivariate
interval-censored data. For all three approaches, of course, one could apply them in the
Bayesian framework (Gómez et al., 2009; Komàrek and Lesaffre, 2007).

It is well known that multivariate failure time data can be seen as a special case of
clustered failure time data and one key feature of the latter is that the cluster size, the
number of correlated failure time variables, can differ from cluster to cluster. Thus the
existing methods for multivariate interval-censored data cannot be directly applied to clus-
tered interval-censored data. Some recent references on the statistical analysis of clustered
interval-censored data include Chen et al. (2009b), Zhang and Sun (2010a), Xiang et al.
(2011) and Li et al. (2012). In particular, Chen et al. (2009b) and Zhang and Sun (2010a)
discussed the fitting of the proportional hazards model (18.5) to them; Xiang et al. (2011)
considered the inference about a cure model; Li et al. (2012) proposed regression analysis
of data of this kind with the additive models. Compared to other types of interval-censored
data discussed above, however, there exists very limited literature on clustered interval-
censored data.
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18.6 Competing risks interval-censored data

Competing risks failure time data arise when there exist several related failure causes or
types. The underlying structure behind them is actually similar to that behind multivari-
ate failure time data. A key difference between the two types of data, also a key feature
of the former, is that one observes only one failure type or one of several related under-
lying failure time variables. For a patient with several diseases, for example, one can only
observe the death time caused by one of them, but not the death times due to other dis-
eases. In other words, other disease death times are censored by the death time of the
disease that occurs the first. In the following, we will first discuss the analysis of competing
risks interval-censored data and then informatively interval-censored data with the focus on
nonparametric estimation and regression analysis.

Consider a competing risks study that involves m different types of failures. Let T
denote the real or observable failure time and J ∈ {1, · · · ,m} the cause or type of failure.
In this case, one function that is usually of interest is the cumulative incidence function
defined as Fj(t) = P (T ≤ t; J = j) for failure type j. For its estimation, one of early
work was given by Jewell et al. (2003), who gave several estimates. Recently Groeneboom
et al. (Groeneboom et al., 2008a; Groeneboom et al., 2008b) derived the nonparametric
maximum likelihood estimates of the function and established their consistency and local
limiting distributions. Maathuis and Hudens (2011) also investigated the same problem.
Note that all four references mentioned above are for competing risks current status data
only and there does not seem to exist similar work for general competing risks interval-
censored data.

In addition to the notation above, suppose that there also exists a vector of covariates
Z and one is interested in regression analysis. In this case, one can write the conditional
cumulative incidence function Fj(t|Z) = P (T ≤ t; J = j|Z) as

Fj(t|Z) = P (T ≤ t|J = j, Z)P (J = j|Z) ,

j = 1, · · · ,m. To conduct regression analysis, one way is to directly model Fj(t|Z) or the
conditional distribution function P (T ≤ t|J = j, Z) along with P (J = j|Z). Note that
the regression parameters in these two different modeling approaches will have different
meanings and one may base the selection on the regression parameter that is preferred.
Assume that one would like to take the second approach and T is continuous. For this, a
common approach is to assume that the cause-specific hazard function corresponding to
P (T ≤ t|J = j, Z) and P (J = j|Z) follow, for example, the proportional hazards model

λj(t|Z) = λ0j(t) e
βT
j Z and a parametric model gj(γ, Z), respectively. Here λ0j(t) is an

unknown baseline hazard function, βj and γ are unknown parameters, and gj is a known

and positive function satisfying
∑m

j=1 gj(γ, Z) = 1. For each j, let Λj(t) =
∫ t

0
λ0j(t). Then

we have
Fj(t|Z) = gj(γ, Z)

[
1− exp

{
− Λj(t) exp(β

T
j Z)

}]
.

For inference, suppose that one observes only the current status data discussed in Sec-
tion 18.3. For each j, define δj = I{T ≤ C, J = j}, j = 1, · · · ,m, δm+1 = I{T > C} and
Δ = (δ1, · · · , δm, δm+1). Let θ = (βT

1 , · · · , βT
m, γT )T and Λ = (Λ1, · · · ,Λm)T and suppose

that the joint distribution function of (C,Z) does not involve θ and Λ. Then the likelihood
contribution from a single observation X = (C,Δ, Z) has the form

L(θ,Λ;X) =
m∏
j=1

Fj(c|Z)δj{1−
m∑

k=1

Fk(c|Z)}δm+1
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=
m∏
j=1

[
gj(γ, Z)

{
1− exp

(
− Λj(c) exp(β

T
j Z)

)}]δj
×
[ m∑
k=1

gk(γ, Z) exp
{
− Λk(c) exp(β

T
k Z)

}]δm+1

and the likelihood function from n i.i.d. copies of X is given by the product of L(θ,Λ;X).
Sun and Shen (2009) investigated this and established the asymptotic properties of the
resulting maximum likelihood estimates.

18.7 Informatively interval-censored data

Now we discuss the analysis of informatively interval-censored data and for this, we will
first consider current status data. As before, let T and C denote the failure time of interest
and the observation time, respectively. By informative censoring, it means that T and C are
correlated and thus the underlying probability space is similar to that for m = 2 competing
risks problems without censoring. On the other hand, the data structures behind them are
different as for current status data, C is always observable but not T , while both T and C
could be observed for exact or right-censored competing risks data. As with informatively
right-censored failure time data, the survival function of T is generally unidentifiable based
on informatively current status data without some assumptions. Wang et al. (2012a) recently
discussed this and proposed two estimates of the survival function under the copula model
framework.

As mentioned above, one area that often produces current status data is tumorigenicity
experiments and in this case, T and C represent the tumor onset time and the death time,
respectively. In addition, sacrifice is often used in these studies and in this situation, the
death will not be observed. In other words, there may exist right censoring on the obser-
vation time C. Also often used in tumorigenicity studies, one way to analyze informatively
current status data with right censoring is to formulate the problem using the illness-death
or three-state model consisting of health, illness (tumor in the tumorigenicity study) and
death states. Here the illness and death correspond to the failure event of interest and the
observation event, respectively, and an extensive literature has been established on this in
the context of tumorigenicity studies. Recent references on this for informative current sta-
tus data include Frydman and Szarek (2009) and Kim et al. (n.d.). The former developed
the nonparametric maximum likelihood approach and the latter discussed the regression
analysis problem under the proportional hazards model.

For the analysis of general informatively interval-censored data, first note that as dis-
cussed above, the censoring mechanism behind interval censoring is usually much more com-
plicated than that behind both right censoring and current status data case. In consequence,
it is usually difficult or impossible to generalize the methods developed for informatively
right-censored data or informative current status data to them. To further see this, note
that one can write the likelihood contribution from a single interval-censored observation
as

Pr(L ≤ T ≤ R) = Pr(l ≤ T ≤ r|L = l, R = r)Pr(L = l, R = r) .

This indicates that to conduct regression analysis, one would have to specify some joint
models for Pr(L ≤ T ≤ R) or for both Pr(l ≤ T ≤ r|L = l, R = r) and Pr(L = l, R = r).
This is quite different from the case of right-censored data or current status data, and
usually not easy. The authors who recently discussed this joint modeling approach include
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Zhang et al. (2007) and Wang et al. (2010). They considered the cases where T follows
models (18.5) and (18.6), respectively, marginally and in both cases, model (18.5) was also
used to model the censoring variables.

18.8 Other types of interval-censored data

In the previous sections, we have discussed several types of interval-censored failure time
data that one commonly faces in practice. A few other types of interval-censored data
that were not touched above may occur too in failure time studies. They include doubly
censored data, interval-censored data from multi-state models and interval-censored data
with missing covariates. In this section, we will briefly discuss them along with some others.

By failure time variable or interval-censored failure time variable, one generally means
a variable measuring the time from zero to the occurrence of an event of interest. A gen-
eralization of this is the variable that measures the elapse time between two successive
events such as the onset of a disease and death due to the disease. Given such a variable of
interest plus interval censoring, one will have a doubly censored data analysis problem as
discussed above. In other words, the interval-censored data discussed above can be regarded
as a special case of doubly censored data. Sun (2006) devoted one chapter for the analysis
of doubly censored data. Recent references on doubly censored data include Komàrek and
Lesaffre (2008) and Deng et al. (2009), which discussed the Bayesian approach and the
nonparametric estimation problem, respectively.

Note that one way to formulate doubly censored data is to employ a three-state model
similar to the one discussed in the previous section. Corresponding to this, a natural question
of interest will be the analysis of interval-censored data arising from a multi-state model,
naturally and commonly used in, for example, epidemiological or disease progression studies.
Several authors actually have recently considered this problem including Barrett et al.
(2011), Chen et al. (2010), Cook et al. (2008), Joly et al. (2012) and Yang and Nair (2011).
In particular, Chen et al. (2010) investigated the maximum likelihood approach, and Yang
and Nair (2011) compared the multi-state-based analysis and the simple failure time data
analysis in the presence of interval censoring.

Missing covariates can occur in any regression analysis as well as covariate mismeasure-
ment and other related problems. The same can happen in failure time studies with interval
censoring. For example, Wen and Lin (2011) gave a set of current status data with missing
covariates arising from the 2005 Taiwan National Health Survey and developed a semipara-
metric maximum likelihood estimation procedure under the proportional hazards model
(18.5). Wen (2012) and Wen et al. (2011) discussed regression analysis of interval-censored
data under model (18.5) in the presence of measurement errors on covariates. Also Li and
Nan (2011) considered current status data arising from case-cohort studies. In all discussion
so far, it has been supposed that interval censoring occurs on the failure time variable of
interest and in reality, it could occur on covariates too. In other words, covariates may have
missing values in the form of censoring and among others, Schoenfeld et al. (2011) provided
some discussion on such interval-censored data.
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18.9 Software and concluding remarks

The software development is always important for both the development and promotion of
new statistical methodology. Although there does not seem to exist a single commercially
available statistical software yet that provides a relatively complete and extensive coverage
for the analysis of interval-censored data, many individual functions or packages have been
developed and are available online. For example, in SPLUS , the function kaplanMeier can be
used to compute the Turnbull estimator (Turnbull, 1976). In SAS, the procedure LIFEREG
allows one to fit the parametric accelerated failure time model to interval-censored data. In
the following, we will describe several R packages that can be easily implemented.

Actually a number of R packages have recently been developed for the analysis of
interval-censored data and can be found in the survival analysis part of R websites. For
the determination of the NPMLE of a survival function, for example, one can employ the
Icens or MLEcens packages, developed by Gentleman and Vandal (2013) and Maathuis
(2013), respectively. The two packages apply to both univariate and bivariate interval-
censored data. For doubly censored data, one may apply the dblcens developed by Zhou et
al. (2012). To conduct nonparametric comparison of survival functions, the available R pack-
ages include the glrt and interval packages developed by Zhao and Sun (2010) and Fray
(2011), respectively. The former include three generalized log-rank tests and the score test,
while the latter also allows one to use some generalized log-rank tests as well as Wilcoxon
type tests.

To perform regression analysis of interval-censored data, one may apply the intcox
package, developed by Henschel et al. (2013), if the proportional hazards model (18.5) is of
interest. One could also use the Icens function in package Epi, developed by Carstensen et.
al. (2013), to fit the multiplicative relative risk and additive excess risk models to interval-
censored data. Furthermore, the dynsurv and survBayes packages, developed by Wang
et al. (2012d) and Henschel et al. (2012), allow one to fit the time-varying coefficient model
and the proportional hazards model in the Bayesian framework to interval-censored data.

Finally we remark that methodologically, there are still many open questions in the
analysis of interval-censored data. Examples include but are not limited to model checking
techniques and joint modeling of longitudinal and interval-censored data. Also many of the
existing procedures need proper theoretical justification. One major difficulty with interval-
censored data is that there lacks basic tools as simple and elegant as the partial likelihood
and the martingale theory for right-censored data. Instead, one often has to rely on the
empirical process theory as well as the optimization theory (Groeneboom and Wellner,
1992; Huang and Wellner, 1997).
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Gómez, G., Oller, R., Calle, M. and Langohr, K. (2009), ‘Tutorial on methods for interval-
censored data and their implementation in R’, Statistical Modeling 9, 299–319.

Groeneboom, P. (2012), ‘Likelihood ratio type two-sample tests for current status data’,
Scandinavian Journal of Statistics 39, 645–662.

Groeneboom, P., Jongbloed, G. and Witte, B. (2010), ‘Maximum smoothed likelihood esti-
mation and smoothed maximum likelihood estimation in the current status model’, The
Annals of Statistics 38, 352–387.

Groeneboom, P., Jongbloed, G. and Witte, B. (2012), ‘A maximum smoothed likelihood
estimator in in the current status continuous mark model’, Journal of Nonparametric
Statistics 24, 85–101 .

Groeneboom, P., Maathuis, M. and Wellner, J. (2008a), ‘Current status data with com-
peting risks: Consistency and rates of convergence of the MLE’, The Annals of Statistics
36, 1031–1063.

Groeneboom, P., Maathuis, M. andWellner, J. (2008b), ‘Current status data with competing
risks: Limiting distribution of the MLE’, The Annals of Statistics 36, 1064–1089.

Groeneboom, P. and Wellner, J. (1992), Information Bounds and Nonparametric Maximum
Likelihood Estimation, DMV Seminar, Band 19, New York: Birkhauser.



386 Handbook of Survival Analysis

Heller, G. (2011), ‘Proportional hazards regression with interval censored data using an
inverse probability weight’, Lifetime Data Analysis 17, 373–385.

Hens, N., Wienke, A., Aerts, M. and Molenberghs, G. (2009), ‘The correlated and shared
gamma frailty model for bivariate current status data: An illustration for cross-sectional
serological data’, Statistics in Medicine 28, 2785–2800.

Henschel, V., Heiss, C. and Mansmann, U. (2012), R package survBayes: Fits
a proportional hazards model to time to event data by a Bayesian approach.
http://cran.rproject.org/web/packages/survBayes/index.html

Henschel, V., Mansmann, U. and Heiss, C. (2013), R package intcox: Iter-
ated convex minorant algorithm for interval censored event data. http://cran.r-
project.org/web/packages/intcox/index.html

Huang, J. (1996), ‘Efficient estimation for the proportional hazards model with interval
censoring’, The Annals of Statistics 24, 540–568.

Huang, J. and Wellner, J. (1997), Interval censored survival data: a review of recent progress.
Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis, Lin, D.,
Fleming, T., eds. New York: Springer-Verlag.

Huang, J., Zhang, Y. and Hua, L. (2012), ‘Consistent variance estimation in interval-
censored data’, Interval-Censored Time-to-Event Data: Methods and Applications, Chen,
D.G. and Sun, J. and Peace, K.E., eds. CRC Press Taylor & Francis Group pp. 233–268.

Jewell, N. and van der Laan, M. (1995), ‘Generalizations of current status data with appli-
cations’, Lifetime Data Analysis 1, 101–110.

Jewell, N., van der Laan, M. J. and Hennemean, T. (2003), ‘Nonparametric estimation from
current status data with competing risks’, Biometrika 90, 183–197.

Joly, P., Gerds, T., Qvist, V., Commenges, D. and Keiding, N. (2012), ‘Estimating survival
of dental fillings on the basis of interval-censored data and multi-state models’, Statistics
in Medicine 31, 1139–1149.

Jonker, M., Bhulai, S., Boomsma, D., Ligthart, R. and Vander Vaart, A. (2009), ‘Gamma
frailty model for linkage analysis with application to interval-censored migraine data’,
Biometrics 10, 187–200.

Kalbfleisch, J. and Prentice, R. (2002), The Statistical Analysis of Failure Time Data, New
York: Wiley.

Keiding, N. (1991), ‘Age-specific incidence and prevalence: A statistical perspective (with
discussion)’, Journal of the Royal Statistical Society: Series A 154, 371–412.

Kim, Y. and Jhun, M. (2008), ‘Cure rate model with interval censored data’, Statistics in
Medicine 27, 3–14.

Kim, Y.-J., Kim, J., Nam, C. and Kim, Y.-N. (2012), ‘Statistical analysis of dependent
current status data, in Interval-Censored Time-to-Event Data: Methods and Applications,
Chen, D.G., Sun, J., and Peace, K.E., eds. CRC Press Taylor & Francis Group pp. 113–
148.

Klein, J. and Moeschberger, M. (2002), Survival Analysis, New York: Springer.



Interval Censoring 387
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Komàrek, A. and Lesaffre, E. (2008), ‘Bayesian accelerated failure time model with multi-
variate doubly interval-censored data and flexible distributional assumptions’, Journal of
the American Statistical Association 103, 523–533.

Lawless, J. and Babineau, D. (2006), ‘Models for interval censoring and simulation-based
inference for lifetime distributions’, Biometrika 93, 671–686.

Lee, T., Zeng, L., Darby, J. and Dean, C. (2011), ‘Comparison of imputation methods
for interval censored time-to-event data in joint modeling of tree growth and mortality’,
Canadian Journal of Statistics 39, 438–457.

Li, J., Wang, C. and Sun, J. (2012), ‘Regression analysis of clustered interval-censored
failure time data with the additive hazards model’, Journal of Nonparametric Statistics
24, 1041–1050.

Li, L. and Pu, Z. (2003), ‘Rank estimation of log-linear regression with interval-censored
data’, Lifetime Data Analysis 9, 57–70.

Li, L., Watkins, T. and Yu, Q. (1997), ‘An EM algorithm for estimating survival functions
with interval-censored data’, Scandinavian Journal of Statistics 24, 531–542.

Li, Z. and Nan, B. (2011), ‘Relative risk regression for current status data in case-cohort
studies’, Canadian Journal of Statistics 39, 557–577.

Lin, D., Oakes, D. and Ying, Z. (1998), ‘Additive hazards regression with current status
data’, Biometrika 85, 289–298.

Lin, X. and Wang, L. (2010), ‘A semiparametric probit model for case 2 interval-censored
failure time data’, Statistics in Medicine 29, 972–981.

Liu, H. and Shen, Y. (2009), ‘A semiparametric regression cure model for interval-censored
data’, Journal of the American Statistical Association 104, 1168–1178.

Ma, S. (2009), ‘Cure model with current status data’, Statistica Sinica 19, 233–249.

Ma, S. (2011), ‘Additive risk model for current status data with a cured subgroup’, Annals
of the Institute of Statistical Mathematics 63, 117–134.

Maathuis, M. (2013), R package MLEcens: Computation of the MLE for bivariate (interval)
censored data. http://cran.r-project.org/web/packages/MLEcens/MLEcens.pdf

Maathuis, M. and Hudens, M. (2011), ‘Nonparametric inference for competing risks current
status data with continuous, discrete or grouped observation times’, Biometrika 98, 325–
340.

Maathuis, M. and Wellner, J. (2008), ‘Inconsistency of the mle for the joint distribtion of
interval-censored survival times and continuous marks’, Scandinavian Journal of Statistics
35, 83–103.

Martinussen, T. and Scheike, T. (2002), ‘Efficient estimation in additive hazards regression
with current status data’, Biometrika 89, 649–658.



388 Handbook of Survival Analysis

McKeown, K. and Jewell, N. (2010), ‘Misclassification of current status data’, Lifetime Data
Analysis 16, 215–230.

Murphy, S. and van der Vaart, A. (1999), ‘Observed information in semiparametric models’,
Bernoulli 5, 381–412.

Murphy, S. and van der Vaart, A. (2000), ‘On profile likelihood’, Journal of the American
Statistical Association 95, 449–465.

Nielsena, J. and Parner, E. (2010), ‘Analyzing multivariate survival data using composite
likelihood and flexible parametric modeling of the hazard functions’, Statistics in Medicine
29, 2126–2136.
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Current status data provides information on the survival status of individuals at single
screening times rather than standard observation, possibly right-censored, of failure times.
It thus represents an extreme form of interval censoring where censoring intervals are ei-
ther [0, C] or (C,∞) where C represents the screening time on an appropriate timescale.
Considerable attention has been given to estimation of a survival function based on such
data, often supplemented by estimation of regression coefficients from a variety of standard
models in the context where observed covariates influence survival characteristics. We here
review these methods using a particularly accessible example on mortality of avalanche
victims to motivate and illustrate methods, assumptions and results.

19.1 Introduction

Current status data provides information on the survival status of individuals at single
screening times rather than standard observation, possibly right-censored, of failure times.
It thus represents an extreme form of interval censoring where censoring intervals are either
[0, C] or (C,∞), where C represents the time at screening on an appropriate timescale. Con-
siderable attention has been given to estimation of a survival function based on such data,
and estimation of regression coefficients from a variety of standard models where covariates
influence survival characteristics. Earliest work was motivated by applications in demogra-
phy (Diamond et al., 1986) and epidemiology (Becker, 1989), followed by carcinogenicity
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studies, partner studies of Human Immunodeficiency Virus (HIV) transmission (Jewell and
Shiboski, 1990; Shiboski and Jewell 1992), and age-incidence estimation (Keiding, 1991).

Here, we motivate relevant estimation problems, and outline both parametric and non-
parametric approaches to such, using data from people buried in avalanches in both Switzer-
land and Canada (Haegeli et al., 2011). This dataset contains information on 1,247 indi-
viduals who suffered a complete avalanche burial (coverage of the person’s head and chest)
between October 1, 1980 and September 30, 2005 in situations where there was complete
information on the duration of burial and mortality outcome; of these, 946 data points are
from Switzerland and 301 from Canada. We note here that the records do not distinguish
between people who were dead upon discovery or who died subsequent to their rescue (that
is, their injuries were so great, or their breathing sufficiently impaired, that they did not
recover). The data was collected from databases of the Canadian Avalanche Centre and the
WSL Institute for Snow and Avalanche Research SLF in Switzerland. Two thirds of the
Canadian data were from the later half of the relevant time period, that is after October 1,
1992, whereas the Swiss data was more uniformly spread over the entire 25-year interval.
Covariate information included the date and location of the avalanche, the type of outdoor
activity involved (for example, backcountry skiing, snowmobiling, mountaineering and ice
climbing, etc.), and the depth of burial (this variable was missing for 10% of the individu-
als), in addition to the crucial censoring variable C (the time from avalanche to discovery, or
duration of burial). Some of the Canadian data also provided some additional information
on the cause of death (asphyxia, hypothermia, and trauma) when fatality occurred, and on
the snow climate at the location of the avalanche (maritime, continental, and transitional).
Specifically, cause of death was recorded for 88% of the 162 Canadian fatalities, and snow
climate for 89% of the 301 Canadian observations. We note that while the climate char-
acterizations are related to snow density, this important characteristic was not measured.
Figure 19.1 uses a variation of a binned scatter plot to show the data distribution of deaths
and survivors, with regard to their burial times, for both countries.

The description of the survival curve, where time is measured chronologically from the
time of avalanche (the time ‘origin’) until death, has formed the basis for international
recommendations for rescue and resuscitation as well as improvements in safety and rescue
devices. This has traditionally been based solely on Swiss data (Falk et al., 1994). For
further discussion of the data, and its detailed interpretation and implications, we refer to
Haegeli et al. (2011).

It is immediately apparent that the available data is exactly in current status format.
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FIGURE 19.1
The distribution of burial durations for avalanche deaths and survivors in Canada and
Switzerland.
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That is, at the time of discovery (referred to as the “screening time” in many applications),
the survival status of the individual is observed and known (with the slight proviso noted
earlier about the definition of mortality); however, the actual time of death, where this is
observed on discovery, is not known. Thus, if the random variable T denotes the time from
avalanche until death (with distribution function F ), and C is the time from avalanche until
discovery, then the observed outcome data is simply n observations of the random variable
(Y,C) where Y = I(T ≤ C). In the application, we assume that the discovery time C is also
random, following a distribution function G; most current status techniques do not depend
on whether C is assumed fixed (as in some applications) or random.

Here, we also assume that the n observations on (Y,C) are i.i.d.; this would, of course
be violated, in cases where a specific avalanche buried multiple individuals (this is unknown
to us regarding the data source). There is considerable recent research on the generalization
of methods for current status data to cover multivariate or clustered current status obser-
vations where the i.i.d assumption is violated. In the bivariate case, where clusters involve
at most two individuals, see Wang and Ding (2000) and Jewell et al. (2005). In general, and
for more recent work, see, for example, Chen et al. (2009), Cook and Tolusso (2009), and
Wen and Chen (2011).

As current status data is a special case of interval censored data, many of the statistical
estimation and inference problems can be tackled using general interval censoring ideas
(Sun, 2006). However, given the very specialized nature of current status data, there are
often insights and more efficient algorithms available for this special case. For more extensive
reviews of statistical methods for current status data, we also refer the reader to Jewell and
van der Laan (2004b) and Sun (2006, Chapter 5). Banerjee (2012) provides an excellent
review of theoretical developments and future areas of research.

19.2 Estimation of a single distribution function

Assuming an i.i.d. random sample of the population as described above, the likelihood of
the data is given by:

L =

n∏
i=1

F (ci)
yi(1− F (ci))

1−yidG(ci), (19.1)

where the critical assumption of independence of T and C is exploited. In the avalanche
example, this is a plausible assumption, akin to claiming, for example, that rescues are
not performed more quickly in cases where there is some information available on the
survival status of the individual (e.g., imagine a scenario where skiers wear a sensor that
would transmit vital signs to rescuers). See for example van der Laan and Robins (1998)
for a discussion of theory in the case where the screening time, C, and failure time, T , are
dependent through observable (time-dependent) covariates (e.g., the measure of transmitted
vital signs in our hypothetical example).

With independent screening, estimation of F can be simply based on the conditional
likelihood of Y , given C, given by

CL =
n∏

i=1

F (ci)
yi(1− F (ci))

1−yi . (19.2)

Parametric estimation of F is then straightforward using standard maximum likelihood
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techniques. A very simple illustration occurs when F is assumed to be Exponential, with
constant hazard λ, with all screening times the same, that is ci = c for all i. In this case,
the maximum likelihood estimator of λ is just

λ̂ =
[
− log

(n− r

n

)]
/c, (19.3)

where r =
∑n

i=1 yi, the total number of failures observed by time c. In such a simple
case, it is possible to calculate the amount of (asymptotic) information lost in terms of
estimation of λ, the constant hazard, when only current status information is available at a
sole screening time c, as compared to standard observation of exact failure times with right
censoring at c. By computing the (expected) information, it is straightforward to show that
the asymptotic relative efficiency (ARE) of the current status data estimator, as compared
to the right-censored data estimator, is simply

ARE =
(1− p)

(
log(1− p)

)2
p2

(19.4)

where p = 1−e−λc is the probability of failure by time c. Thus, for example, if the expected
fraction of uncensored failures is 0.5, the ARE of having only current status information
is 96.1%. If p = 0.1, the ARE rises to 99.9%. On the other hand, if 90% of observations
are expected to fail by time c, the ARE drops to 65.5%. The high efficiency of the limited
current status information is perhaps counter-intuitive, but largely depends on the strong
parametric assumption as is evident when considering nonparametric approaches. On the
other hand, in situations where the relative efficiency is high, use of current status data
may be preferred if measurement of exact failure times is subject to substantial amounts of
error. With the avalanche data, there were no attempts to record the actual time to death
for fatalities, and so only current status information was available.

The nonparametric maximum likelihood estimator (NPMLE) of F , based on (19.2),
can be estimated algorithmically using the pool-adjacent-violators-algorithm of Ayer et al.
(1955). In R, it can be calculated using the gpava function within the package isotope (de
Leeuw, 2009). It is also possible to use the EM method to calculate the NPMLE, but the
resulting algorithm is considerably slower. For the avalanche data, Figure 19.2 displays the
NPMLE of both the Swiss and Canadian data separately as well as combined. From these
estimates it is apparent that, at first glance, survival prospects are much worse for Canadian
avalanche victims than in Switzerland. Of course, it remains to be seen the extent to which
the observed survival differences can be attributed to chance variation or due to differences
in the nature of the avalanches and victims. We will investigate both of these issues in
further detail below.

Figure 19.3 reproduces the same NPMLE for Switzerland and, for comparison, the sur-
vival curve of a Weibull parametric model first to the same data. While the Weibull model
is reasonable for the left-hand tail (the first 100 minutes of burial), it does not fit quite
so well after that time period where it overstates survival probabilities up to almost 300
minutes and then understates them thereafter. On the other hand, for the same data, the
likelihood ratio test unequivocally rejects the null hypothesis of a constant hazard (i.e., an
Exponential distribution) with a p-value < 10−8; as Figure 19.3 shows indirectly, the hazard
function for the fitted Weibull distribution for Switzerland decreases over time buried. It
remains to be seen the extent to which this is due to the risk of varying causes of death
changing differentially over time, or whether covariates (such as depth of burial) are dis-
tributed differently for early versus late screening times. We follow up on both of these
issues below.
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FIGURE 19.2
Plot of the NPMLE estimates of the survival distribution, S, for Canada, Switzerland, and
the two countries combined.

19.2.1 Inference

In principal, it is straightforward, at least for large samples, to compute confidence bands
(either pointwise or for the entire survival curve) associated with parametric estimation,
using (asymptotic) Fisher information calculations. However, for nonparametric estimation,
assessment of uncertainty in estimation of the survival distribution is much more complex.
First, we note that it is not possible to carry out simple efficiency comparisons of the
NPMLE and the Kaplan-Meier curve (based on right-censored data observations), even
at a single point in time using variance comparisons. Even pointwise confidence intervals
associated with the NPMLE are much more complicated when nonparametric methods are
used. Difficulties are immediate because (i) the convergence for the NPMLE is now at rate
n1/3 (as opposed to the familiar

√
n rate for the Kaplan-Meier estimator), and (ii) the limit

distribution of the estimator of F at a single point point t0 is not Gaussian (Groenboom
and Wellner, 1992). Thus it is not appropriate to focus on the (asymptotic) variance of the
NPMLE based on any form of current status data as a step towards confidence interval
construction. The slow rate of convergence illustrates the substantial loss of information
associated with current status observations, as compared to standard right censoring, when
nothing is known a priori regarding the shape of the survival curve; note, however, that
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FIGURE 19.3
Plot of the NPMLE estimate of the survival distribution, S, for Switzerland together with
an estimate based on a Weibull distribution assumption.

comparisons can still be made with regard to estimation of smooth functionals of F where
rates of convergence for both methods are equivalent.

Various approaches have been developed for pointwise confidence intervals for F , based
on the NPMLE for standard current status data, and are reviewed in Banerjee (2012). In
particular, it is possible to compute Wald-type confidence intervals based on the limiting
distribution of the NPMLE of F (t0). However, this approach requires estimation of the
density function associated with the distribution of the status screening variable, denoted
above by G. Even more challenging is that the method also requires estimation of the
density function f , associated with F , at t0. This is much harder, with only current status
information on the survival times available, as compared to estimating the density associated
with G given uncensored screening times (C) are observed for all individuals.

These difficulties motivated research into alternative methods that avoid such complex
estimation problems along the way. The bootstrap procedure suggests a potentially sim-
pler approach. In general, however, the standard bootstrap procedure yields inconsistent
estimates of pointwise confidence intervals, whether data is sampled with replacement from
the original data or generated from the NPMLE estimator (Sen, Banerjee and Woodroofe,
2010). As a modification, a smoothed version of the bootstrap is possible, as is the m out of
n bootstrap (Politis et al. 1999). For practical implementation, the latter procedure neces-
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sarily involves choice of the block size m. Asymptotically, m must be chosen so that m → ∞
and m/n → 0 as n → ∞, although these requirements provide little guidance for a finite
sample size. Banerjee and Wellner (2005) suggest an intricate procedure for selecting m,
based itself on bootstrapping. The method can be adapted to provide symmetric confidence
intervals as these often perform better in finite samples. Banerjee and Wellner (2005) pro-
vide further implementation details although by now it should be clear that we have lost
much of the simplicity that motivated the bootstrap method as an appealing procedure.

The most attractive method is thus based on the likelihood-ratio (LR) method that
does not require estimation of nuisance parameters. This approach is developed in detail in
Banerjee and Wellner (2001; 2005), and constructs confidence limits for F (t0) by considering
tests of the null hypothesis, H0 : F (t0) = a, against its complement. These methods (and
their asymptotics) depend on the screening time distribution G being continuous; that is,
there can be no tied screening times. This is, however, not true, for the avalanche data, at
least as currently available. (It is apparent that there is, in fact, a fair amount of rounding,
or digit preference, with many burial times given to the nearest 5 minutes.) This raises an
interesting question (originally posed by Kalbfleisch and Jewell) regarding the appropriate
asymptotics when there are only a few screening times with multiple observations sharing
the same screening value. In the most trivial case, when there is a single screening time,
C0, a suitable confidence interval, associated with the nonparametric estimate of F (C0),
can be based on standard

√
n asymptotics and the familiar χ2 distribution. This approach

can readily be generalized to a small number of screening times for each of which there are
multiple observations associated. However, at some point, as the number of screening times
increases (so that the number of observations at each becomes small), we might expect
the asymptotics to approach the continuous G case described above. In practice, of course,
we do not know how the number of screening times will increase as the sample size grows
asymptotically large. Generally speaking, this suggests that if the number of screening times
is much less than the total sample size, standard normal approximations to the distribution
of the NPMLE should be reasonable. On the other hand, if the number of screening times is
essentially the same as the sample size, the LR method due to Banerjee and Wellner (2001;
2005) should be used.

This leaves the question of what should be done when the dataset sits between these two
extremes (as it does with the avalanche data), where there are a large number of screening
times but also multiple observations at many of the observed screening times, a scenario
where neither of the two “extreme” methods may be effective. This problem has been stud-
ied intensively by Tang et al. (2012) who provide a method that reaffirms the two “extreme”
approaches when appropriate, and identifies a third boundary possibility that establishes
a connection between the two extremes, the three situations distinguished by how fast the
number of screening times grows as compared to the sample size. Since, as noted, we cannot
tell from a single dataset which scenario is appropriate, Tang et al. (2012) suggest an adap-
tive inference scheme, using the boundary result to construct Wald- or LR-type confidence
intervals, without assuming knowledge of the rate of growth of the number of monitoring
times as the sample size increases. Figure 19.4 illustrates the Tang et al. (2012) estimates of
Wald-type 95% pointwise confidence intervals, associated with the NPMLE, for the Swiss
avalanche data. With the avalanche data, there is an additional complication in that it is
necessary to calculate local averages of the relative density of the screening observations
per unit time from the data. Here, the density of screening times clearly varies substantially
across the entire scale of burial times as the empirical distribution function estimate for
G is skewed. To partially alleviate this issue, and to focus on the more informative data
associated with shorter burial times, we ignored burial times greater than 240 minutes (4
hours); for the Swiss data, 150 (of the original 946) data points had burial durations greater
than 240 minutes and all but two of these individuals had perished on recovery. Further,
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FIGURE 19.4
The NPMLE estimate of the survival distribution, S, for the Swiss avalanche data (solid
line), together with Wald-type pointwise 95% confidence intervals (dashed lines) based on
the adaptive method of Tang et al. (2012).

for burial times ≤ 150 minutes, the bandwidth used to estimate the density of screening
times is determined pointwise, whereas a single bandwidth is used to achieve robustness for
times between 150 and 240 minutes where the number of observations is relatively much
more sporadic. Figure 19.4 shows that the pointwise limits place the Canadian NPMLE
on the lower edge of the Swiss confidence intervals (after 30 minutes), suggesting that the
differences between the two countries regarding mortality patterns are unlikely to be due
solely to chance. We will examine this comparison more formally in Section 19.3 below.
Finally, we note that the method of Tang et al. (2012) is not invariant under a monotone
transformation of the time axis; for very uneven patterns of screening times this therefore
suggests using a pre-analysis monotone transformation of the time measurements to make
the observation screening times correspond more closely to an evenly spaced grid, with a
subsequent transformation back to the original time scale after the confidence limits have
been calculated.

19.3 Regression methods

For the avalanche data, we are interested in comparison of the survival experiences for
Swiss and Canadian victims. Further, there is interest in whether, and the extent to which,
survival patterns have evolved over time, and whether the risk of death is influenced by the
nature of the activity (prior to the avalanche) or the snow climate, and whether such factors
contribute to the noted survival differences between the two countries. These questions can
all be tackled using various regression models that exploit different assumptions about the
covariates influence on survival.

We first note the correspondence between regression models that link T and Y to an
underlying k-dimensional covariate vector Z (Doksum and Gasko, 1990). This is particularly
useful since estimates of parameters from the regression model for the observed Y can then
be interpreted in terms of the parameters in the regression model for the unobserved T . We
illustrate this simple idea for three familiar regression models.
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For example, suppose that the survival times follow a proportional hazards model (Cox,
1972) of the form

S(t|Z = z) = [S0(t)]
eβz

(19.5)

where S0 is the baseline survival function for the sub-population where Z = 0, and β is
a k-dimensional vector of regression coefficients. Each component of β gives the relative
hazard associated with a unit increase in the corresponding component of Z, holding all
other covariates fixed. On the other hand, this model can be equivalently written in terms
of p(z|c) = E(Y |C = c,Z = z), as

log− log(1− p(z|c)) = log− log[S0(c)] + βz. (19.6)

This is thus a generalized linear model for Y with complementary log-log link and off-
set given by log− log[S0(c)]. In the special case where the baseline survival curve is itself
parametrically described, this offset may be simplified further. For example, if the baseline
survival curve follows a Weibull distribution with hazard function eabtb−1, then

log− log(1− p(z|c)) = a+ b log c+ βz. (19.7)

As an aside, this allows easy estimation of the Weibull model without covariates, illustrated
in Figure 19.2 for Switzerland, using any generalized linear model program that allows for
the complementary log-log link with binomial data.

In the familiar semi-parametric Cox model, where the baseline survival curve is un-
specified, the offset curve in (19.6) is then given by an arbitrary increasing function of the
“covariate” C. It is important that additivity of the effects of C and the covariates Z are
preserved in the generalized linear model, but specialized estimation algorithms are now
required that account for the nonparametric shape of log− log[S0(c)] while exploiting its
monotonicity (Shiboski, 1998). Huang (1996) discusses the asymptotic properties of the
maximum likelihood estimators for the semi-parametric model.

As an alternative approach, assume that T follows the proportional odds model (Bennett,
1983), defined by

1− S(t|Z = z) =
1

1 + e−α(t)−βz
, (19.8)

where S0(t) =
1

1+eα(t) . In this case, Y is associated with Z via the logit link:

log
p(z|c)

1− p(z|c) = α(c) + z, (19.9)

Finally, suppose T follows the accelerated failure time regression model,

log T = α+ βz+ e, (19.10)

at a given level of the covariates Z, where the random variable e is independent of Z and
follows a distribution H. Then, Y follows a generalized linear model in Z using the link
function H−1, with fixed offset given by logC, where the intercept is now −α and slope
−β. Technically, this is not a standard generalized linear model since the link function is
often unspecified in the accelerated failure time model, and estimation in such a case would
require methods to estimate the regression coefficients with an unknown link. For methods
to approach this problem generally, see Weisberg and Welsh (1994), Mallick and Gelfand
(1994), and Young and He (1997), for example.



400 Handbook of Survival Analysis

As for the proportional hazards model, estimation of the coefficients in parametric ver-
sions of these regression models follows simply from estimation of the appropriate coefficients
in the GLM. Again, semi-parametric estimation where the baseline survival function is left
unspecified is more complex. Fully efficient semi-parametric estimators have been studied
in each of these cases but involves sophisticated asymptotic theory (Huang, 1995; Rossini
and Tsiatis, 1996; Rabinowitz et al., 1995; Murphy et al., 1999; Shen, 2000; Tian and Cai,
2006).

It is important to note that none of these approaches can easily accommodate time-
dependent covariates as the above derivations have all tacitly assumed fixed covariates.
This is not the case, however, for additive hazards models, at least in simple cases with
suitable assumptions. To see this, first consider the basic additive hazards model

λ(t|Z = z) = λ0(t) + βz, (19.11)

where λ0 is the hazard function when Z = 0, and β is a k-dimensional vector of regression
coefficients as before. We now make the assumption for the moment that the screening time
C is independent of the covariates Z in addition to the failure time T . In order to estimate β,
Lin et al. (1998) focused on the survival processes associated with the screening time rather
than on T itself. Specifically, the trick is to consider events where failure is associated with
the observation of the monitoring time (i.e., duration of burial in the avalanche example),
but consider observed Cs where T > C (or Y = 1) as “failures” and those for whom T ≤ C
(or Y = 0) as censored. For an individual with covariates z, the hazard for such “failures”
is then simply the hazard function associated with the screening time distribution G (λG),
times Pr(T > C|Z = z), that is

λG(c)S(c|Z = z) = λG(c) exp(−Λ0(c)) exp(−βzc) (19.12)

from (11), where Λ0(c) =
∫ c

0
λ0(u)du. Of course, this is just the proportional hazards model

for this filtered screening time process with time-dependent covariates zc. Thus, standard
software for the proportional hazards model can directly be used with, for the ith individual,
observation time ci, covariates zici with yi = 0 corresponding to failures, and yi = 1 to
censored observations. This is easily extended to time-dependent z by simply replacing
zc in (12) by

∫ c

0
z(u)du, of course assuming that the entire covariate process {z(u) : o ≤

u ≤ c} is observed and not just z(c). This approach, while easy to implement, is not fully
(semi-parametrically) efficient as the “censoring” distribution associated with the filtered
monitoring time process also depends on β so that the censoring times are informative.

The assumption that the screening time process is independent of the covariates is
necessarily very restrictive and unlikely to be true in practice. For example, there is no a
priori reason to believe that the burial time distribution in Switzerland is the same as in
Canada, for example. However, if it is assumed that the monitoring times depend on the
covariates through proportional hazards models themselves, the above derivation can be
generalized in a relatively straightforward way (Lin et al. 1998). Thus, if λG(c|Z = z) =
λG0(c) exp(γz), where λG0 is the baseline hazard function for the screening time distribution
(that is, when z = 0) and γ is a vector of regression coefficients. In this case, the hazard
function for the filtered screening time process, (19.12), is modified to

λG(c)S(c|Z = z) = λG(c) exp(−Λ0(c)) exp(γz) exp(−βzc). (19.13)

This is again a proportional hazards model that can be used to directly estimate γ and,
more importantly, our original parameter of interest β. However, it is more efficient to first
estimate γ directly from the proportional hazards model applied directly to the observations
of the screening times Ci and the covariates zi. The estimate γ̂ can then be used in (19.13)
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to supply a fixed offset, leaving only β to be estimated. Although this is straightforward
with proportional hazards software allowing offsets, the naive standard error provided from
such will not be correct as it does not allow for the estimation of γ. Use of the bootstrap
would be a possibility here to avoid the more complex computation of an estimate of the
(asymptotic) standard error provided in Lin et al. (1998).

Martinussen and Scheike (2002) tackle both the issue of semi-parametric efficiency and
allow for a general dependence structure between the screening times and covariates rather
than restricting to a proportional hazards relationship. However, their approach now re-
quires estimation of the baseline hazard function for T , namely Λ0, making this approach
more akin computationally to those used for other regression models. Lu and Song (2012)
provide a more stable computational approach to obtaining a semi-parametric efficient es-
timator but again restricted to the assumption of a proportional hazards model for the
screening times and covariates. Their approach also requires an estimate of Λ0.

It is instructive to apply these ideas to the avalanche data. For example, the two group
comparison between the Swiss and Canadian survival curves (whose NPMLEs are illustrated
in Figure 19.2) can be immediately obtained using a simple indicator variable for the country
location in the model given by (19.6) or (19.7) based on a proportional hazards assumption.
If the baseline survival distribution is assumed to be Weibull, as in (19.7), then the Relative
Hazard of death, comparing Canada to Switzerland, is estimated to be 1.9 with a 95%
confidence interval of (1.5, 2.5), so that the mortality hazard rate in Canada is about double
what is observed in Switzerland. This is, of course, a strikingly significant difference with
a p-value < 10−7. On the other hand, if we make no underlying distributional assumption
and fit the semi-parametric Cox model, the estimate of the same Relative Hazard is even
larger at 2.2 with a 95% confidence interval of (1.8, 2.8), obtained using the algorithm of
Shiboski (1998). This semi-parametric estimate therefore reflects that there is probably a
small amount of bias induced by assuming a Weibull survival model for both countries.
Necessarily, the semi-parametric estimate is somewhat less precise; here, estimates of the
standard error of estimators are based on the ideas of Huang (1996), although the finite
sample properties of this approach have never been fully explored. Since the estimators of
the regression coefficients enjoy n1/2 asymptotics, the bootstrap provides a viable alternative
although we do not pursue this further here.

Note that both of these analyses directly account for variation in the burial time distri-
butions across the two countries which are substantially shorter in Canada than in Switzer-
land on average (median burial times of 18 and 35 minutes in Canada and Switzerland,
respectively). An interaction term included in the Weibull model allows for differing scale
parameters in the two countries, but the associated coefficient is not significant ((p = 0.6),
and so this complication was deemed unnecessary.

We illustrate also the additive hazards model here in this simple setting with a sin-
gle binary covariate. Assuming equivalence of the distributions of duration of burial time
between the two countries yields an estimated additive shift of the hazard of 0.0087 (per
minute), or 0.52 (per hour), with Canada displaying the higher hazard as we have already
seen from our proportional hazards analysis. The effect is statistically significant (p = 0.03),
although much less so than under proportional hazards. However, this analysis is certainly
distorted by the fact that the screening time distribution varies across countries as noted
above. In fact, fitting a proportional hazards model to the fully observed burial times and
country indicates a Relative Hazard of 1.40, comparing Canada to Switzerland, with a 95%
confidence interval of (1.23, 1.59). Using the estimate of γ, arising from this analysis, as
a fixed coefficient of country in the model (19.13) yields an estimate of β, the additive
hazard shift between countries, of 0.017 (per minute), almost double what our prior biased
analysis suggested. However, this new estimate is itself subject to residual bias since there
is some evidence that the screening time hazard functions for the two countries are not
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proportional. In fact, fitting a simple interaction term (for country with time of follow-up
on the screening time scale) shows that the Relative Hazard comparing Canada to Switzer-
land increases with time (p = 0.03). Thus, to pursue the additive model further, even in
this simple case, would require the more complex evaluation of the semi-parametric efficient
estimator of Martinussen and Scheike (2002), or consideration of a more complicated model
for the relationship between the screening time distributions and country that does satisfy
the proportional hazards model.

Returning to the proportional hazards regression setting, we now investigate the effects
of other covariates on survival, in part to determine whether they can explain the differences
between the two countries. For example, the median burial depth in the Canadian data is
100 centimeters, whereas for Switzerland it is less at 80 cm. Could this, at least partially,
explain different mortality patterns over time? That is, when individuals are recovered at
the same time is the risk of death greater for those who are buried more deeply? When the
burial depth variable is added to the Weibull model in a logarithmic form, it indeed shows
a significant effect with an estimated Relative Hazard of 1.33, for every tenfold increase in
depth, with a 95% confidence interval of (1.16, 1.53) and associated p-value of 6× 10M−5

(a similar estimate of 1.38, with 95% confidence interval of (1.22, 1.57) is obtained from
the semi-parametric version). While this is not surprising, adjusting for burial depth in
the Weibull model actually increases the estimated Relative Hazard, comparing Canada to
Switzerland, to 2.1, showing that, at least naively, burial depth does not explain any of the
country difference in survival curves. We note here that this was a complete case analysis,
ignoring 65 and 53 individuals in Switzerland and Canada, respectively, who have missing
data on depth. There is little evidence of interaction between depth and country (p = 0.5).

Continuing to adjust for country and depth, a further Weibull proportional hazards
analysis of activity (prior to burial) showed no difference between survival comparing out-
of-bounds and backcountry skiing; there were slight (statistically insignificant) differences
for other recreational activity, and snowmobiling, as compared to backcountry skiing with
a 30% reduction in hazard, and 42% increase, respectively. Similarly, there was no signifi-
cant difference in risk comparing the activities mountaineering (including ice climbing) and
mechanized skiing. For simplicity we therefore combined the activities backcountry skiing,
other recreational, and snowmobiling into one activity class (the reference category), moun-
taineering and mechanized skiing into a second class, leaving non-recreational as a separate
activity class. Table 19.1 shows the Weibull regression model accommodating these three
activity groups through indicator variables, supplemented by the year of occurrence of the
avalanche (measured in single year increments); in this table the variable Country = 1
refers to Canada. For comparison, we show the regression coefficient estimates from the
semi-parametric proportional hazards model with an unspecified baseline hazard function;
in this model, standard error estimates are based on the procedure suggested by Huang
(1996). We now observe a slight reduction in the country effect, with an estimated Relative
Hazard of 1.8, controlling for the main effects of the other covariates in the Weibull model.
There is a substantially increased Relative Hazard of 1.7 associated with avalanche victims
who were pursuing mountaineering, ice climbing and mechanized skiing as compared to the
expanded backcountry skiing activity category. On the other hand, the hazard is reduced
by 55% for those buried while involved in non-recreational activities. Note that these effects
already control for the length of time buried and the depth of the burial. Finally, there is
a slight trend in increasing risk over chronological time with roughly a 1% hazard increase
per year over the observed quarter century; however, this trend is not statistically signif-
icant (p = 0.2). Qualitatively, the coefficient estimates from fitting the semi-parametric
proportional hazards model are very similar although they surprisingly enjoy slightly lower
standard errors. In addition, in this version of the model, the effect of chronological time is
elimitated entirely. Since the semi-parametric model is more general, it is likely that these
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TABLE 19.1
Regression coefficient (log Relative Hazards) estimates (B), and associated estimated stan-
dard errors (SE), for both a Weibull proportional hazards regression model and a semi-
parametric version that leaves the baseline hazard function unspecified (n = 1127).

Weibull Model Unspecified Baseline

Hazard Model

Variable B SE B SE

Country 0.567 0.152 0.430 0.121

log10(Burial Depth in cm.) 0.285 0.072 0.358 0.069

Mountaineering, Ice Climbing 0.544 0.188 0.482 0.151

& Mechanized Skiing

Non-Recreational -0.791 0.290 -0.521 0.263

Year 0.010 0.007 -0.001 0.007

results suffer from less bias (assuming the model is correct), and are subsequently more
reliable.

For Canada, we can expand the analysis to include snow climate information using a
single indicator variable (with transitional and continental climates as the reference category
as these showed almost identical survival patterns). The results are shown in Table 19.2.
The increased risks associated with avalanches in maritime snow climates is large with an
estimated Relative Hazard of 2.8 with a 95% confidence interval of (1.2, 6.8) based on
the Weibull model, the loss of precision reflecting the much smaller amount of Canadian
data. The effect is slightly smaller in the semi-parametric model with an estimated Relative
Hazard of 1.8. Of interest, the Canadian analysis, using the Weibull model, suggests some
interactive effects in that burial depth has no influence on mortality (as compared to the
Swiss data implicitly), and the chronological time trend is much stronger here than we
noted for the combined data (in Table 19.1) although the precision for estimating this
effect is low. However, neither of these observations are supported by the semi-parametric
model estimates which is likely more reliable. These subtle changes nevertheless illustrate
the influence of model assumptions that must therefore be considered carefully (let alone
whether the proportional hazards model is adequate, an issue not explored further here).
For the Weibull model the coefficient on log(Burial Time), as in (19.7), now shows a (non-
significantly) increasing hazard as the burial time increases (in contrast to what we saw
before for the Swiss data in Figure 19.2); this estimate is not displayed in Table 19.2. Haegeli
et al. (2011) argue that the effect of a maritime snow climate explains the early differences
between the survival curves for Switzerland and Canada (Figure 19.2) as the Swiss snow
climate is described as “transitional to partly continental,” although this interpretation is
clearly tentative (see Roggia, 2011). While our goal has not been to implement a definitive
regression analysis and interpretation, the dataset serves as an excellent introduction of how
current status techniques can attack central survival analysis questions using this extreme
form of interval censored data.

Finally, we make some brief remarks regarding estimation of regression coefficients for
survival models applied to current status data when some covariate data is missing. For para-
metric models, the analogue to generalized models that is described above allows methods
for missing data for such models to be employed directly. On the other hand, for estimation
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TABLE 19.2
Regression coefficient (log Relative Hazards) estimates (B), and associated estimated stan-
dard errors (SE), for both a Weibull proportional hazards regression model and a semi-
parametric version that leaves the baseline hazard function unspecified (n = 218).

Weibull Model Unspecified Baseline

Hazard Model

Variable B SE B SE

log10(Burial Depth in cm.) -0.035 0.214 0.296 0.168

Mountaineering, Ice Climbing 0.700 0.316 0.518 0.268

& Mechanized Skiing

Non-Recreational -0.339 1.072 -0.383 0.913

Year 0.043 0.029 -0.001 0.022

Maritime Snow Climate 1.041 0.448 0.574 0.312

of the semi-parametric proportional hazards model with current status data, see Wen and
Lin (2011).

19.4 Competing risks

As noted in the Introduction, some of the Canadian avalanche data has information on the
cause of death when mortality was observed. Of the 162 deaths in the Canadian data, 116
were attributed to asphyxia, 27 to trauma, and 19 recorded as cause unknown. It is possible
that the risks associated with different causes evolve quite differently as the amount of time
buried increases. For example, one might think that trauma deaths likely occur quickly
(due to perhaps a head injury as the avalanche occurs), whereas asphyxia deaths occur over
longer time periods. Jewell et al. (2003) discuss the analysis of current status data in such
a competing risk environment.

If we denote the cause of death by a random variable J , interest then focuses on esti-
mation of the cumulative incidence functions associated with each cause

Fj(t) = pr(T ≤ t, J = j). (19.14)

In the avalanche example, J takes on three values, say 1, 2, 3, and the overall survival
function is given by S(t) = 1−F (t) = 1−F1(t)−F2(t)−F3(t). Jewell et al. (2003) consider
the NPMLEs of Fj for j = 1, , 3 (and simpler-to-compute alternative estimators). The
NPMLEs are a special case of competing risk data estimation for data subject to general
interval censoring, considered in Hudgens et al. (2001).

While the EM algorithm could again be used to compute the NPMLE estimators,
Jewell and Kalbfleisch (2004) describe a much faster iterative algorithm that generalizes
pool-adjacent-violators, and establish convergence. The R-package MLEcens provides an
alternate estimation procedure based on the height map algorithm of Maathuis (2005) sup-
plemented by convex optimization. Groeneboom et al. (2008a, b) establish the asymptotic
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properties of the NPMLEs of the cumulative incidence functions Fj using methods that
require significant extensions of the ideas used for the single cause situation.

In implementing the NPMLEs for competing risks there is a slight additional issue of
identifiability that rises in certain scenarios: when one of the screening times has all ob-
served failures of a single type, any possible jump in the cumulative incidence curves for
the other types is not identifiable since the mass for such types does not appear in the
likelihood function. This occurs at several burial time points for the Canadian avalanche
data. Jewell and Kalbfleisch (2004) used the convention that such unidentifiable jumps
were zero; an alternative convention, at the other extreme, raises the estimate of the rel-
evant sub-distribution function to the highest value possible compatible with estimates at
higher screening times preserving monotonicity (essentially adding all mass possible). Fig-
ure 19.5 shows the NPMLE estimates of Fj for j = 1, 2, 3 for the Canadian data, with both
conventions displayed when there is such non-identifiability. As the raw data suggest, the
estimates reflect that death is much more likely due to asphyxia than trauma and that the
cumulative risk for asphyxia-related deaths continues to grow at least through the first 40
minutes of burial.

Regression models for competing risks current status data have been less studied than
in the single cause case and any generalized linear model for the observed data (survival
or death plus cause) has a more complex outcome than binary. Jewell (2007) shows the
polytomous logistic regression model for the observed outcomes with current status data
directly corresponds to a generalization of the proportional odds survival model (for the full
unobserved failure times and causes) to the competing risks situation (in much the same
way as occurs in the single cause setting as described in Section 19.3, but only in the special

FIGURE 19.5
The NPMLE estimates of the cumulative incidence functions, F1, F2, F3, for the Canadian
avalanche data, for three causes of deaths: asphyxia, trauma and unknown.
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case where the underlying cause-specific hazards are proportional. Sun and Shen (2009)
describe estimation for the proportional hazards model with competing risks and current
status data but have to approach estimation of the underlying parameters (and baseline
cumulative incidence functions) from first principals rather than relying on existing software
for generalized linear models. Unfortunately, this algorithm is not yet widely accessible in
available software.

19.5 Sampling and measurement issues

To this point we have assumed complete ascertainment of all avalanche victims, or at least
a random sample of the universe. However, it is plausible that data on avalanche survivors
may be underreported in comparison to cases where a death occurs. That is, the sam-
pling frequency of “cases” (i.e., where Yi = 1 or T ≤ C) differs from that for “controls”
(Y = 0 or T > C). Assuming the availability of separate simple random samples of both
cases and controls, Jewell and van der Laan (2004a) show that such data only (nonpara-

metrically) identifies the odds function associated with F , that is log
[ F (t)
1−F (t)

]
, up to a

constant. If the two sampling frequencies are known, then simple weighting of the obser-
vations (inversely proportional to the probability of selection) prior to application of the
pool-adjacent-violators algorithm produces the NPMLE. For parametric models, the situ-
ation is somewhat more complex, although an iterative algorithm due to Scott and Wild
(1997) can be used directly to obtain the maximum likelihood estimator of F . See Jewell
and van der Laan (2004a, Section 4.1).

With the avalanche data, it is extremely unlikely that there is any misclassification
present in observation of Y . However, in many other applications the current status of an
individual given by Y is measured by a screening test that may not have perfect sensitivity
or specificity. With known misclassification probabilities, McKeown and Jewell (2010) de-
termine the NPMLE based on the observed misclassified data by exploiting a pool-adjacent-
violators estimate of a simple transformation of F . Further work has been carried out by
Sal y Rosas and Hughes (2011) with a particular emphasis on application of likelihood
ratio based pointwise confidence intervals associated with the NPMLE. McKeown and Jew-
ell (2010) also consider time-varying misclassification where the screening test sensitivity
and specificity may depend on the distance between C and T . Both McKeown and Jewell
(2010) and Sal y Rosas and Hughes (2011) consider extensions to regression problems for
current status data subject to misclassification. Finally, Jewell and Shiboski (1990) dis-
cuss the implications of measurement error in the screening time. In principal, the issue of
measurement error in covariates associated with a current status regression model can be
explored through the literature on this topic for generalized linear models, exploiting the
connection between such models and survival models described in Section 19.3.

19.6 Other topics

There are many extensions to current status problems that we have not discussed in this
introduction to simple analyses of current status data, in large part because they are not
relevant to the motivating avalanche data. We simply note several of these here to encourage
further reading. First, in some applications it is possible to screen individuals more than
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once with regard to their survival status. This, of course, leads to the more general case of
interval-censored data; the book by Sun (2006) provides an excellent introduction to this
topic. Of course, more frequent screening is advantageous as it provides more granulated
information about the relevant failure time; however, it is apparent that this is not ethical
or practical in the case of avalanche victims!

There has been very little attention given to the design of current status observation
schemes, in part because many applications simply do not permit investigator choices re-
garding the screening time distribution G (as is the case in the avalanche example). Optimal
choice of G, when F is described parametrically, is closely connected to optimal design of
dose levels in binary response experiments. In the nonparametric case, the optimal design
depends on what aspect of F is of most interest, the mean or variance for example. Dif-
ferent functionals of interest lead to differing optimal designs. In addition, even if a single
functional is chosen, the optimal design still depends on the form of the unknown F . Thus,
one can choose an optimal design for a specific functional based on an assumed “target”
F with the knowledge that the choice will not be quite optimal if the true F is somewhat
different. These issues, and the description of optimal choices of G, are discussed in Jewell
et al. (2006). This work contains a brief description of the extension of optimal designs to
include the situation where predictive covariates are available a priori, under the weaker
assumption that the failure time T and screening time C are now independent conditional
on the observed covariates. Particularly with time-dependent covariates, this approach sug-
gests the possibility of choosing screening times closer to the likely failure time by exploiting
information on the time-dependent covariate. van der Laan and Robins (1998) develop es-
timators for this situation where the screening time C is associated with T through such
covariates.

A second area of intense interest has been the extension of the ideas to current status
observation of multi-state processes, the simplest being the familiar illness-death model
where there are two failure times of interest (both measured from the same time origin),
for example, T1 being the time until the first event (“illness”), and T2 the time until the
second event (“death”), where necessarily T2 > T1. Particular interest has focused on cases
where T2 is observed exactly, or subject to right censoring, whereas there is only current
status observation of T1. The one-sample case of such data structures is studied in van der
Laan et al. (1997). A regression version of the problem is studied in detail in Young et al.
(2008), following work by Dunson and Baird (2001). The version of the same multi-state
process where only current status information on both failure times, T1 and T2, at a single
screening time C is available is discussed in McKeown and Jewell (2011) with application
to estimation of recent HIV incidence rates based on simultaneous accurate and diluted
assays. It is important to note that, in either observational setting, van der Laan and Jewell
(2003) showed that you cannot improve on the naive NPMLE estimator of T2, say, that
ignores the additional information of whether the first event has occurred by the screening
time (T1 < C), or not, in cases where it is known that T2 > C, in regard to nonparametric
estimation of smooth functionals of the distribution of T2. (Of course, if T2 ≤ C, necessarily
T1 ≤ C also).

19.7 Discussion

Motivated by avalanche data, we have briefly discussed various parametric and nonpara-
metric approaches to the analysis of current status data. The last twenty years have seen
an explosion of interest in theoretical, computational and applied problems associated with
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current status data and, more generally, interval censoring. We have necessarily omitted
much of this work by our selective choice of topics. For example, some work focuses on
cases where the failure time distribution F has a possible mass at infinity, that is a “cured,”
or “immortal” subpopulation. Various regression models for current status data in this set-
ting have been investigated by Lam and Xue (2005) and Ma (2009; 2011). There is also
considerable work in the application of Bayesian methods to current status data problems;
see for example, Dunson and Dinse (2002), Wang and Dunson (2010), and Cai et al. (2011),
for example.

A serious impediment to the practical implementation of the methods we have discussed
(and those we have not) is the lack of an easily accessible open-source suite of software
applications. Only some of the methods we have discussed can currently be tackled with
existing software tools. The development of additional widely available programs would
make the ideas and methods accessible to a much wider set of investigators, and allow the
methods to be applied to a broader set of important scientific problems.
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Part V deals with two related areas of survival analysis. The first involves multistate
models. These are models for the complete disease/recovery process of a patient. The second
is the area of multivariate models for survival where we have some dependency between a
set of event times. In this part we have right-censored and possibly left-truncated data.

Multistate models are used to study disease or treatment progression. In a multistate
model there are number of health states {0, 1, . . . , p} that a patient may be in at time t.
For example in the simple “illness-death” model a patient starts in a healthy disease-free
state from which he/she can contract a disease and move to an “ill” state or he/she can die
and move to the dead state. Patients in the ill state can move to the dead state or return
to the healthy state. In this example we have two transient states “alive and disease free”
and “alive with disease” and one absorbing state “dead.” Events in the multistate model
problem are the times of transition from one state to the next and the data on an individual
is the set of event times and an indicator of what event occurred.

There are several parameters associated with these types of models. The primary param-
eter is the set of rates of transition from one state to the next. These are usually estimated
assuming a Markov transition model where the rate depends only on what state the patient
is currently in not how he/she got there. These rates look like Nelson-Aalen estimators
discussed in Part I. Investigators are also interested in the “state occupation probability”
which is the chance a patient is in a given state at a particular time point t. Regression
models are typically constructed by fitting Cox regression models to each of the intensities.
The set of covariates one obtains from these covariates are often hard to interpret when
interest is in making inference about state occupation probabilities. Here one may use a
more direct regression model based on the pseudo-observation approach presented here in
Chapter 10. In Chapter 20 Andersen and Perme explore these techniques using classical
methods.

Chapter 21 by Putter deals with a related problem called “landmarking.” This type of
analysis arises in two related types of problems. Consider a patient given a hematopoietic
stem cell transplantation. A major problem encountered in the recovery process is acute
graft-versus-host disease (agvhd). This disease occurs when the patient’s remaining immune
system attacks the graft causing problems in the gut, liver and skin. To confirm that this
disease causes increased mortality we want to compare patients with and without agvhd.
One approach that is often made by investigators is to define a fixed-time covariate based on
occurrence or non-occurrence of agvhd. This method leads to highly biased estimates since
patients who live longer are more likely to develop agvhd and those with shorter lives have
less time to develop agvhd. To solve this problem we could use time-dependent covariates
for the agvhd indicator or we could pick a “landmark” time at which we will start the clock
running, say 6 months, and fit Cox models among the 6-month survivors with agvhd as a
fixed covariate. Landmark analysis is also used when we want to look at long-term survival
based on covariates collected at some time post-transplant rather than at transplant. Again
we start the clock running at some landmark time where we would have access to these
post-transplant covariates. Putter looks at these problems, how to analyze landmark data
and the advantages and disadvantages of landmarking.

The next set of chapters deal with dependence problems in multistate modeling. Included
here are three chapters on general theory of the most popular method of dealing with
dependence in survival analysis followed by three chapters that apply these methods to
special problems in survival analysis.

The most common way to generate multivariate survival data is by the use of a frailty
model. For simplicity suppose we are given a set of twins. We assume that the hazard rates of
the twins are (wλ1(t), wλ2(t)), respectively. The frailty, w = W , is a random, unobservable
random variable often assumed to have a mean of 1 and a variance σ2. W represents the
genetic and environmental effects shared by two twins. When w < 1 then the hazard rate
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of a pair of twins is smaller than expected and the twins are more robust while if w > 1
both twins in a pair tend to fail at a faster rate and these twins are more frail than the
average twin. The parameter σ2 acts like a dependence parameter since when σ2 is 0 we
have independence (since the mean is assumed to be one). In most cases a parametric model
is assumed for W . If the Laplace transform of this distribution, defined by

LP [s] = EW [exp{−sW}]

is known then the joint survival function for a pair of twins with event times (T1, T2) is
given by

S(t1, t2) = LP

⎛⎝ 2∑
j=1

Λj(tj)

⎞⎠
where Λ() is the conditional cumulative hazard function. The most common models for
the frailty distribution are the gamma, normal, inverse Gaussian and the positive stable
distribution.

Inference for frailty models often proceeds in one of two ways. In a conditional analysis
estimation of both the frailty distribution parameters and the parameters of the conditional
failure rates, λ(·) is performed. Two popular approaches are an EM algorithm technique
or a penalized likelihood approach. An alternate approach is to fit models to the marginal
hazards of (T1, T2) ignoring the frailty distribution using independence working models.
These models are typically Cox regression models and these marginal hazard rates are of a
different functional form from the conditional rates. Using the frailty distribution, robust
variance estimators are then made to the marginal models to incorporate the association
between individuals within a pair.

In Chapter 22 Hougaard summarizes the literature on frailty models and inference for
these models using a classical approach. Gustafson looks at Bayesian estimation for frailty
models in Chapter 23. Shih in Chapter 24 looks at the marginal modeling approach us-
ing a copula approach to the dependence between failure times. Copulas provide basic
information on dependence between random variable by breaking the information in the
joint distribution into information on the marginal distributions and information on how
these margins are coupled together to obtain the joint distribution. The copula is a joint
distribution on the unit cube [0, 1]k found by making probability integral transformations
on each of the margins. That is the copula for 1(X1, . . . , Xk) is the joint distribution of
(F1(X1), . . . , Fk(Xk)). Assuming a particular copula in many cases is equivalent to assum-
ing certain frailty distributions.

In the remaining three chapters of this part we examine related models and uses of
multistate models. In Chapter 25 by Diao and Zeng the problem of clustered competing
risks data is studied. Presented here are extensions of the frailty and marginal models to
the competing risks problem. In Chapter 26 Ye and Yu consider models which examine
both the development through time of some biomarker and the time to some event. For
example, an investigator may be interested in modeling how measures of blood glucose
levels in diabetics are changing over time as well as the time to development of coronary
complications of the disease. Chapter 27 by Brandeen-Roche studies the use of frailty models
in familial studies. In such studies we have a population-based sample of individuals with a
specific characteristic or disease. For each participant, information is collected on all first-
degree relatives. Of interest is not the risk factors for disease but rather a study of the
association between relatives in hopes of understanding the strength and mechanics of the
relationship between disease and genetic relationships within a family.
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20.1 Introduction

Event history analysis deals with data obtained by observing individuals over time focusing
on events occurring for the individuals. Thus, typical outcome data consist of times of
occurrence of events and of the types of events which occurred. Frequently, an event may be
considered as a transition from one state to another and, therefore,multistate models (MSM)
will often provide a relevant modeling framework for event history data. Previous summary
papers on multistate models include Hougaard (1999), Commenges (1999), Andersen and
Keiding (2002), Putter et al. (2007) and Meira-Machado et al. (2009).

A multistate process is a (continuous-time) stochastic process (X(t), t ∈ T ) with a finite
state space S = {0, 1, . . . , p} and with right-continuous sample paths: X(t+) = X(t). Here,
T = [0, τ ] or [0, τ) with τ ≤ +∞. A multistate process X(·) generates a history Xt (a
σ-algebra) consisting of the observation of the process in the interval [0, t]. Relative to this
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history we may define transition probabilities by

Phj(s, t) = Prob(X(t) = j | X(s) = h,Xs−)

for h, j ∈ S, s, t ∈ T , s ≤ t and transition intensities (or transition hazards) by the deriva-
tives

αhj(t) = lim
Δt→0

Phj(t, t+Δt)/Δt

which we shall assume exist. Some transition intensities may be 0 for all t. The state oc-
cupation probabilities are πh(t) = Prob(X(t) = h), h ∈ S and, in particular, the initial
distribution is πh(0) = Prob(X(0) = h), h ∈ S. We may then write

πh(t) =
∑
j∈S

πj(0)Pjh(0, t).

Graphically, multistate models may be illustrated using diagrams with boxes represent-
ing the states and with arrows between the states representing the possible transitions, i.e.,
the non-zero transition intensities. We shall illustrate this in connection with the example
below.

A state h ∈ S is absorbing if for all t ∈ T , j ∈ S, j �= h, αhj(t) = 0, that is, no arrows
in the diagram begin in h; otherwise h is transient. Notice that the Phj(·, ·) and thereby
the αhj(·) depend on both the probability measure (Prob) and on the history, though this
dependence has been suppressed in the notation. If αhj(t) only depends on the history via
the state h = X(t) occupied at time t then the process is Markovian.

Sometimes one is interested in considering an extended history which also includes ob-
served covariates. If only time-fixed covariates Z are studied, then the observed history is
Ft = Xt ∨Z0 whereas time-dependent covariates Z(t) may give rise to an extended history
of the form Ft = Xt ∨Zt where Zt is the history generated by the covariates in [0, t]. (Here,
for σ-algebras A and B, A ∨ B is the smallest σ-algebra containing both A and B.)

Thus, parameters of interest in MSMs include transition intensities, transition probabil-
ities, state occupation probabilities, and distributions of time spent in each state.

Throughout this work, the described methods shall be illustrated using the data on
peritoneal dialysis patients described in Pajek (2012). The data include 132 patients who
started peritoneal dialysis (PD) at Manchester Royal Infirmary and who were not eligible for
transplant. The patients are followed up until mid-2011. The PD is considered as the dialysis
option that allows for a better quality of life, but may lead to potentially fatal complications
after long-term use. In the course of the study, 95 patients switched to hemodialysis (HD),
either due to a complication (infection) or based on their own decision. The understanding
of the impacts of switch to hemodialysis and the timing of this switch was the main goal of
the study. Table 20.1 gives some dataset information.

20.2 Models and inference for transition intensities

An attractive feature of multistate models based on transition intensities is that all hazard-
based models known from survival analysis apply, see, e.g., Andersen et al. (1993). This
includes both estimation, testing and model checking. For ease of notation we first fix two
states, h, j ∈ S, and denote the h → j transition intensity α(t).
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TABLE 20.1
Description of data from 132 patients treated with peritoneal dialysis.

Age (mean, SD) 66.6 14.3

Female sex 44 33.3%

Comorbidities present 105 79.5%

Creatinine, (µmol/l) (mean, SD) 593 230

HD switch 50 37.8%

HD switch due to peritonitis 24 48% of patients on HD

Death 82 62.1%

HD switch and death 32 39% of patients on HD

20.2.1 Models for homogeneous populations

We first study the case of no covariates where both non-parametric and parametric models
are relevant. In the former, α(t) is left completely unspecified while, in the latter, the
simplest possible model is the constant hazard model, α(t) = α. Since the constant hazard
assumption is often too simple to apply in practice, a frequently used extension of this is the
piecewise constant hazard model where, for some time intervals given by cut-points 0 = τ0 <
τ1 < · · · < τK = τ , it is assumed that α(t) = α� for τ�−1 ≤ t < τ�, � = 1, . . . ,K. Another
extension of the simple constant hazard model is the Weibull model with α(t) = αtγ , γ ≥ 0
which for γ = 0 reduces to the constant hazard model. Such models are all Markovian as
the transition intensity at time t does not depend on other aspects of the past history, Xt−
than the state (h) occupied at t−. This is an important class of models where, as we shall
see in later sections, transition probabilities may be derived from the intensities. Another
important class of models is semi-Markov models where the h → j transition intensity
at time t also depends on the duration or sojourn time in state h, that is t − T where
T (≤ t) is the time of entry into state h. The constant hazard model is, obviously, always
Markov. A model where there is only duration dependence (and no direct dependence on the
baseline time variable, “calendar time”, t) is sometimes called homogeneous semi-Markov to
distinguish it from a general semi-Markov model where α(·) may depend on both calendar
time, t and duration, t − T . We shall return to general semi-Markov models below when
regression models are to be introduced. In multistate models with many states and many
possible transitions, the transition intensities may depend on the past in more complicated
ways, e.g., via the number of previous states visited or via the total time spent in certain
states. However, we shall not cover examples of that kind in what follows.

20.2.2 Regression models

Most regression models involve a linear predictor, that is a linear function of the covariates
for individual i, i = 1, . . . , n, with some unknown regression coefficients, βm, (or regression
functions, βm(t)):

LPi(t) =
k∑

m=1

βm(t)Zmi(t)

where covariates are allowed to be time-dependent. We shall restrict attention to regression
models with a linear predictor. This means that, when covariates are to be included into
models for transition intensities, a choice of link function has to be made, i.e., one needs
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to specify how LPi(t) relates to α(t | Zi). Many hazard models are multiplicative, i.e.,
log(α(t | Zi)) is linear in the covariates, but also additive hazard models are frequently
studied. The main example of an additive hazard model is Aalen’s non-parametric model
given by

α(t | Zi) = β0(t) + LPi(t),

i.e., all regression functions are left unspecified, though semi-parametric versions where some
or all regression functions (except β0(t)) are constant also exist, see, e.g., Martinussen and
Scheike (2006).

In what follows we will only discuss multiplicative models which means that, when intro-
ducing covariates into the non-parametric model above, the semi-parametric Cox regression
model

α(t | Zi) = α0(t) exp(LPi(t)) (20.1)

is obtained. Here, the baseline hazard α0(t) is left completely unspecified while the regression
coefficients, βm are usually assumed constant leading to the basic proportional hazards
assumption of this model. The covariates, however, may be time-dependent.

In a similar way, covariates may be introduced into parametric hazard models. This
leads to fully parametric models for α(t | Zi) of the same multiplicative form as the Cox
Model (20.1) and with the baseline hazard, α0(t) being, e.g., constant or piecewise constant.

As for the models for homogeneous populations, the regression models lead to Markov
processes if the hazard at (“calendar”) time t does not depend on other aspects of Ft−
than the state (h) occupied at t−, that is, if the baseline hazard is a function of t and if
no function of the past is included as a time-dependent covariate. Similarly, the process is
homogeneous semi-Markov if the hazard at time t only depends on the duration, t− T , of
the stay in the current state, h.

However, the allowance for time-dependent covariates provides a means for studying
general semi-Markov processes where the hazard at time t depends on both time variables,
t and t− T . In the framework of the semi-parametric Cox regression model this is done by
choosing one of the time variables as the “baseline” time variable, i.e., α0(·) is a function
of that time variable, while functions of the other time variable may be included as time-
dependent covariates, e.g.,

α(t | Zi) = α0(t) exp(β0f(t− Ti) + LPi(t)),

with f(·) being some pre-specified function of the current duration like the identity
f(d) = d or the indicator f(d) = I(d ≤ d0) corresponding to some duration threshold,
d0. Such a model is frequently used to test the Markov null hypothesis: β0 = 0. More re-
cently, non-parametric methods for testing the Markov assumptions have been developed
(Rodŕıguez Girondo and Uña Álvarez, 2011).

20.2.3 Inference for transition intensities

We will assume that independent multistate processes

(Xi(t), 0 ≤ t ≤ Ci; i = 1, . . . , n)

are observed in continuous time, that is, times of transition are observed exactly, except for
the fact that independent right censoring at Ci(≤ τ) is allowed for Xi(·). In the next section,
interval-censoring will be touched upon. Left truncation may quite easily be incorporated,
as well, but for sake of simplicity we have chosen not to do so since that would require
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specific assumptions concerning the information available at the time of left truncation.
The data for individual i can then be represented as a multivariate counting process

Nhji(t), h, j ∈ S, h �= j, t ≤ Ci

counting the number of direct h → j transitions observed for subject i in [0, t] (where
some h, j combinations may not be possible). The model is then specified by the transition
intensities αhji(t | Zi(t)) leading to the intensity process

λhji(t) = Yhi(t)αhji(t | Zi(t))

for Nhji(t) with respect to the filtration (Ft) and the relevant probability measure. That is,

E(Nhji(t) | Ft−) =
∫ t

0

λhji(u)du. (20.2)

Here,
Yhi(t) = I(Xi(t−) = h)

is the indicator of Xi(·) being in state h at time t−. For a filtration of the form Ft = Xt∨Z0,
the likelihood for the model parameters, say θ, is obtained via Jacod’s formula, see, e.g.,
Andersen et al. (1993), Chapter II:

L(θ) =
∏
i

∏
h,j

(∏
t

λhji(t)
ΔNhji(t)

)
exp(−

∫ Ci

0

λhji(u)du). (20.3)

The filtration will have the form Xt∨Z0 when, either, only time-fixed covariates are included,
or when time-dependent covariates only depend on the past history of the multi-state process
because in these cases the covariates do not impose extra randomness for t > 0. Usually,
(20.3) is referred to as a likelihood in this case even though potential randomness in the
right-censoring times, Ci, and in the time-fixed covariates is not accounted for. However, in
the case of an extended filtration Ft = Xt ∨Zt, that is, when more general time-dependent
covariates are allowed, (20.3) is only a partial likelihood (see, e.g., Andersen et al. (1993),
Chapters II-III, for further discussion).

At any rate, (20.3) may be used as the basis for inference on θ. For the purely non-
parametric model: αhji(t) = αhj(t), completely unspecified, this leads (with proper defi-
nition of non-parametric maximum likelihood estimation) to the Nelson-Aalen estimator

Âhj(t) =

∫ t

0

dNhj(u)

Yh(u)
(20.4)

for the cumulative transition intensity

Ahj(t) =

∫ t

0

αhj(u)du.

In (20.4), Nhj(t) and Yh(t) are the aggregated processes

Nhj =
∑
i

Nhji, Yh =
∑
i

Yhi.

For the piecewise constant hazard model

αhji(t) = αhj� for τhj,�−1 ≤ t < τhj,�, � = 1, . . . ,Khj ,
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(20.3) leads to the following “occurrence/exposure rate” estimators

α̂hj� =
Dhj�

Th�

with Dhj� = Nhj(τhj,�−) − Nhj(τhj,�−1) being the total number of h → j transitions in
interval � and

Th� =

∫ τhj,�

τhj,�−1

Yh(u)du

the total time at risk for such transitions in that interval.
Variance estimates are available from the second derivative of − logL(θ), though robust

standard errors may also be applied (e.g., Lin et al. (2000)).
For the Cox regression model

αhji(t | Zi(t)) = αhj0(t) exp(LPhji(t))

a number of options is available for specification of the linear predictor. The most obvious
choice is to let both the covariates and the regression coefficients vary among transition
types, i.e., to let

LPhji(t) =

khj∑
m=1

βhjmZhjmi(t).

However, (see, e.g., Andersen et al. (1993), Chapter VII, for further discussion), working
with a single (“long”) vector, (β1, . . . , βk), of regression coefficients and defining, appro-
priately, type specific covariates Zhjmi(t),m = 1, . . . , k, provides added flexibility in that
models where some coefficients are shared between several transition types may be studied.
This specification of the linear predictor:

LPhji(t) =

k∑
m=1

βmZhjmi(t)

leads to the following version of the Cox partial likelihood

CL(β) =
∏
t

∏
hji

(
exp(LPhji(t))∑

r Yhr(t) exp(LPhjr(t))

)ΔNhji(t)

(20.5)

as a profile likelihood from (20.3) obtained by partial maximization over Ahj0(·). When no
regression coefficients are common to different transition intensities, (20.5) is a product over
transitions types, h, j, with separate parameters for the different types, i.e., maximization
may be performed for one type of transition at a time. In general, the whole Cox partial
likelihood (20.5) must be maximized in one analysis (utilizing the concept of stratified Cox
models, see, e.g., Andersen et al. (1993), Chapter VII, and Andersen and Keiding (2002)).
Furthermore, the cumulative baseline hazard is estimated by the Breslow estimator

Âhj0(t) =

∫ t

0

dNhj(u)∑
r Yhr(u) exp(L̂Phjr(u))

.

For the parametric regression model with piecewise constant transition intensities, (20.3)
leads to so-called Poisson regression. When covariates are all discrete, that is, when the
covariate vector takes values, v, in a finite set V , the data may be summarized as the
“tables”:

(Dhj�,v, Th�,v, v ∈ V, � = 1, . . . ,Khj).
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Here, Dhj�,v are the h → j transition counts and Th�,v the total time at risk in h in each cell
obtained by a cross-classification of v and time-interval, � and these tables are sufficient.
Furthermore, the likelihood is proportional to that obtained by, formally, treating the Dhj�,v

as independent Poisson with means

αhj�,vTh�,v

proportional to Th�,v, i.e., in a multiplicative hazard model, log(Th�,v) is used as an offset
in a generalized linear model with Dhj�,v as outcome variable. That is, the h → j transition
intensity αhji(t) is a piecewise constant function of time and is linear in the covariates:

log(αhji(t | Zi(t) = v)) = log(αhj�,0) +
∑
v∈V

βv for τhj,�−1 ≤ t < τhj,�.

For large datasets, this sufficiency reduction of the follow-up data may lead to con-
siderable simplification of the inference without seriously losing the flexibility of the
non-parametric baseline hazard in the Cox model (though, of course, a choice of time-
intervals needs to be made). Furthermore, Poisson regression has the advantages that non-
proportional hazards is simply an interaction between time and covariates and, further,
that non-homogeneous semi-Markov models are easily handled by splitting follow-up time
according to both (“calendar”) time t and duration, t−T . This means that, when analyzing
such models, a choice of “baseline time variable” (calendar time or duration) is not needed
since both appear in the log-hazard model on equal footings. Finally, the parameters for
effects of such time variables will be part of the standard regression output from any com-
puter package in contrast to the Breslow estimates from the Cox models which will usually
appear in the output, in either tabular or graphical form, only when specifying the relevant
options.

20.2.4 Inference for marginal rate functions

The basic counting processes, Nhji(t), have intensity processes, λhji(t) = Yhi(t)αhji(t) di-
rectly depending on the transition intensities, αhji(t). By (20.2), these are conditional ex-
pectations

E(Nhji(t) | Ft−) =
∫ t

0

λhji(u)du

given the entire history Ft−. Sometimes, one may be interested in studying only certain
marginal properties of the multistate process, i.e., conditioning on less information than
Ft−:

E(Nhji(t) | Gt−) =
∫ t

0

λ̃hji(u)du,

where Gt ⊂ Ft. Here, the derivatives λ̃hji(t) of the mean functions are known as the
(marginal) rate functions and may (by the Innovation Theorem, e.g., Andersen et al. (1993),
Section II.4) be written as

λ̃hji(t) = E(λhji(t) | Gt−).

Typically, score equations derived from (20.3) will still be unbiased estimating equations for
these marginal rates. Thus, in Cook and Lawless (2007), Chapter III, and Lin et al. (2000)
the special case of recurrent events was studied conditioning only on time-fixed covariates,
Zi. Also marginal models for clustered survival data have been studied (e.g., Martinussen
and Scheike (2006), Chapter 9) where conditioning is only done on past information for
subject i. Since these estimating equations are no longer likelihood score equations, ro-
bust variance estimation is always needed. Furthermore, the right censoring times must be
assumed marginally independent of the multistate process.
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Alive

10

Dead�α01(t)

FIGURE 20.1
The two-state model for survival data.

FIGURE 20.2
Nelson-Aalen estimate and the piecewise constant estimate of the cumulative hazard for the
two-state model for survival data.

20.2.5 Example

We start by considering the simple model for survival data given in Figure 20.1, with
the transient state “alive” (0) and the absorbing state “dead” (1). Figure 20.2 presents
the Nelson-Aalen estimate of the cumulative hazard function for the transition 0 → 1.
A piecewise constant estimate using 10 time intervals split at quantiles of event times is
superimposed. The two estimators agree well, the cumulative hazard function is almost a
straight line indicating that the hazard of dying is almost constant throughout the follow-up.

The association between survival time and covariates is explored using both the Cox
model and the Poisson model assuming a piecewise constant hazard in the ten time intervals.
The piecewise constant hazard assumption of the Poisson model seems reasonable (Figure
20.2) and the two models agree well; see Table 20.2.

The most important covariate seems to the presence of comorbidities, patients with
comorbidities have a considerably increased hazard of dying. Age is marginally significant
but creatinine levels do not seem to be associated with the hazard of dying. When including
the switch to HD as a time-dependent covariate, age becomes a more important predictor
while creatinine levels and the presence of comorbidities keep a similar value. The switch
to HD is an important predictor, an individual who has already switched is at a higher risk
than those still on PD.

Next, say we are interested in a competing risks model with two types of adverse events,
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TABLE 20.2
Cox and Poisson models for transition intensity in the two-state model, with and without
the time-dependent variable “switch to HD.”

Cox Poisson

β SE p β SE p

Age (per 10 years) 0.204 0.111 0.066 0.214 0.112 0.056

Comorbidities present 0.967 0.361 0.007 0.989 0.359 0.006

Creatinine (per 100 µmol/l) 0.001 0.063 0.989 0.007 0.062 0.912

Age (per 10 years) 0.276 0.111 0.013 0.292 0.112 0.009

Comorbidities present 0.943 0.361 0.009 0.964 0.360 0.007

Creatinine (per 100 µmol/l) -0.054 0.066 0.416 -0.049 0.066 0.455

Switch to HD 0.919 0.271 0.001 0.956 0.271 < 0.001

PD

10

HD

Dead

�

2

�
�
�
�
���

α01(t)

α02(t)

FIGURE 20.3
The competing risks model.

both considered as absorbing states: failure of the PD technique (switching to HD, denoted
as 1) and death (2); see Figure 20.3.

The Nelson-Aalen estimates of the two cumulative hazard functions are presented in
Figure 20.4. The hazards of dying and switching to HD both seem rather constant in time.

Table 20.3 reports the results of Cox models for transition intensities in the competing
risks model. Since the likelihood in (20.3) factorizes into distinct terms that include only
the parameters for one transition each, two separate Cox models are fitted, each considers
one of the possible outcomes as the event of interest and censors the times to the other
outcome. We can see that while high creatinine levels increase the hazard of switching to
HD, creatinine is not associated with the hazard of dying from state 0. Conversely, the
presence of comorbidities increases the hazard of dying but does not seem to be associated
with the technique failure risk.

If transition from HD to death is also of interest, the competing risks model is extended
to the illness-death model without recovery; see Figure 20.5.

Regarding the state of being on HD as a transient state does not affect the analysis
of transition intensities out of state 0, hence Figure 20.4 and Table 20.3 still apply. The
intensity for the 1 → 2 transition estimated using the Nelson-Aalen estimator is presented
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FIGURE 20.4
Nelson-Aalen estimates in the competing risks model for the transition to HD (grey) and
death (black).
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α02(t) α12(t, d)

FIGURE 20.5
The illness-death model without recovery.
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TABLE 20.3
Cox models for transition intensities in the competing risks model.

0 → 1 0 → 2

β SE p β SE p

Age (per 10 years) -0.09 0.124 0.468 0.031 0.142 0.827

Comorbidities present 0.47 0.381 0.218 1.107 0.486 0.023

Creatinine (per 100 µmol/l) 0.17 0.064 0.008 0.02 0.084 0.815

(a) (b)

FIGURE 20.6
Nelson-Aalen estimates and estimates based on piecewise constant intensities for transitions
out of state 1 (HD to death) as (a) a function of total time and (b) duration in state 1.

in Figure 20.6a. The curve is approximately linear but considerably steeper than those for
transitions out of state 0. The estimate based on piecewise constant intensities agrees well,
therefore no important differences between the Cox and the Poisson model using 10 intervals
for the baseline function can be expected.

The results of the two models are given in Table 20.4. Only patients who ever reach
state 1 are at risk for this transition and the smaller sample size (50) reflects in the wider
confidence intervals. The results of both models are close, even if the effect of comorbidities
is formally significant in the Poisson model but not in the Cox model. Age is found to be a
strong risk factor of dying in both models.

TABLE 20.4
Cox and Poisson model for 1 → 2 transition intensity in the illness-death model.

Cox Poisson

β SE p β SE p

Age (per 10 years) 0.534 0.173 0.002 0.592 0.173 0.001

Comorbidities present 0.996 0.558 0.074 1.128 0.552 0.041

Creatinine (per 100 µmol/l) -0.229 0.132 0.083 -0.262 0.139 0.06
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When considering the 1 → 2 transition, the time scale since HD start may also be of
interest, Figure 20.6b presents the cumulative hazard out of state 1 as a function of duration
in state 1. The cumulative hazard on this scale is not linear; the hazard of dying seems to
be the highest just after the switch to HD and we therefore expect that the process is not
Markov. The medical explanation here is that some patients had to switch to HD due to a
potentially lethal infection and may have died shortly after the switch. The outcome of the
infection should be known in a maximum of two months, so a test of the Markov assumption
can be performed using the indicator function of surviving 2 months I(t−Ti > 2 months) as
a time-varying covariate in the Cox model. The estimated parameter β is strongly significant
(p < 0.001) and negative (-2.11), indicating that the hazard lowers substantially after the
critical phase. If a linear effect of duration t−Ti is assumed instead, the estimated parameter
equals -1.02 (per year) and is again strongly significant (p < 0.001). The third option, i.e.,
to use a non-parametric test of Markovianity (Rodŕıguez Girondo and Uña Álvarez, 2011),
may be less useful in this case, since its generality in terms of possible alternative hypotheses
does not seem to be needed and the power is low with the number of patients on HD being
below 25 at any given time. Indeed, limiting ourselves to the time interval [1.4, 2.8] years in
which at least 15 patients are on HD at any time, the p value of the test equals 0.53 (global
test, see Rodŕıguez Girondo and Uña Álvarez (2011) for details). To test whether the model
is homogeneous semi-Markov, we interchange the roles of t and t− T and fit a Cox model
on duration scale with the sojourn time T as a covariate. The estimated coefficient for the
sojourn time equals β̂ = 0.42, p = 0.015, implying that for two patients who have spent the
same time on HD, the one who has a longer time since PD start is at a higher risk.

The above results indicate that more care should be taken to properly analyse the effect
of covariates on the 1 → 2 transition. To this end, we split both time-scales (time since
PD and time since HD) into 10 intervals and then use three models: Cox model with time
since PD as the baseline time variable and adjusting for time since HD using a time-varying
categorical variable; Cox model with time since HD as the baseline and time to HD as
a categorical variable; and Poisson model with both times as categorical covariates. The
estimated parameters for the three covariates are presented in Table 20.5, as expected, all
three models yield similar results. The interpretation is very similar with all three models:
the hazard ratio for age, for example, compares the hazards of two individuals that differ for
10 years in age, but have the same time since PD and the same time since HD. The models
only differ in what they regard as equal times; in the Poisson model, time is categorized
into intervals on both scales, while the Cox models regard one of the scales as time and the
other as a covariate split into intervals. Comparing the results with the 1 → 2 transition fit
in Table 20.4, we can see that the inclusion of the time since HD did not change importantly
the parameter estimates in our case.

TABLE 20.5
Cox and Poisson models for transition 1 → 2 (HD to death) taking into account both
time scales. X1=Age (per 10 years), X2=Comorbidities present, X3=Creatinine (per 100
µmol/l).

Cox (time since PD) Cox (time since HD) Poisson

β SE p β SE p β SE p

X1 0.533 0.207 0.010 0.522 0.181 0.004 0.515 0.182 0.005

X2 0.617 0.596 0.300 0.793 0.561 0.158 0.776 0.559 0.164

X3 -0.062 0.118 0.599 -0.119 0.118 0.311 -0.126 0.121 0.298
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20.3 Models for transition and state occupation probabilities

As illustrated in Section 20.2, intensity-based MSMs are rich and standard software offers
the necessary means to perform the analysis. However, since the interpretation of prob-
abilities is more simple than that of intensities, it is of considerable interest to extend
the methods from the previous section with techniques for inference for MSM transition
probabilities and state occupation probabilities. For certain MSMs, including Markov pro-
cesses, explicit formulas relate such probabilities to transition intensities, thereby allowing
for simple plug-in probability estimation once intensity models are established. We shall
first (Section 20.3.1) review techniques of that kind.

For regression situations, however, plug-in methods do not provide us with simple pa-
rameters describing the association between covariates and outcome probabilities. This is
because of the non-linearity of the relation between intensities and probabilities and, hence,
even intensity models with a simple link function (such as the Cox model or the additive
hazard model), lead to complicated relations between covariates and outcome probabilities.
For these reasons, direct (marginal) regression models for outcome probabilities are of in-
terest and we shall review a number of such techniques in Section 20.3.2, including methods
based on pseudo-observations and direct binomial regression models.

20.3.1 Plug-in models based on intensities

Markov processes

Suppose that the multistate process X(t), t ∈ T is Markov and let P(s, t) be the (p+ 1)×
(p+ 1) transition probability matrix, i.e.,

Phj(s, t) = Prob(X(t) = j | X(s) = h), h, j ∈ S, s ≤ t.

Let A(t) be the corresponding (p+1)× (p+1) cumulative transition intensity matrix, i.e.,

dAhj(t) = Prob(X(t+ dt) = j | X(t) = h), h �= j, h, j ∈ S

and let Ahh(t) = −∑j =h Ahj(t), that is
∑

j Ahj(t) = 0.
We assume that A is absolutely continuous, that is, dAhj(t) = αhj(t)dt where

αhj(t) = lim
Δt→0

1

Δt
Phj(t, t+Δt)

is the h → j transition intensity. For given A, the transition probability matrix P is the
unique solution to P(s, s) = I, the (p + 1) × (p + 1) identity matrix, and the Kolmogorov
forward differential equations

∂

∂t
P(s, t) = P(s, t)α(t)

or, written coordinate-wise

∂

∂t
Phj(s, t) =

∑
l

Phl(s, t)αlj(t).

One can show that the solution is the matrix product-integral

P(s, t) =
t

π
s
(I+α(u)du)
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defined by

lim
max|si−si−1|→0

∏
(I+A(si)−A(si−1)),

where s = s1 < · · · < si−1 < si < · · · = t is a partition of the interval from s to t (e.g.,
Andersen et al. (1993), Section II.6).

This provides us with the solution to the non-parametric estimation problem for Markov
transition probabilities: estimate Ahj(t) by the Nelson-Aalen estimator Âhj(t), cf. (20.4),

and let Âhh = −∑j Âhj . Transition probabilities are then estimated by the Aalen-Johansen
estimator, the finite matrix product obtained by plugging the Nelson-Aalen estimator into
the product-integral

P̂(s, t) = π
(s,t]

(I+ dÂ(u)).

For the special case of the two-state model for survival data, the latter simply gives the
Kaplan-Meier estimator for S(t) = P00(0, t).

Parametric models with constant transition intensities may also be handled quite easily.
This is because, in this case, there exists a simple exponential representation of the product-
integral and, thereby, a simple formula for Phj(s, t). For d = t− s this is given by

P(d) = exp(dA) = Vdiag(eρd)V−1 (20.6)

where ρ are the eigenvalues for the intensity matrix, A, and V the matrix of eigenvectors,
that is, A is estimated by maximum likelihood and plugged into (20.6).

The model with piecewise constant intensities can also be handled though the expressions
for transition probabilities become slightly more involved. Suppose we wish to estimate
Phj(s, t) where s and t belong to adjacent intervals, [τ�−1, τ�) and [τ�, τ�+1) in which the
intensities are constant. Then we may use the exponential formulas from (20.6) for Phm(s, τ�)
and Pmj(τ�, t), m ∈ S and the Chapman-Kolmogorov equations:

Phj(s, t) =
∑
m∈S

Phm(s, τ�)Pmj(τ�, t)

to estimate Phj(s, t).
For the models with constant or piecewise constant intensities, standard errors for the

transition probability estimates are derived from the likelihood-based estimated covariance
matrix for α̂hj� and the delta-method.

For Markov regression models with time-fixed covariates (both for the semi-parametric
Cox Model (20.1) and for the similar Poisson model) transition probabilities for given co-
variates, Z0,

Phj(s, t | Z0)

may be estimated completely analogously by plugging the estimated regression intensities
into the product integral. Thereby, such probabilities may be predicted for given covariates
and standard errors for the predictions may be obtained via the delta method (see An-
dersen et al. (1991) and Shu and Klein (2005) for the Cox model and the additive model,
respectively, in general Markov processes, and Cheng et al. (1998), Shen and Cheng (1999)
and Scheike and Zhang (2003) for the competing risks model with Cox hazards, additive
hazards and more flexible hazards, respectively). However, as mentioned above, this does
not lead to simple relations between covariates and transition probabilities. As an example
we study the Markov illness-death model (Figure 20.5) with Cox type 0 → 1, 0 → 2 and
1 → 2 transition intensities. In this model, the transition probability P01(0, t) is given by

P01(0, t | Z) =

∫ t

0

P00(0, u− | Z)α01(u | Z)P11(u+, t | Z)du (20.7)
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with
P00(0, u | Z) = exp (−A01(u | Z)−A02(u | Z))

and

P11(u, t | Z) = exp

(
−
∫ t

u

α12(x | Z)dx

)
.

Thus, for αhj(u | Zi) = αhj0(u) exp(LPhji) the way in which P01(0, t | Z) depends on Z is
not described by simple parameters.

For the competing risks model (Figure 20.3), P11(·, ·) = 1 and (20.7) reduces to the
cumulative incidence function

P01(0, t | Z) =

∫ t

0

P00(0, u− | Z)α01(u | Z)du.

A note on interval-censoring

In the derivation of the likelihood, (20.3), continuous observation of X(·) was assumed,
i.e., times of transitions were observed exactly, except possibly for right censoring. For a
Markov model with piecewise constant intensities the likelihood for interval-censored data
may be written down in terms of intensities based on the explicit relation between transition
intensities and probabilities. For a single individual, observed at times s0, s1, . . . , sr to be
in states x0 = X(s0), x1 = X(s1), . . . , xr = X(sr) the likelihood contribution is

r∏
j=1

Pxj−1xj
(sj−1, sj).

This means that Markov models with piecewise constant transition intensities (including
regression models) may be handled quite easily, see, e.g., Kay (1986). Non-parametric in-
ference based on interval-censored data have been studied in some special cases, including
the 3-state Markov illness-death model without recovery (Frydman, 1992, 1995), see also
Commenges (2002).

Non-Markov processes

For semi-Markov processes without loops, that is, when only a finite number of paths
from any state h ∈ S to another state j ∈ S is possible, explicit expressions for transition
probabilities like (20.7) are available. As a first example we consider the semi-Markov illness-
death model without recovery and where the transition intensity from 1 to 2, α12(t, t−T1 | Z)
depends on both “calendar” time, t, and duration t− T1 in state 1, where T1 is the time of
transition from 0 to 1. Here, P01(0, t) is still given by (20.7) with P11 now specified as

P11(u, t | Z, T1) = P11(u, t | Z, u) = exp

(
−
∫ t

u

α12(x, x− u | Z)dx

)
.

Asymptotics for this model was studied by Shu et al. (2007) for the special case of α12(x, x−
u | Z) = α12(x − u | Z) (i.e., a homogeneous semi-Markov model as described in Section
20.2.1).

For general multi-state models, Datta and Satten (2001) studied estimation of the state
occupation probabilities πh(t), h ∈ S. They showed that the product-integral estimator
is consistent without the Markov assumption and related this fact to the estimation of
marginal rates as discussed in Section 20.2.
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20.3.2 Direct models for probabilities

In some models, transition probabilities may be estimated directly. Thus, for a general
non-Markov illness-death process without recovery, Meira-Machado et al. (2006) derived
estimators for the transition probabilities P00(s, t), P01(s, t), P11(s, t) based on the following
representation. If T0 and T2 are the sojourn time spent in state 0 and the time to absorption
in state 2, respectively, and if H is the survival function for T0 then

P00(s, t) =
H(t)

H(s)
, P01(s, t) =

E(φst(T0, T2))

H(s)
, P11(s, t) =

E(φ̃st(T0, T2))

E(φ̃ss(T0, T2))
,

where φst(u, v) = I(s < u ≤ t, v > t) and φ̃st(u, v) = I(u ≤ s, v > t). Here, H can be esti-

mated by the Kaplan-Meier estimator, Ĥ. The estimators for the expectations E(φst(T0, T2))

and E(φ̃st(T0, T2)) presented in Meira-Machado et al. (2006) have later been revised; see
Meira-Machado et al. (2011).

Without right censoring, the estimator of Phj(s, t) reduces to the relative frequency of
processes in state j at time t among those in state h at time s < t. Meira-Machado et al.
(2006) derived large sample properties of these estimators which may be generalized to
more complicated non-Markov processes. It should be noted, however, that consistency of
these estimators only holds if the support of distribution of T2 is contained in that of the
censoring time.

Finally, for a transient state the state occupation probability may be estimated by
“Kaplan-Meier differences” (Pepe, 1991). As a simple example, let us once more study the
illness-death model without recovery where T0 is the time spent in state 0 and T2 the time
to death with survival functions H and S, respectively. Then H(t) is the probability that
the process is in state 0 at time t and S(t) is the probability that it is in either state 0

or state 1 at time t. With Kaplan-Meier estimators Ĥ and Ŝ for T0 and T2, respectively,
the state occupation probability π1(t) for the transient state 1 can, therefore, be estimated
without a Markov assumption by

π̂1(t) = Ŝ(t)− Ĥ(t).

This approach may be used for transient states in more general MSMs.

Regression models

Without censoring, state occupation indicators I(Xi(t) = h) would always be observed and
could thereby be used as outcome variables in generalized linear models for

πhi(t | Zi) = E(I(Xi(t) = h | Zi)),

that is, a model of the form
g(πhi(t)) = LPhi(t)

with link function g. Here, the estimating equations would be
∑

i Ui(β, t) = 0, for (all or)
selected t−values, with

Ui(β, t) =

(
∂

∂β
g−1(LPhi(t))

)T

V−1
i (I(Xi(t) = h)− g−1(LPhi(t))). (20.8)

In (20.8), Vi is a working covariance matrix, frequently chosen simply to be the identity.
With censoring, I(Xi(t) = h) is not always observed and modifications to (20.8) are
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needed. One possibility is to replace I(Xi(t) = h) by its pseudo-observation (e.g., Andersen
and Klein (2007)) given by

π̂hi(t) = nπ̂h(t)− (n− 1)π̂−i
h (t)

where π̂h(t) is a well-behaved estimator for πh(t) based on the entire sample of size n while
π̂−i
h (t) is the same estimator applied to the sample of size n − 1 obtained by eliminating

subject i. For this approach to work, right censoring should be independent of both the
multistate process Xi(·) and of the covariates, Zi (though the latter assumption may be
relaxed by basing the pseudo-observations on an inverse probability of censoring-weighted
estimator; see Binder et al. (2012) for a study of the competing risks model).

A related method, also based on inverse probability of censoring weighting, was studied
by Scheike and Zhang (2007). Here, the starting point is once more (20.8) where I(Xi(t) = h)
is now replaced by

I(Xi(t) = h)I(Ci > t)

GC(t)

with GC denoting (an estimate of) the censoring distribution, GC(t) = Prob(Ci > t). For
the special case of the competing risks model this approach was shown by Graw et al. (2009)
to be asymptotically equivalent to that based on pseudo-observations. For this model, both
methods are also closely related to the regression techniques suggested by Fine and Gray
(1999) for the clog-log link function and Fine (2001) for other links. Here, the cumulative
incidence function, P0h(0, t) was studied via the sub-distribution hazard

α̃h(t) =
∂

∂t
(− log(1− P0h(0, t)))

and the Cox regression score equations were modified by inverse probability of censoring
weights. We prefer to formulate the models directly in terms of P0h(0, t), mainly because of
the awkward interpretation of the sub-distribution hazard, which is

α̃h(t)dt = Prob(failure from cause h in (t, t+ dt) |

either alive at time t− or failure from a competing cause in [0, t)).

20.3.3 Example

We start by analyzing the simple two-state survival model; see Figure 20.1. The survival
probability is given in Figure 20.7a. The predicted curve for given values of covariates can
be calculated using the estimated baseline hazard values and coefficients in Table 20.2.
Because of the one-to-one relationship between the hazard and the survival function, the
estimated coefficients directly reflect in the differences between the predicted curves at
different covariate values; see Figure 20.7b.

The Aalen-Johansen estimates of the cumulative incidence functions P̂01(0, t) and

P̂02(0, t) for the competing risks model described in Figure 20.3 are given in Figure 20.8.
The two curves are very similar, both reaching almost 0.5 after 7 years, the probability of
either dying or switching to HD is thus almost 1 at that time, the estimated event free
survival probability equals P̂00(0, 7) = 0.034.

The two curves resulting from a piecewise constant model using 10 intervals (at quan-
tiles of the time to exit from state 0) agree reasonably well with the non-parametric Aalen-
Johansen estimates. Plug-in estimates can be calculated using the estimated baseline hazard
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(a) (b)

FIGURE 20.7
(a) Kaplan-Meier estimate with 95% confidence interval for the two-state model; (b) pre-
dicted curves for individuals with respect to the presence of comorbidities, evaluated at
mean values of age and creatinine.

and coefficients of the Cox model; see Table 20.3 and Figure 20.9. Note that Cox models
for both transitions are needed to estimate each of the transition probabilities and the
correspondence between the transition intensity and probability is no longer simple. For ex-
ample, though proportional hazards were assumed in the fitted Cox models, the association
of creatinine with the probability of dying seems to change in time; see Figure 20.9b.

The association between the covariates and the cumulative incidence functions can be
modeled directly using the Fine-Gray approach (Fine and Gray, 1999) or the method based
on pseudo-observations (Andersen and Klein, 2007). Table 20.6 presents the results us-
ing the clog-log link with 10 time points for the pseudo-observations based method. Both
models lead to the same qualitative conclusions, higher creatinine seems to be importantly
associated with higher probability of switching to HD and is the only significant variable.

When considering the illness-death model (Figure 20.5), the Aalen-Johansen estimator
can be used to estimate the transition probabilities. Note that unlike in the case of the cu-
mulative hazard function, both P01(0, t) and P02(0, t) are affected by regarding the state 1
as transient; the estimated curves are given in Figure 20.10. The Aalen-Johansen estimator
is based on the Markov assumption, which, as we already know, does not hold in our exam-
ple. This is not important for the P01(0, t) estimation since it is in fact a state occupation
probability π1(t) and the Aalen-Johansen estimator thus consistent regardless of Markov
assumption. Figure 20.10a compares the different approaches to estimating P01(0, t). As ex-
pected, all the methods give very similar results with the Kaplan-Meier differences (Pepe,
1991) and the Meira-Machado estimate even completely overlapping. The Markov assump-
tion is more important when estimating P02(s, t); Figure 20.10b shows that Aalen-Johansen
is overestimating compared to the Meira-Machado approach.
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FIGURE 20.8
Cumulative incidence estimates (state occupation probabilities): Aalen-Johansen and piece-
wise constant hazards. Grey=HD, black=death.

(a) (b)

FIGURE 20.9
Competing risks model: (a) Plug-in estimate for 0 → 1 transition probability; (b) plug-in
estimate for 0 → 2 transition probability. Evaluated at age 70, with present comorbidities
and creatinine equal 450 or 650 µg/l.
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TABLE 20.6
Estimates in direct regression models for cumulative incidences.

Fine & Gray pseudo - cloglog

β SE p β SE p

0 → 1

Age (per 10 years) -0.087 0.115 0.448 -0.105 0.110 0.341

Comorbidities present 0.173 0.392 0.658 0.484 0.444 0.276

Creatinine (per 100 µmol/l) 0.161 0.051 0.002 0.187 0.055 0.001

0 → 2

Age (per 10 years) 0.077 0.147 0.600 0.055 0.147 0.710

Comorbidities present 0.759 0.477 0.112 0.759 0.495 0.125

Creatinine (per 100 µmol/l) -0.092 0.076 0.225 -0.065 0.085 0.442

(a) (b)

FIGURE 20.10
Comparison of different approaches to (a) P̂01(0, t) and (b) P̂02(s, t) estimation (s = 1 year).

20.4 Comments

We have presented a series of statistical methods for MSMs which may be useful in the
analysis of follow-up data in a number of situations. One class of models was based on
transition intensities. These are the most fundamental parameters in MSMs and they are
the parameters which enter directly in the likelihood for continuously observed follow-data,
cf. (20.3). We focused on two broad classes of intensity models: non- or semi-parametric
models, and parametric models with piecewise constant transition intensities. One purpose
of our illustrative example was to emphasize that these models, in fact, tend to provide
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very similar results. However, for the model with piecewise constant intensities the choice
of intervals may affect the results.

Another purpose of our illustrative example was to demonstrate that the MSMs may
provide insight into the data which may be overlooked if one instead analyzes the time to
death using more simple survival analysis techniques. Thus, prognostic factors for survival
may influence different transition intensities quite differently.

Another class of models focused on outcome probabilities, that is, state occupation
probabilities and transition probabilities. One advantage of such models is the more direct
interpretation of probabilities than intensities. While transition intensities provide a local
(in time) description of the dynamics of the model, the probabilities give a global description
which has been accumulated over time. For some intensity-based models (Markovian mod-
els and semi-Markov models without loops) transition probabilities were easily estimable
by plug-in methods while the (marginal) state occupation probabilities could be estimated
in more general classes of multistate models (Figures 20.7-20.10). When probabilities were
estimated by plugging-in regression models for transition intensities no simple relationship
between covariates and probabilities was obtained though predictions for given covariates
were quite simple. In such situations, direct regression models for the outcome probabilities
provided an alternative option which we exemplified using pseudo-observations; see Table
20.6.

Some limitations of the methods should be mentioned. First of all, we have only exempli-
fied analysis of continuously observed data where all transition times were observed exactly.
For interval-censored data, the only general approach (for Markovian models) seems to be
models with piecewise constant intensities. In this connection it is reassuring to note the
similarity between results from models with piecewise constant intensities and those from
non- or semi-parametric inference. One should notice that the complexity of the inference
increases with the number of possible transitions in the model, and we have only exemplified
analyses with few states.

One final remark is that our example should be regarded as purely illustrative with the
purpose of showing how the different models we have discussed may be handled in practice.
Thus, our example was not intended to provide definitive analyses for the diabetes data.
For this to be the case, much more attention must be paid to the goodness of fit of the
models. For models based on intensities, techniques known from survival analysis may be
applied while goodness of fit of models for pseudo-observations was discussed by Klein and
Andersen (2005). A general method that can be used with all the described methods was
described in Pohar Perme and Andersen (2008).
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This chapter is about landmarking. Section 21.1 will discuss the origin of landmarking and
its use for estimation of the effect of time-dependent covariates. The topic of Section 21.2
is the use of landmarking for dynamic prediction. Section 21.3 concludes with a discussion
of practical issues.

21.1 Landmarking

The term “landmarking” originates from a debate on the effect of response to chemotherapy
on survival in cancer patients (Anderson et al., 1983). Chemotherapy is given to cancer
patients with the intention to destroy cancer cells, thereby shrinking the tumor; it is given
either before or after surgical resection, or both. If the size of the tumor has decreased
to a sufficient degree the patient is said to have responded to the chemotherapy (ignoring
the distinction that is usually made between complete and partial response). Depending on
the type of cancer, it typically takes in the order of 3 to 6 months to establish whether
or not a patient has responded to chemotherapy. A comparison between chemotherapy
responders and non-responders was often performed to support the claim of effectiveness of
chemotherapy in the absence of a randomized clinical trial. The patients who responded to
chemotherapy could be considered as the treated group, the non-responders as those who
did not receive treatment. The typical way such an analysis was performed was by making

441
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two groups, one of “responders,” the other of “non-responders,” and by simply comparing
survival between these two groups.

21.1.1 Immortal time bias

Apart from the fact that there could be factors that influence both the probability of a
response and survival, which could invalidate the claim of a causal effect of response on
survival, there is another fundamental problem with this approach. Consider a potential
responder, a patient who would, given enough time, eventually respond to chemotherapy.
If the patient died before his response to chemotherapy he would be considered a “non-
responder” because his response was never observed. Thus, the patients in the response
group are in some sense immortal until their time of response; if they had died before
their response they would not have been in the response group. Such a requirement to
be alive at the time of response is not present for the non-response group, thus giving
the responders an unfair advantage. Epidemiologists call this phenomenon “immortal time
bias.” The same problem comes in many other disguises. One prominent example, which
has been the subject of debate in cardiovascular research (Clark et al., 1971; Gail, 1972;
Mantel and Byar, 1974), involves comparison of survival between patients with and without
heart transplant. In the näıve approach described above, patients with heart transplant must
have survived from diagnosis to time of heart transplant in order to be assigned to the heart
transplant group. Other examples are the effect of recurrence on survival in cancer, the effect
of transplant failure on survival in transplant studies, the effect of compliance to treatment
on recurrence, the effect of drug-specific adverse events on recurrence. A final interesting
example is a series of papers in the Annals of Internal Medicine on the effect of survival of
winning an Oscar among U.S. Academy actors. A controversial paper by Redelmeier and
Singh (2001) claimed to have shown that Oscar winners lived longer than their non-Oscar
winning peers. The authors offered a number of explanations for this remarkable result, but
of course the most likely explanation for their finding is immortal time bias. A subsequent
paper using a correct analysis with time-dependent covariates found no evidence that Oscar
winners lived longer (Sylvestre et al., 2006). In a nice review paper, Dafni (2011) gives a
historical overview of inadequate comparisons between “responders” and “non-responders.”
By now, a growing number of researchers is aware of the problem of immortal time bias,
but unfortunately the incorrect approach is still prevalent in medical journals.

The crucial issue is of course that the grouping “responder” versus “non-responder” is
not yet known at baseline. When studying survival, an approach that makes groups based
on something that will happen in the future is subject to bias. The paper of Anderson et al.
(1983) proposed two alternatives for a correct statistical analysis of this type of problems.
The first, well-known, approach is to consider response to chemotherapy as a time-dependent
covariate, that is to let the value of the covariate in a Cox model change value from 0 (no
Oscar winner) to 1 (Oscar winner) at the time of winning the Oscar. The second approach
is the landmark approach which is discussed in the next subsection.

21.1.2 Landmarking

The idea is to fix a landmark time point in advance. For the example of the effect of response
to chemotherapy on survival a good choice could be 6 months, because the majority of the
chemotherapy responses will have occurred by then and not many patients will have died
yet. The response status for each patient is then assessed at the landmark time point. That
means that a patient with a response at 7 months will be considered to be part of the non-
responder group at the landmark time point of 6 months. The subsequent survival analysis
starts at the landmark time point, which implies that all follow-up before the landmark
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(a) (b)

FIGURE 21.1
(a) Original data for the first 20 patients. (b) Groups made based on response status.

time point is discarded. All patients who died or were censored before the landmark time
point are excluded from the landmark dataset.

An illustration based on a simulated dataset will serve to offset the different approaches.
The set-up is very loosely based on the example of response to chemotherapy and its effect
on survival. The simulated data consist of n = 1, 000 patients. For each patient, time to
response Tresp was generated uniformly on (0, 1) with probability 0.5, while no response
(Tresp = ∞) was generated with probability 0.5. Time to death Tdeath was exponential
with mean 1, independent of Tresp. Death could happen before the response, in which case
response is not observed. Censoring was applied at 2 (years). Figure 21.1(a) shows the
original data for the first 20 patients in the left plot. Each line is one patient, the solid
part of the lines corresponds to follow-up after response, while the dotted part of the lines
corresponds to follow-up before (without response). The dots at 2 years correspond to
censored observations, the rest are events. Figure 21.1(b) shows the set-up of the incorrect
analysis for the same 20 patients based on making two groups as if they were known from
baseline. As can be clearly seen, see for instance patients 1, 3 and 4, follow-up that should
have been assigned to the non-response group is incorrectly assigned to the response group.
Since events are correctly assigned to the two groups, hazard rates (events divided by follow-
up time) are underestimated in the response group and overestimated in the non-response
group, leading to a negative bias in the hazard ratio of response versus non-response for
survival.

Indeed, Cox regression based on the analysis illustrated in Figure 21.1(b) gives an es-
timated regression coefficient (log hazard ratio) of -0.696 with a standard error of 0.076
(p < 0.0001), leading to a clear false positive result claiming that response to chemotherapy
significantly improves survival. A time-dependent Cox regression using response status as
time-dependent covariate results in an estimated coefficient of -0.078 with a standard error
of 0.081 (p = 0.34). This result is in line with the true effect of 0 that was used in the data
generation. The landmark analysis at 6 months created two groups, based on the response
status at 6 months used as a time-fixed covariate in a Cox regression based on the landmark
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(a) (b)

FIGURE 21.2
(a) The landmark dataset at 6 months for the 20 patients of Figure 21.1. (b) Regression
coefficients and 95% confidence intervals for all possible landmark time points.

dataset obtained by removing everyone who was censored or who died before 6 months. The
estimated regression coefficient was -0.025 with a standard error of 0.103, also not signif-
icantly different from 0. Figure 21.2(a) shows how groups are assigned to the patients.
Patient 1, who responded to chemotherapy after 0.06 years, is assigned to the responder
group, while patient 3, who responded to chemotherapy after 0.57 years (i.e., after the land-
mark time point), is assigned to the non-responder group. Patients 5–7, 12–14, 16 and 19
are excluded from the landmark dataset because they died before 6 months. Figure 21.2(b)
shows the regression coefficients and 95% confidence intervals, obtained for the landmark
analyses using as landmark time points all possible time points between 0 and 2 years.
Clearly, estimates of the effect of response differ from landmark to landmark, but for each
landmark time point the true effect of 0 is contained in the 95% confidence interval of the
estimate. Note also that the precision of the estimate of the effect of chemotherapy varies
appreciably. Initially confidence intervals of the landmark estimates are rather wide because
the group sizes (responder vs. non-responder) are unbalanced. With increasing landmark
time point the precision initially increases as more and more subjects become responders,
until after one year the precision decreases again because the sample size of the landmark
datasets (those still alive) becomes smaller.

This simple simulation study took the effect β of the time-dependent covariate Z(t)
(“response”) in the Cox model

λ(t |Z(t)) = λ0(t) exp(βZ(t)) (21.1)

to be equal to 0. Suppose that, as in the simulation study, Z(t) is a 0/1 covariate that is
initially 0 and then jumps to 1 if some event happens (a response, or start of treatment).
If (21.1) is the correct model, then a time-dependent Cox model will yield a consistent
estimate of β. In a landmark analysis at the landmark time point s the estimated effect will
be attenuated towards 0, because the comparison is between subjects with Z(s) = 1 and
subjects with Z(s) = 0, for which some will later on switch to Z(t) = 1. If interest is in
an unbiased estimator of β, a time-dependent Cox regression is preferred (if that model is
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correct). The landmarking procedure will however yield a correct procedure for testing the
null hypothesis β = 0.

In the present general context where interest is in the effect of an intermediate event like
response to chemotherapy on an event of interest (death) a good choice of the landmark time
point will take into consideration both when the intermediate event is likely to occur and
when the event of interest is likely to occur. With respect to the former the landmark time
point should be chosen late enough to allow a sufficiently large proportion of the population
to have experienced the intermediate event. With respect to the latter the landmark time
point should be early enough so that not too many events of interest have occurred. Typically
such a choice can (and should) be made from prior knowledge, without looking at the data.
Other choices can be used for sensitivity analyses, as in Dezentjé et al. (2010). Given the
above, landmarking is most useful when the periods in which the intermediate event and
the event of interest occur can be separated. If there is large overlap the landmark method
will lose power either because insufficient events have occurred or because too many events
of interest or censored observations had to be discarded. A final important point, discussed
by Dafni (2011), is the fact that landmarking can only claim association, no causal relations,
because the group membership is not determined on the basis of randomization, even if
the data originate from a randomized clinical trial. This caveat is less of a problem when
landmarking is used for prediction, as discussed in the next section.

21.2 Landmarking and dynamic prediction

Landmarking is now frequently used by biostatisticians if the principal interest is in estima-
tion of the effect of a time-dependent covariate on survival. This aspect was discussed in the
previous section. A novel use of landmarking is in dynamic prediction, which is the topic of
the present section. First in Subsection 21.2.1 it will be clarified what is meant by dynamic
prediction. Then Subsection 21.2.2 will introduce a dataset and a dynamic prediction prob-
lem that will be used as illustration in the rest of this section. After a brief discussion of the
traditional approach in this kind of problem the general use of landmarking for dynamic
prediction is examined in Subsection 21.2.3 and the idea of combining landmark models in
Subsection 21.2.4 is introduced. Finally, Subsection 21.2.5 illustrates the use of landmarking
for dynamic prediction for the data of Subsection 21.2.2.

21.2.1 Dynamic prediction

Among the many prediction models that have been developed in medicine, the overwhelming
majority of these have been developed with the intention of providing predictions for patients
with a certain disease from the moment of diagnosis or from the start of treatment for that
disease. These models are clearly useful to inform patients about their prognosis and to
guide clinicians in making treatment decisions. But they do not tell the whole story. A
patient may want to know what the probability is that he/she is alive 5 years later at the
start of treatment. But after successful primary treatment the patient is usually followed up
at regular visits to the hospital, for instance each year. The question “what is the probability
that I will still be alive after 5 years” is equally pressing two years later as it was at the start
of treatment. In these two years new information has become available for this patient. This
new information could be in the form of clinical events (for instance a local recurrence may
have occurred one year after surgery) or in the form of measurements of biomarkers. Also
the fact that no clinical events have occurred in the mean time is important information
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TABLE 21.1
Demographics of Patients in AHEAD Study.

Covariate N (%)

Gender

Male 1564 (39%)

Female 2468 (61%)

Education

Less than high school 1736 (43%)

High school 1212 (30%)

Some college 1084 (27%)

BMI

≤ 25 2244 (56%)

25–30 1388 (34%)

> 30 390 (10%)

Missing 10

Smoking

Never 1997 (50%)

Past 1683 (42%)

Current 324 ( 8%)

Missing 28

that would typically improve prognosis for the patient. This new information, in the form
of time-dependent covariates, should be incorporated in the prediction probabilities. This
aspect of obtaining prediction probabilities not only from baseline but also at later points
in time is called “dynamic prediction.”

21.2.2 The AHEAD data

As illustration of the use of landmarking for dynamic prediction, data of the Asset and
Health Dynamics Among the Oldest Old (AHEAD), now part of the wider U.S. Health and
Retirement Study (HRS), will be used (Juster and Suzman, 1995). The AHEAD survey
includes a nationally representative sample of initially non-institutionalized persons born
before 1923, aged 70 and older in 1993. The present analysis uses only the non-Hispanic white
subset. The outcome of interest is overall survival; the time scale is age. Table 21.1 shows
the frequency in these data of the time-fixed covariates considered in the illustration (BMI
and smoking status are assessed at entry into the study). The time-dependent covariate
of interest is whether or not the subject is disabled according to the Basic Activities of
Daily Living (ADL) scale by Katz et al. (1963), which includes items for walking, bathing,
dressing, toileting and feeding. A subject is defined to be ADL disabled here if he/she
responds “with difficulty” for at least one of the ADL items. In mathematical notation, the
time-dependent covariate of interest is

ZADL(t) =

{
1, if subject is ADL disabled at age t;

0, otherwise.
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2. Death

0. Healthy
1. ADL
disabled

FIGURE 21.3
Graphical illustration of the reversible illness-death model for the HRS.

The general objective is dynamic prediction of survival of at least 10 years beyond age s, with
given ADL disability status at age s and given covariates. If T denotes the random survival
time of the individual, the objective is to estimate P (T > s + 10 |T > s, ZADL(s), Z

∗), for
given time-fixed covariates Z∗.

Before considering landmarking for solving this problem, it is instructive to examine
the standard way of obtaining such dynamic prediction probabilities in this context. The
standard approach is to cast the problem in the form of a multistate model, which may
be formalized as a random process X(t) in time. An obvious multistate model would have
states (0) alive without ADL disability (healthy), (1) alive with ADL disability, and (2)
dead. This multistate model is illustrated in Figure 21.3. The multistate model represented
by Figure 21.3 is a reversible illness-death model. The illness state is state 1, ADL disabled,
and the multistate model is reversible because recovery from ADL disability is possible
(there is a transition from ADL disability to healthy). For a total of 4,032 subjects, 1,929
transitions from healthy to ADL disabled occurred and 679 recoveries (transitions from
ADL disability to healthy). A total of 1,994 deaths were observed, 922 from the healthy
state and 1,072 from ADL disability. The fact that the data are actually interval-censored
is conveniently ignored for the purpose of illustration. In the notation just introduced the
objective is to estimate P (X(s+w) < 2 |X(s) = 0, Z∗) and P (X(s+w) < 2 |X(s) = 1, Z∗)
for given time-fixed covariates Z∗.

Dynamic prediction probabilities would typically be obtained by first estimating the
transition hazards. In the presence of covariates, separate Cox models could be fitted for
each of the four transitions. If the Markov assumption holds, there are no easy closed-form
expressions for the prediction probabilities, because the multi-state model is reversible, but
the Aalen-Johansen estimator (Aalen and Johansen, 1978) can be used to obtain estimates
of prediction probabilities. This is quite laborious but it has been implemented in the R
package mstate (de Wreede et al., 2010). If the Markov assumption does not hold, no direct
ways are available to obtain the dynamic prediction probabilities, so one would have to resort
to the use of (micro-)simulation. In the HRS data, there is in fact evidence that history
of ADL disability increases the disability rate, which would indeed point to a violation of
the Markov assumption. All this indicates that it is not straightforward to obtain dynamic
prediction probabilities using the multistate approach.

21.2.3 Dynamic prediction and landmarking

The idea to use landmarking for dynamic prediction stems from van Houwelingen (2007).
A similar approach was described by Zheng and Heagerty (2005) as partly conditional
modeling. Suppose we want to estimate the probability, given alive at age 80, of survival
until age 90 and suppose that we had an enormous database at our disposal. The basic idea
is very simple: we would select a subset of the data, consisting of everyone alive at age 80.
This would be a landmark dataset . Then in case of no censoring we would simply count how
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many individuals are alive at age 90 and calculate the corresponding proportion. If there is
censoring, we could estimate the probability using the Kaplan-Meier estimator and if there
are also covariates involved, we could incorporate them in a Cox model.

In general terms, the procedure to obtain dynamic predictions using landmarking is to
select a set of landmark time points in some time window [s0, s1]. For each such landmark
time point s a time horizon thor is defined at which a dynamic prediction is to be obtained.
Then the corresponding landmark dataset is constructed, by selecting all individuals at
risk at s. Define Z(s) to be the vector of time-fixed and time-dependent covariates (for the
time-dependent covariates the current value at s should be taken). We can then fit a simple
Cox proportional hazards model

λ(t |Z(s), s) = λ0(t | s) exp(Z(s)�β(s))

for s ≤ t ≤ thor, enforcing administrative censoring at thor. This means that all events
and follow-up after thor are ignored. After having obtained estimates β̂(s) and Λ̂0(t | s)
of the regression coefficient and the cumulative baseline hazard, respectively, the cu-
mulative hazard specific to a subject with covariate values Z∗(s) can be calculated as

exp(Z∗(s)�β̂(s))Λ̂0(t | s). An estimate of the prediction probability P (T > thor |T >

s, Z∗(s)) is then given by exp(− exp(Z∗(s)�β̂(s))Λ̂0(thor | s)).
It is important to note that for fixed s and thor, the Cox model

λ(t |Z(s), s) = λ0(t | s) exp(Z(s)�β(s))

uses Z(s) as time-fixed covariates and β(s) as time-fixed covariate effects. The regression
coefficients and baseline hazards do depend on s, the landmark time point, but Z(s) and
β(s) do not depend on t. There is an interesting and useful property of robustness of the
landmark dynamic predictions. Using results of Xu and O’Quigley (2000) it was shown in van
Houwelingen (2007) that even if the effect of Z(s) is time-varying , the above model will
give accurate dynamic predictions of P (T > thor |T > s, Z∗(s)), provided administrative
censoring is enforced at thor during estimation of the Cox model, and that the prediction is
only used at thor. If the true effect of the covariate is time-varying and equals β(t), then

P (T > thor |T > s, Z∗(s)) = exp
(
−
∫ thor

s

λ0(u) exp
(
Z∗(s)�β(u)

)
du
)

= exp
(
−Λ0(thor | s) exp

(
Z∗(s)�β(thor | s)

))
.

Here β(thor | s) is simply defined so that the last equation holds (more precisely it will also
depend on Z∗(s)); it can be approximated as

β(thor | s) ≈
∫ thor

s
λ0(u)β(u)du∫ thor

s
λ0(u)du

,

that is, as a weighted time-average of β(t) between the prediction time s and the hori-
zon thor. Fitting a Cox proportional hazards model on the landmark dataset at s, ignor-
ing the time-varying effect of Z and applying administrative censoring at thor, would also
yield approximately a time-average of β(t) between s and thor, but with subtly different
weights (Struthers and Kalbfleisch, 1986; Xu and O’Quigley, 2000)

βCox(thor | s) ≈
∫ thor

s
S(u|s)C(u|s)λ(u)β(u)du∫ thor

s
S(u|s)C(u|s)λ(u)du

.

Here S(u|s) and C(u|s) are the conditional survival and censoring function, given alive at
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s, and λ(u) is the marginal hazard. If thor is not too far away from s, then βCox(thor | s) ≈
β(thor | s), and since it can be shown that also the baseline hazards agree, it follows that

ΛCox(thor | s, Z∗(s)) ≈ Λ(thor | s, Z∗(s)) .

For more details the reader is referred to van Houwelingen (2007) and Section 7.1 of van
Houwelingen and Putter (2012).

21.2.4 Landmark super models

The procedure of estimating parameters by fitting the simple Cox model

λ(t |Z(s), s) = λ0(t | s) exp(Z(s)�β(s))

for s ≤ t ≤ thor can be done for each landmark point separately. But one would expect
the coefficients β(s) to depend on s in a smooth way. This can be exploited by defining
models combining the models of different landmark time points. One could use splines or a
parametric model, such as

β(s) = β0 + β1s+ β2s
2 .

Such a combined model can be fitted using standard software, by stacking the landmark
datasets and performing a single Cox regression, stratified by landmark. The estimated
coefficients will be correct, but for the standard errors a correction is needed to account
for the fact that data of the same patient are used repeatedly. Sandwich estimators (Lin
and Wei, 1989) can be used for this purpose. The baseline hazard can be estimated by the
Breslow estimator; it will depend on s unless both Z(s) and β(s) are constant. The resulting
model is called a “landmark super model.”

We can go one step further by also combining the baseline hazards for the different
landmark time points with the aim of adding more structure and to make it easier to
interpret the models. We may assume a model

λ0(t | s) = λ0(t) exp(θ(s))

with θ(s0) = 0 for identifiability. In our application a quadratic function

θ(s) = θ1s+ θ2s
2 .

will be taken. This model can also be fitted directly by applying a simple Cox model to the
stacked dataset, like the stratified landmark super model, only the landmark time s is not
used as stratifying variable but as a covariate.

It should be noted that the landmark super model is not a comprehensive probability
model, but a sequence of optimal models indexed by landmark time point s. This implies
that the landmark super model does not satisfy the coherence condition of Jewell and
Nielsen (1993).

21.2.5 Application to the AHEAD data

In applying the landmarking approach to the AHEAD data, the endpoint is defined as
survival in a window of fixed width w = 10 years from the moment s of prediction, i.e.,
for each s, the time horizon for prediction is defined as thor = s + 10. The landmark time
points used are 16 points, equally spaced, from age s0 = 75 to age s1 = 90. For each
landmark (prediction) time point s, a landmark dataset was constructed, containing all
relevant information needed for the prediction. Each dataset consisted of all patients at risk
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FIGURE 21.4
Frequencies of ADL disabled and healthy subjects for each of the landmark datasets.

(i.e., alive and under follow-up), the current value of ADL disability was computed and the
horizon was set at thor = s + 10 years. At each landmark point a simple Cox model was
fitted on (s, s+ 10) and used to obtain a prediction of survival at s+ 10.

Figure 21.4 shows frequencies of ADL disabled and healthy subjects for each of the
landmark datasets. The total height of the bars are the number of subjects at risk. Because
of the delayed entry the total sample size of the landmark datasets is initially increasing,
then the total sample size decreases again due to individuals dying. The proportion of sub-
jects with ADL disability increases with age. Figure 21.5 shows regression coefficients with
95% confidence intervals for each of the covariates at each landmark time point. With the
possible exception of smoking, the regression coefficients seem to be reasonably stable over
(landmark) time. Figure 21.5 also shows smoother (mostly constant) regression coefficients
obtained from the landmark super model. How these were obtained will be explained now.

The objective of a landmark super model is to obtain a parsimonious model combining
possibly different effects over (landmark) time of covariates. For numeric stability, landmark
time was standardized using s = (s − 75)/15, which runs from 0 to 1. Table 21.2 shows
the result of a backward selection procedure using Wald tests where, starting from a full
model with linear and quadratic interactions of landmark time and covariates, the linear
and quadratic terms of covariates were removed and replaced by a constant in case these
linear and quadratic interactions were not significant at the 0.05 level. Only interactions of
landmark time and smoking were retained, in accordance with the results of the separate
landmark models of Figure 21.5. The smooth lines in Figure 21.5 overlay the regression
coefficients of the separate landmark models. Table 21.2 also shows the coefficients θ1 and
θ2 defining θ(s) = θ1s + θ2s

2. Figure 21.6 shows the estimate of the cumulative baseline
hazard Λ0(t) (left) and exp(θ(s)) (right), together defining the baseline cumulative hazard
Λ0(t | s) = Λ0(t) exp(θ(s)) at s.

As mentioned before, dynamic predictions from the landmark super model at time s with
covariate values Z∗(s) are obtained from the estimates β̂(s), θ̂ and Λ̂0(t) using Λ̂0(t | s) =
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FIGURE 21.5
Regression coefficients with 95% confidence intervals for the separate landmark analyses.
The smoothed lines show the regression coefficients implied by the landmark super model
of Table 21.2.

Λ̂0(t) exp(θ̂(s)) and

P̂ (T > s+ w |T > s, Z∗(s)) = exp(− exp(Z∗(s)�β̂(s))(Λ̂0(s+ w | s)− Λ̂0(s | s)) .

Figure 21.7 shows dynamic prediction probabilities of being alive 10 years after the predic-
tion time point for all prediction time points between age 75 and 90, for all combinations of
male/female, never/past/current smoker, and ADL disabled/healthy, as derived from the
landmark super model. Comparing the top row (males) with the bottom row (females), it is
clear that women live longer than men with comparable smoking and ADL disability status.
Also, comparing the dashed lines for ADL disabled with the solid lines for healthy, clearly
healthy people have a higher chance of living another 10 years than comparable ADL dis-
abled people. Finally, an interesting observation can be made by comparing current smokers
with never smokers. Comparing the healthy males, at age 75 never smokers have a probabil-
ity of above 60% of living another 10 years, while for male current smokers this probability
is less than 30%. In contrast, at age 90 there is no difference anymore between never smokers
and current smokers, for healthy males the probability of living another 10 years is 25%,
irrespective of smoking status. These same observations could of course already have been
made from Table 21.2 and Figure 21.5, from the panel showing the effect of current smoking
with respect to never smoking (top middle). The estimated regression coefficient is initially
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TABLE 21.2
Regression Coefficients for AHEAD Study.

Covariate Category B SE

Gender Female -0.465 0.063

Education High school -0.111 0.068

College -0.234 0.072

BMI 25–30 -0.344 0.065

> 30 -0.135 0.098

ADL ADL disabled 0.636 0.050

Smoking Past smoker 0.389 0.166

×s -1.020 0.586

×s2 0.739 0.506

Current smoker 1.024 0.205

×s -1.460 0.810

×s2 0.538 0.794

θ(s) s 0.971 0.424

s2 0.021 0.356

Note: s = (s− 75)/15.

FIGURE 21.6
Estimates of the cumulative baseline hazard Λ0(t) (left) and of exp(θ(s)) (right) from the
landmark super model.



Landmarking 453

FIGURE 21.7
Dynamic prediction probabilities estimated from the landmark super model.

(at age 75) approximately 1, indicating a considerably lower probability of surviving 10
more years for current smokers, compared to never smokers. At age 90, however, the esti-
mated regression coefficient is approximately 0, indicating no difference in the probability
of surviving 10 more years between current and never smokers.

21.3 Discussion

21.3.1 Implementation of landmarking

In contrast to a multistate approach it is quite straightforward to implement landmarking
for dynamic prediction. For R (R Development Core Team, 2012), the companion package
dynpred of the book Dynamic Prediction in Clinical Survival Analysis (van Houwelingen
and Putter, 2012) is available on CRAN (cran.r-project.org). The package dynpred con-
tains functions to create landmark datasets, applying administrative censoring at a given
horizon (cutLM ), and to calculate dynamic “death within a window” prediction curves
(Fwindow). On the book’s website http://www.msbi.nl/DynamicPrediction, R code (us-
ing the dynpred package) of all the analyses in the book is available for download.
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21.3.2 When to use landmarking

Landmarking can be used both for estimation and for (dynamic) prediction. The use of
landmarking has also been explored for the estimation of causal effects (Gran et al., 2010).
In the context of estimation, landmarking is often used to deal with time-dependent co-
variates. The alternative of using a time-dependent Cox regression analysis will typically
be more efficient and an additional advantage of a time-dependent Cox regression is that
no (possibly subjective and arbitrary) choices are needed for the landmark time points.
The clear advantages of landmarking are simplicity and transparency. It is easy to see what
is going on, especially when these time-dependent covariates are categorical because the
resulting analysis is a relatively simple group comparison.

In the context of dynamic prediction, landmarking is useful in the presence of covariates
when either their values or their effects change over time. Its principal advantage is again
its simplicity: complex modeling of the distribution of the time-dependent covariates is
avoided. When the time-dependent covariates are longitudinal measurements landmarking is
an alternative to joint modeling of longitudinal data and survival. Examples of landmarking
in this context can be found in Chapter 8 of van Houwelingen and Putter (2012).

In this chapter the use of landmarking for dynamic prediction as an alternative to multi-
state modeling was illustrated. This has previously been examined in van Houwelingen and
Putter (2008), Parast et al. (2011), and Chapters 9 and 10 of van Houwelingen and Putter
(2012). In each of these cases the outcome was overall survival. The use of landmarking
has also been explored in the context of competing risks (Cortese and Andersen, 2010).
The standard multistate approach consists of estimating the transition intensities, possibly
incorporating covariates and from these the dynamic prediction probabilities of interest are
either calculated or approximated by simulation. The multistate approach comes with a
number of advantages, such as a well-developed theory, the availability of software, and
the possibility of gaining biological understanding by modeling the effects of covariates on
transitions. In the particular example of this chapter, the standard multistate approach
posed difficulties in obtaining dynamic prediction probabilities, especially since the Markov
assumption was not satisfied. In such cases landmarking comes with a number of advantages.
It is more directly targeted towards obtaining dynamic predictions; it bypasses models for
the transition hazards and thereby uses sparser models. It is also robust against violations
of the Cox proportional hazards assumptions; predictions obtained from a multistate model
may be off the mark if assumptions are violated or if model fit is not good. There is no such
thing as a free lunch: a possible disadvantage of landmarking is that predictions obtained
by landmarking may be less efficient than those obtained from multistate models if the
underlying assumptions of these models are correct. At present it is not sufficiently clear
whether the loss of efficiency outweighs the gain in robustness and in what circumstances.
More experience and research is needed to clarify this issue.
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22.1 Introduction

A frailty model is a random effects model dedicated to survival data. This means that there
is a model describing a basic random variation and on top of this there is an additional
random variation (which is the one that the term frailty refers to). This random effect
can be used for univariate (independent) data in order to obtain a more flexible model, or
specifically describe overdispersion in relation to the basic random variation. It is, however,
more interesting to use the random effect in the multivariate case as a means to model
dependence between the observations. Four cases of multivariate survival data stand out
as particularly relevant for the use of a frailty model: first, the case of related individuals,
such as twins, family members or matched pairs; second, the case of similar organs (or other
kinds of components) in an individual, for example, right and left eye or a set of teeth; third,
the case of recurrent events, where multiple occurrences of similar events are happening for
an individual, for example, epilectic seizures, or hypoglycaemic episodes in diabetes; fourth,
times that come out from a designed experiment, where a single individual goes through
multiple treatments, where in each case, the time to some event is recorded. The model will
be introduced as covering survival times for one or more related individuals, but it can also
be used in the other cases mentioned, as will be demonstrated later.

However, the frailty model is somehow less transparent than other random effects mod-
els, because the basic variation is described by a hazard function instead of a random
variable. In popular terms, a steeply increasing hazard function describes a distribution
with small variation, whereas a decreasing hazard function corresponds to a distribution
with large variation. The frailty model is basically formulated as specifying that the hazard
conditionally on the frailty, say Y , is of the form

Y µ(t). (22.1)

Here, µ(t) is the hazard function (or more precisely, the conditional hazard function). As Y
is unknown, this is not immediately a useful model. But as for other random effects models,
the way of handling the unknown values is to integrate the random components out. This
gives a marginal distribution of the survival times, which are the observed quantities. The
advantage of this formulation is that by letting Y being shared among several individuals,
it can be used to create dependence between the times. Like in other random effects models,
the random effects might reflect the effect of unobserved covariates.

Historically, frailty models have been used, at least since Greenwood & Yule (1920),
who derived the negative binomial distribution of counts as a gamma distribution mixture
of Poisson variables. More precisely, the number of events, say K, is assumed to be Poisson
distributed with mean Y κ, conditionally on Y and using κ as a parameter (which in the
above terminology should correspond to µ(t) integrated over the relevant time period).
Assuming that Y follows a gamma distribution, it can be integrated out to give the marginal
distribution of K, which then follows the negative binomial. In the present terminology this
is a frailty model for recurrent events. Actually, κ is redundant in the expression, as the
gamma distribution already includes a scale parameter. It is only included here to make
it clearer that one can model the scale factor independently of the frailty distribution. For
bivariate data, the model, still using a gamma distribution for the frailty variable, was
introduced by Clayton (1978). The term frailty was suggested by Vaupel et al. (1979). They
studied the effect of calendar time in long-term demographic studies of overall mortality,
which in the present terminology is a kind of univariate data. Also that paper used the
gamma distribution. There were other papers describing discrete random effects, whereas
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the use of other continuous distributions was made easier by using the general results for
Laplace transforms, as suggested by Hougaard (1984).

This chapter is structured in the following way. Section 22.2 describes for which pur-
poses a frailty model is useful. Models for univariate data are described in Section 22.3.
Models for multivariate parallel data, such as times for related individuals, several organs
or a designed experiment are described in Section 22.4. Section 22.5 describes models for
recurrent events. Section 22.6 discusses the choice of distribution for the frailty. Section 22.7
describes estimation approaches and Section 22.8 asymptotic results. Section 22.9 discusses
extensions to more complex models for multivariate data. Evaluation of goodness-of-fit is
described in Section 22.10. Some applications are presented in Section 22.11. Section 22.12
is a kind of checklist for the application of frailty models. Software is described in Section
22.13. References to further general literature are given in Section 22.14. Finally, Section
22.15 is a short summary.

22.2 Purpose of a frailty model

The most important feature of a frailty model is that it can be used to model dependence
between several time variables. This is obtained by assuming that the frailty is shared
among several time variables. Basically, the time variables are conditionally independent
given the frailty, but marginally (that is, when the frailty is integrated out), the observations
are dependent. Thus the frailty approach is a way of generating dependence between time
variables.

22.2.1 Multivariate data examples where a frailty model is useful

In this case, the frailty model is created by the conditional independence setup. It is, for
example, useful to model the genetic effect in a twin. In most cases, the actual genes are
not known, but it is known that identical twins have the same genes. The conditional
independence assumption means that when the genes are accounted for, the survival times
of twins are independent. As the genes are unknown, their effects have to be integrated
out, and this implies that the times will be dependent. If some genes are known, they can
be included as fixed effects. Inclusion of known covariates is therefore a key aspect of the
model, and this turns the random effects model into a mixed effects model. In the twin case,
it is the dependence as modelled by the frailty that is the interesting aspect of the model.

In other cases, the most interesting aspect in the study may be the effect of covariates,
and the frailty is only included in order to account for the dependence. Still, the frailty model
is useful and the frailty setup does the job of describing the dependence. This dependence is
sometimes a nuisance, but in other cases, such as a cross-over experiment, the dependence
is a design tool that reduces the unexplained random error and therefore allows for more
precise evaluation of the effect of key covariates (typically, treatment).

22.2.2 Multivariate data examples where a frailty model is less useful

Several different types of events could be considered. One is the case of evaluating the
relationship between myocardial infarctions and death, where the dependence is more direct.
In this case, the study aims at examining whether the hazard of death increases after the
occurrence of a myocardial infarction (and, of course, one would want to quantify this effect).
The assumption of conditional dependence does not fit this kind of dependence. It is more
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reasonable to apply a multistate model. In practice an illness-death model with the effect
of infarction (ill state) on death described directly by the transition intensity is needed. To
set up a frailty model for such data would further require an assumption that the effect of
the unknown frailty is quantitatively similar on the death hazard and the infarction hazard.
Such an assumption would, in general, be unrealistic.

22.2.3 Univariate data examples

While the multivariate data are the real drivers of frailty models, they may have some use
even in the case of univariate (independent) data. If µ(t) is a restricted parametric model,
including a frailty on top of this can create a more flexible model. This could be interpreted
as a model with overdispersion compared to the model given by µ(t) but alternatively, it
could be used pragmatically just as a model with more parameters than the original model.
As an example of creating a more flexible model, one can take the proportional hazards
regression model. Depending on the choice of distribution for the frailty, this leads to a
model with non-proportional hazards. This can be used not only to derive a test for hazard
proportionality but also as a model in its own right, for use when the proportional hazards
model is not fulfilled.

22.3 Models for univariate data

The frailty model will be presented in the general case, meaning that at this stage, the
calculations apply to all distributions for the frailty, of course, satisfying that Y ≥ 0.

The univariate model for the hazard is simply given by Equation (22.1), inserting ei-
ther a parametric expression for µ(t), or extending this to a regression model of the Cox
proportional hazards model form

Y exp(β′z)µ0(t), (22.2)

where z is a vector of covariates with corresponding regression coefficients β and µ0(t) is the
conditional hazard function corresponding to z = 0. The function µ0(t) can be parametric
or non-parametric. From this expression, one can derive the conditional survivor function,
which in the absence of covariates is

S(t | Y ) = exp(−YM(t)), (22.3)

where M(t) =
∫ t

0
µ(u)du is the integrated conditional hazard. As Y is unobserved and inde-

pendent for all times, it has to be considered random and integrated out. This integration
can be formulated on the probability level or the likelihood level. Starting on the probability
level, integrating Y out gives the expression

S(t) =

∫ ∞

0

exp(−yM(T ))g(y)dy. (22.4)

Strictly speaking, this expression is valid only when the frailty has a continuous distribution.
If the distribution has discrete components, one should just integrate over that measure
instead. The trick is that the integration above is the same integration as used in the
Laplace transform for the distribution of Y . The Laplace transform is defined as L(s) =
E{exp(−sY )}. Using this, the survivor function becomes

S(t) = ES(t | Y ) = L(M(t)). (22.5)
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Combining this expression with the previous makes it possible to derive the distribution
of the frailty among the survivors at time t. As death has a preference for happening to
subjects with high frailty (high risk), the distribution among survivors moves towards 0.
Using the Laplace transform, the density among survivors becomes

exp{−yM(t)}g(y)/L(M(t)).

By defining θ = M(t), this is of the form

exp(−θy)g(y)/

∫ ∞
0

exp(−θs)g(s)ds, (22.6)

which is a member of the natural exponential family generated by g(y). It follows directly
that the mean in this distribution is

E(Y | T > t) = −L′(M(t))/L(M(t)). (22.7)

From Equation (22.5), it is easy to derive the density of the time variable as

f(t) = −µ(t)L′(M(t)). (22.8)

Combining the above expressions gives the simple formula for the relation between the
hazard in the marginal distribution and the corresponding one in the conditional distribution

ω(t) = µ(t)E(Y | T > t).

On the one hand, this expression describes the marginal value as a mean of the conditional
value, but it is an ever changing mean because the population changes composition due to
the gradual selective removal of high-risk individuals.

On the likelihood level, considering only a single individual with censored data, consisting
of an observation time T and an event indicator D, the standard likelihood expression
(hazard in the power of D times the survivor function) becomes∫ ∞

0

yDµ(T )D exp(−yM(T ))g(y)dy, (22.9)

where g(y) is the density of the frailty distribution. Alternatively, one can use the Laplace
transform calculations and this gives directly that the likelihood contribution is Equation
(22.8) in the case of an event and Equation (22.5) in the case of a censoring and these
expressions can be united as

(−1)Dµ(T )DL(D)(M(T )), (22.10)

where L(p)(s) is used to denote the pth derivative of L(s). In the parametric case, this
expression is ready to use, just by inserting the values of the relevant functions. In the
non-parametric and semi-parametric cases, one has to extend the continuous hazards into
discrete expressions with a hazard term for each observed event time, and this turns the
integral M(t) into a sum.

Depending on the model, some parameters may not be identifiable. For example, if
µ(t) is a completely unspecified hazard function, including a random effect will not make
the model larger, which implies that the various parameters cannot be identified. On the
other hand, if µ(t) is a hazard function given by a few parameters, or if the model includes
covariates, it is possible that the model with frailty (like Equation (22.5)) is more general
than the corresponding model just given without frailty (like in Equation (22.3) without
Y ).

On a lower level, there are often identifiability issues as the frailty distribution may in-
clude a scale parameter but also the model for the hazard (µ(t)) has a similar scale param-
eter. This is typically handled by introducing a scale restriction on the frailty distribution,
in some cases EY = 1.
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22.4 Shared frailty models for multivariate data

When the frailty is shared among several individuals, it leads to dependence between the
times. To be more precise, conditionally on the frailty, the individuals are assumed to have
independent times, modelled as described in Equation (22.1), but as the frailty is shared,
the actual times are dependent. Thus, one can say that the frailty generates dependence
between the times. For example, the frailty can describe the effect of shared genes among
family members. In this setup, the dependence is necessarily positive.

So the hazard function model conditional on the frailty will have the form

Y µj(t) (22.11)

for the jth individual, where µj(t) can denote either of µj(t) (one hazard function per coor-
dinate), µ(t) (symmetric) or exp(β′zj)µ0(t) (proportional hazards). Marginal distributions
can be evaluated using the formulas presented in Section 22.3, so here the focus is on bi-
variate calculations. The assumption of independence conditionally on the frailty implies
that the likelihood in Equation (22.9) can be generalized to∫ ∞

0

yD1+D2µ1(T1)
D1µ2(T2)

D2 exp(−y{M1(T1) +M2(T2)})g(y)dy (22.12)

in the bivariate case. This formula, as well as the formulas below, can be extended to more
than two individuals.

Again, using the Laplace transform allows for direct computation of the survivor func-
tion. This is based on the bivariate conditional survivor function being of the form

S(t1, t2 | Y ) = exp(−Y {M1(t1) +M2(t2)}). (22.13)

The integration is essentially the same as in the univariate case, giving the bivariate survivor
function as

S(t1, t2) = L{M1(t1) +M2(t2)}. (22.14)

To handle possible censored data, this expression needs to be differentiated towards the
coordinates, which correspond to actual events. This gives

(−1)D1+D2µ1(T1)
D1µ2(T2)

D2L(D1+D2)(M1(T1) +M2(T2)). (22.15)

This extends Equation (22.10) to the bivariate case. Again, it is ready to use for parametric
models, whereas the non-parametric and semi-parametric cases need to be extended to have
a discrete component at each of the event times in the dataset.

The expressions above are given using the conditional hazard function µ(t) and this is
the standard way of thinking in a random effects model. In a normal distribution repeated
measurements model, this is known as a “subject-specific model.” Alternatively, one might
invert the expression in Equation (22.5) to give M(t) as function of S(t) for each coordinate
and insert this in Equation (22.14). This gives the bivariate survivor function S(t1, t2) as
function of the univariate marginal survivor functions S1(t1) and S2(t2). Within survival
data, this is known as a copula approach referring to separate modeling of dependence and
marginal distributions. This would correspond to what in a normal distribution repeated
measurements model is known as a “population-average model.”
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22.5 Frailty models for recurrent events data

In the case of recurrent events, the frailty is not shared among several individuals. Instead, it
describes a random subject effect, and as such is assumed to be constant. This corresponds
to a conditional Poisson model. That is, at any time the hazard of the subject to experience
a new event is modelled by Equation (22.1). Conditionally on the frailty, events occur
according to Poisson process with rate Y µ(t). In particular, it is noted that the time scale
used in this model is time since starting the process. Still conditional on the frailty, the
number of events over the interval from 0 to t, say K, is Poisson distributed with mean
YM(t). Inserting the corresponding terms and integrating out over the frailty (using the
Laplace transform) gives the expression

Pr(K = k) = (−1)k{M(t)}kL(k)(M(t))/k!. (22.16)

The presence of a frailty term leads to overdispersion compared to the Poisson model. A
classical example is the negative binomial model, which occurs when assuming a gamma
distributed frailty and that all subjects are followed for the same time period. In general,
frailty models are much more flexible, by first allowing other distributions than the gamma
and second by allowing each subject to have his own period of observation. The expression
in Equation (22.16) describes only the distribution of the number of events in the interval.
If the data also give the exact times of the events, the likelihood needs a factor µ(Tj) for
each of the event times. In particular, these extra terms do not depend on the parameters
of the frailty distribution. This implies that if all subjects are followed for the same period,
the frailty parameters can be determined using only the event counts.

22.6 Specific frailty distributions

Outside of survival data (like in the linear normal model), random effects are typically
chosen as being normally distributed, because this leads to simple marginal distributions
and other nice properties. In other cases, a discrete mixture of, typically, two components is
used, leading to a latent subgroup model. Distributional properties of the two-component
model are not particularly simple, but the model has pedagogical advantages as it is very
easy to explain.

In survival data, the normal distribution does not lead to simpler calculations than
other models and it is therefore no longer particularly attractive. The discrete model is as
above; it has pedagogical advantages, but has technical complexities that imply that it is
not attractive overall. However, the setup in Equation (22.1) is indeed very convenient for
many distributional choices because the necessary integrations can be performed simply
and exact by means of the Laplace transform of the frailty distribution. Some convenient
models are discussed below.

22.6.1 Gamma

The density of the gamma model is

g(y) = θδyδ−1 exp(−θy)/Γ(δ). (22.17)

It has two parameters (δ, θ), which both need to be positive. It turns out that some models
cannot identify a scale parameter in the model, which means that it might be preferable to
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restrict the scale parameter in some way. For this model, the natural choice is to request
EY = 1, and as this mean generally is δ/θ, this is obtained by setting θ = δ. For probability
calculations, it is in some cases an advantage not to implement the restriction, so it will only
be applied when explicitly said so. The limiting case of δ → ∞ corresponds to degenerate
frailty, which again corresponds to independence between the time variables. The Laplace
transform is L(s) = E exp(−sY ) = θδ/(θ + s)δ. The gamma distributions turn out to have
many interesting properties. The Laplace transform has rather simple derivatives and this
makes it computationally simple to handle any number of time variables. The pth derivative
of the Laplace transform is L(p)(s) = (−1)pθδ(θ+s)−(δ+p)Γ(δ+p)/Γ(δ). Based on observing
survival times for a group of individuals, in which case one can easily experience both
death times and censoring times, it is simple to calculate the conditional distribution of the
frailty given the set of observations. Indeed, this conditional distribution is still a gamma
distribution, where the δ value is increased by the number of events and the θ value is
increased by the integral of the hazard function (that is, to θ+M(t)). A by-product of this
calculation is that the conditional distribution of the frailty among survivors in any given
age is still a gamma distribution, and the δ parameter is unchanged; and the θ parameter
is substituted by θ +M(t).

Integrating Y out in Equation (22.2) (using the restriction EY = 1) leads to the hazard
function

µ0(t) exp(β
′z)/{1 +M0(t) exp(β

′z)/θ}. (22.18)

This is a regression model with non-proportional hazards. The special case of θ = 1 gives
the proportional odds model. Indeed, the expression implies that the model parameters
are identifiable even in the univariate case. This may be an advantage in that case, but in
multivariate data models this may be a disadvantage, as it implies that non-proportionality
may wrongly be interpreted as dependence between the times. This implies that by imple-
menting an assumption of proportional hazards, say due to smoking, it is possible to collect
a dataset on fathers and use this to identify the dependence between fathers and daughters.
It is, of course, not sensible that it is possible to derive such a dependence without having
combined data on fathers and daughters.

22.6.2 Positive stable

The positive stable distributions make up another distribution family, which is classical
within probability theory. However, such distributions are less used in ordinary statistical
models owing to infinite means. The most convenient definition of these distributions is
indeed via the Laplace transform, that is, the distribution with parameter δ > 0 and 0 <
α ≤ 1 has Laplace transform L(s) = E exp(−sY ) = exp(−δsα/α). This model includes a
scale parameter, and this is most easily handled by setting δ = α.

In frailty models, the infinite mean does not lead to infinite survival, because the frailty
influences the survival time through the hazard function. Thus the long tail of Y instead
influences the hazard immediately after start of observation. Therefore, this distributional
family works as an alternative to the gamma distribution and indeed has some other nice
properties although it is more complicated to work with these distributions than the gamma.
In particular, when combined with a Weibull model for the hazards conditionally on the
frailty, this family simply implies that also the marginal distribution is in the Weibull family,
but the Weibull shape parameter is reduced, corresponding to the distribution showing an
increased variation. This model is also unique for the proportional hazards model, where
if the conditional hazards are proportional, also the hazards in the marginal distributions
are proportional, although the proportionality factors are closer to 1. The boundary case of
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α = 1 corresponds to degenerate frailty, which again corresponds to independence between
the time variables.

This family was suggested for use as a frailty distribution in Hougaard (1986a) for the
univariate case and in Hougaard (1986b) for the multivariate case.

22.6.3 PVF

The PVF (power variance function) is a three-parameter distribution family that includes
both the gamma distributions (for α = 0) and the positive stable distributions (for θ = 0).
It also includes the inverse Gaussian distributions (for α = 1/2). Generally, the family has
three parameters, α ≤ 1, δ > 0 and θ ≥ 0, (with the further restriction that θ > 0 in the
case of α ≤ 0) but as one of them is a scale parameter, it is essentially a two-parameter
model. This distribution family has a Laplace transform, which in the case of α �= 0 is

L(s) = exp[−δ{(θ + s)α − θα}/α]. (22.19)

While it is more complicated than either of the gamma and positive stable formulas, it is
still explicit and can be used as an extended model and thus as a goodness-of-fit test for
either of the models.

In the case of α < 0, the frailty distribution has a point mass at 0, which implies that
some subjects will not experience the event. This is obviously not satisfied when lifetimes
are modelled, but when the event is not certain to happen, it may be a useful feature.

This family was suggested for use as a frailty distribution in Hougaard (1986a).

22.6.4 Lognormal

The lognormal distribution (where the logarithm to the frailty follows a normal distribution,
say N(θ, σ2)) is not suitable for exact calculations because the Laplace transform does not
have a mathematically convenient expression, but as it is a standard distribution and many
software packages have methods to integrate over the normal, it is sometimes used for this
purpose. The natural restriction of the scale parameter is to select θ = 0, which implies
that the median frailty (and the geometric mean) is 1. The limit σ2 → 0 corresponds to
independence.

22.6.5 Differences between the models

Standard random effects models (that is, outside of survival data) are almost purely based
on the normal distribution. Therefore, it is a kind of luxury to have several families to
choose between. This also means that we are not used to assess the differences between
such models.

From a theoretical perspective, most frailty families (including the gamma distribution)
will, combined with a regression model lead to distributions that identify the parameters
even with univariate data. This is a convenient property in the study of univariate data, but
in relation to multivariate data, this is not an advantage, because it implies that the model
does not adequately discriminate between dependence and covariate influence. The positive
stable model is an exception to this, and this implies that the model in the multivariate
case purely describes dependence.

In terms of fit, one can consider the density of a bivariate survival time. To see the
real difference between the models, it is relevant to normalise so the marginal distributions
are controlled, most conveniently to a uniform distribution. In that frame, the gamma
distribution will show a relative high density at late time points, whereas the positive
stable will show a relatively high density at early time points.
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Having several models for the dependence also creates a need for comparing the degree
of dependence across models. As the correlation between the times is not adequate in a non-
parametric model (and indeed, as the dependence is nonlinear), alternative measures are
needed. Classical non-parametric measures of dependence are Kendall’s τ and Spearmans ρ.
Both of these depend only on the frailty distribution, meaning that they are invariant under
nonlinear transformations of the time scale. Kendalls τ is the most simple to calculate and
equals 1/(1 + 2δ) for the gamma model and 1− α for the positive stable.

From a computational point of view, many exact calculations are derivable from the
Laplace transform, so having a sensible expression for this is a key feature. This is par-
ticularly simple for the gamma model, but exact evaluations are also possible for positive
stable, PVF and inverse Gaussian distributions. On the other hand, the lognormal model
does not allow this, but it is still preferred in some software packages.

22.7 Estimation

The frailty model estimates that have been suggested in the literature are mainly maximum
likelihood estimates, although some of them are based on various approximations. Two main
principles have been used. One is to use likelihood expressions, where the frailty directly
enters, such as Equation (22.12). A classical example is the EM algorithm, where one of the
steps is based on the so-called “full likelihood,” which is the term under the integral sign
(meaning it covers both the observations and the frailty values), which is then contrasted to
the observed likelihood, which is the integrated version. The other approach is to integrate
the frailty out analytically, that is, as described in Equation (22.15).

For a parametric hazard model, the expression for the hazard function can be inserted
into these formulas and this typically works well. For a non-parametric hazard model, the
model will be computationally more complex. Where the standard univariate tools either
have explicit estimation of the non-parametric terms (like Kaplan-Meier and Nelson-Aalen)
or have excluded the terms (like the Cox model), a frailty model cannot handle these terms
in such simple ways. One approach is to include a hazard parameter for each time point
with observed events. This leads to a multivariate estimation problem, potentially of high
dimension, but with today’s computers this is not really an issue as long as the number
of different event times is below, maybe 2000. Alternatively, the hazard parameters can be
handled approximately by being profiled out of the likelihood. The penalized likelihood ap-
proach uses such an approximation by estimating the hazard parameters using the predicted
frailty values.

22.8 Asymptotics

Asymptotic methods are more complicated for frailty models than for standard survival
time models, because the martingale methods are not directly applicable. However, some
results are available. A specific issue is that the hypothesis of independence is a boundary
case, corresponding to a degenerate frailty distribution. This boundary value may or may
not correspond to a parameter value inside the natural parameter set, but in both cases,
problems may occur.

Any censoring needs to happen independently of the frailty. However, in many cases,
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it is acceptable to allow censoring to depend on the events that have occurred within the
cluster. For example, in the recurrent events case, censoring could be related to the number
of events already occurred.

22.8.1 The parametric case

In the parametric case, the gamma frailty distribution is typically well behaved in asymp-
totical calculations. Of course, it is necessary to request identifiability (which is why the
assumption of EY = 1 is typically implemented). The identifiability condition may further
rule out some models in the univariate case, but it will not give problems in the multi-
variate case. Actually, the model can be extended to allow a slight negative dependence
in the bivariate case, and this implies that the hypothesis of independence (which in other
words could be formulated as degenerate frailty; or θ = ∞). To let this work, one has to
reparametrize the model, for example, using the frailty variance (say ϕ = 1/θ) as parameter.
In this case, independence is obtained for ϕ = 0 and the model is a valid model also for some
negative values of ϕ. Thus, the hypothesis of independence is in the interior of the extended
parameter set. This implies that there are no specific problems in testing independence.

For the positive stable frailty model, the model cannot be extended to negative de-
pendence. The independence boundary is strict. The Fisher information at the boundary is
infinite (both when the marginal distributions are known and when they follow the Weibull),
as shown (for complete data) by Oakes & Manatunga (1992). Away from the independence
boundary, the model does not show problems. For univariate data, there are identifiability
problems in some models, whereas in the multivariate case, one may just need to fix the
scale parameter.

The PVF model has two parameters to model the dependence and this implies that
there will be identifiability issues near the independence boundary. This model has not
been examined in detail, but away from the boundary the model is not expected to show
problems. In the univariate case, identifiability needs to be checked.

The lognormal model has not been studied in detail, but the model is not expected to
show problems.

22.8.2 The non-parametric case

For the non-parametric case, the data need to be multivariate, as the univariate case will
show identifiability problems. Murphy (1995) showed a number of results for the gamma
shared frailty model, covering both the multivariate and the recurrent events cases. She
showed that one could apply maximum likelihood estimation and that tests for the frailty
distribution parameter could be based on the profile likelihood, where the hazard function
parameters have been profiled out.

22.8.3 The semi-parametric case

Parner (1998) extended results regarding the gamma frailty model from the non-parametric
case to the semi-parametric case. With covariates, the frailty parameter can also be found
based on univariate data. Kosorok et al. (2004) made further evaluations covering several
one-parameter frailty models for univariate data.

Martinussen & Pipper (2005) evaluated the shared positive stable frailty model with
covariates. They show consistency and large sample properties, but did not consider the
boundary case of independence.
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22.9 Extensions

The shared frailty model above is the standard model. In some cases, however, extensions
are needed. For example, one would like to have observations that show different degrees
of dependence in one case. For example, when studying twins, there are both monozygotic
(identical) and dizygotic (fraternal) twins. A simple analysis technique is to analyse each
type separately and this can be done using the standard shared frailty model. However,
by making a combined model, one can implement common parameters, such as common
marginal distributions or common effect of some covariates. This can be done by using a
model that describes the differences in dependence for monozygotic and dizygotic twins.
More generally, model extensions can be used to model more complex relationships, such
as those that occur when studying complete pedigrees or in hierarchical models, where the
various random effects are nested. The problem with these extensions is that the complexity
of the model clearly increases.

One of the models suggested is the correlated gamma model, in which each individual
has his own frailty value. In the bivariate case models the frailties are assumed to be of the
form (Y1, Y2) = (X0 + X1, X0 + X2), where X0, X1, X2 are independent gamma variables
with the same scale θ and with shape parameter δ0 for X0 and δ1 for both X1 and X2,
which gives a symmetric model. To set the mean to 1, one restricts δ0 + δ1 = θ. This model
was also considered by Parner (1998) and one can apply asymptotic methods in that case.

Another model suggested is the bivariate lognormal model, meaning that (Y1, Y2) =
(exp(X1), exp(X2)), where (X1, X2) follow a bivariate normal distribution. The natural
restriction to obtain identifiability is EX1 = EX2 = 0. This model has been suggested as
a model for treatment-center interaction as described in Yamaguchi et al. (2002). In their
model, center is the clustering unit, with Y1 being the effect for treatment 1 and Y2 the effect
for treatment 2. There is one or more patients for each combination of center and treatment.
There is, of course, also a fixed effect (a covariate) to describe the overall treatment effect.

Gorfine & Hsu (2011) discuss an extension of the model to describe competing risks for
related individuals. The competing risks model has the added complexity that each subject
has at most one event, which in the single individual case leads to unidentifiability of some
quantities. This problem does not go away by having related individuals, so it needs special
handling.

Another type of extension is to let go of the assumption of the frailty being constant.
One can instead assume that the frailty is a stochastic process. A key paper on this is
Gjessing et al. (2003). Clearly, the computational complexity increases dramatically.

Overall, these extensions add flexibility, but they also make the setup more compli-
cated, and some models will show some undesired properties, such as identifiability with
some datasets, where common sense would say that the relevant parameters should not be
identifiable. This implies that when using these models, one should check that the results
are adequate for the problem at hand.

22.10 Goodness-of-fit

Goodness-of-fit has two relations to frailty models. First, frailty models give new ways of
testing goodness-of-fit of other models, and, second, frailty models also need to be checked
in goodness-of-fit tests. Finally, alternative models can be considered.
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22.10.1 Goodness-of-fit of models without frailty

Clearly, the frailty models have a role to play for testing the assumptions in standard
survival time models, particularly in the univariate case.

For example, a one-sample parametric model, like the Weibull, can be tested by including
a frailty term, and then testing whether this gives a better fit. If the frailty is assumed to be
gamma distributed this makes a dramatic change of the functional form, in particular, if the
Weibull shape parameter is larger than 1 (meaning that the conditional hazard increases
with time). The hazard, when the frailty is integrated out, will then be first increasing and
then decreasing.

An even more interesting application of this idea is to test the proportional hazards
model. The original model is then a proportional hazards model, that is, of the form
exp(β′z)µ0(t). By including also a gamma distributed frailty term as in Equation (22.2),
and integrate it out, the resulting model becomes one of converging hazards, as described
in Equation (22.18). The hazard ratio between two covariate values (which is constant in
the proportional hazards model) becomes a monotone function of time, and it converges to
1 as time goes to infinity. There are, of course, many other ways of testing this assumption,
but this approach has the special feature of modeling deviations in a special type of alter-
natives (which may or may not be an advantage, but it appears that this type of alternative
is realistic in many cases) and it does this by adding only one extra parameter, and this
potentially makes it rather powerful. Even in the case of many covariates, there is only one
parameter to describe the non-proportionality.

22.10.2 Goodness-of-fit of models with frailty

Of course, also frailty models need tools for testing their goodness-of-fit. Any given frailty
distribution can be evaluated by studying another frailty distribution. If the family of dis-
tributions is larger, this can be used for a statistical test, whereas otherwise one can only
compare the results informally. In this way a gamma or positive stable frailty model can be
tested by using the PVF model.

Shih & Louis (1995) suggest a goodness-of-fit test for the gamma frailty distribution in a
parametric model. They suggested evaluating the average of the posterior expected frailties
as function of time (t). Here “posterior” refers to including the event information on the
cluster during the period (0, t]. If the gamma model is satisfied, the mean will fluctuate
around 1. This was generalised to semi-parametric models by Glidden (1999).

22.10.3 Alternative models

An alternative approach to test a frailty model for bivariate or recurrent events data is to set
up the corresponding multistate model. In these models, a frailty model implies a relation
between the various transition hazards. This can be compared to the models one would
set up for the multistate model, as described in Hougaard (2000, Chapter 6). Figure 22.1
illustrates the bivariate multistate model. The twins are considered symmetric, so only the
hazard functions corresponding to death of twin 1 are inserted on the figure, and this is done
in the most general setting; that is, without assuming that the process is Markov. Therefore,
the second hazard function depends also on t1, which is the time of the first death in the
pair of twins. Based on the gamma frailty model, the hazard functions in the multistate
model become λ1(t) = µ(t)δ/(δ + 2M(t)) and λ2(t, t1) = µ(t)(δ + 1)/(δ +M(t) +M(t1)).
From this, one can derive the relation between the transition hazards as

λ2(t, t1) = λ1(t)(1 + 1/δ)
2 exp(2Λ1(t)/δ)

exp(2Λ1(t)/δ) + exp(2Λ1(t1)/δ)
,
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λ2(t, t1)

FIGURE 22.1
A multistate model for twin survival.

None �λ1(t)
1 Event �λ2(t, t1)

2 Events �λ3(t, t1, t2)

FIGURE 22.2
A multistate model for recurrent events.

where Λ1(t) =
∫ t

0
λ1(u)du is the integrated hazard for the first event. By seeing the data as

coming from the multistate model, it is possible to suggest an alternative formula for the
transition hazards and check whether that model fits better than the expressions from the
frailty model.

It is possible to do similar calculations in the recurrent events case, which is illustrated in
Figure 22.2. In that case, the gamma frailty model leads to the transition hazards λ1(t) =
µ(t)δ/(δ + M(t)) and λ2(t, t1) = µ(t)(δ + 1)/(δ + M(t)), which turns out to be of the
Markov form (that is, it does not depend on t1). These formulas can be generalised to
λk(t) = µ(t)(δ + k − 1)/(δ +M(t)), from which one can derive λk(t) = (δ + k − 1)λ1(t)/δ.
This implies that the multistate transition hazards are proportional. Also in this case,
alternative transition hazards can be used to test the goodness-of-fit of the frailty model.
Other frailty distributions will give different expressions, but the multistate model is of the
Markov type in any case.

22.11 Applications

As the shared frailty model has been available in standard software for many years, there
are now plenty of applications of this model.

In terms of the various types of data, most applications cover the case of several indi-
viduals. They are related typically, either due to family (twins, sibships, parent-child) or
due to center in clinical trials.

Some applications include several organs (components) on the same individuals. The
most common example of this type of data is dental data, where the observation unit is
either a tooth or a surface on a tooth. Lie et al. (2004) describe an application to hip
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replacement, where most patients receive only one, but some patients receive one on both
sides.

Recurrent events are also presented in some applications. One example is Cui et al.
(2008) that covers a number of parametric models for recurrent cardiovascular events in a
clinical trial.

Finally, the cross-over type of experiment is not common. A classical example of this
type is the exercise test times of Danahy et al. (1977). In these data, 21 patients try four
different treatments in a cross-over fashion and in relation to that undergo 10 exercise tests.
Some models for this dataset are presented in Hougaard (2000).

22.12 Key aspects of using frailty models

As this is a handbook, it should be quite explicit. Therefore, this is a list of aspects to
consider in relation to the use of a frailty model. It includes items related to survival data
as well as items related to random effects models and finally specific items for frailty models.
In the univariate case, use of a frailty model is limited to an extension of the available models,
whether it is going to be used as such or as a goodness-of-fit test for a simpler model.

So the real list of aspects applies to multivariate data:

• What kind of multivariate data is available? This could be multivariate parallel data,
such as several individuals or several organs. It could be recurrent events, that is, events
of the same kind for an individual? Is it a controlled experiment, where an individual
goes through various pre-defined treatments?

• What is the purpose of the study? Is it to find the effect of covariates or to assess the
dependence in the data?

• If the aim is to find the effect of covariates, what is then the reason of including multi-
variate data? Is it technically a nuisance, but necessary to include all available data? Is
it a design feature to improve precision (such as a cross-over or matched pairs study)?

• Should the hazard function be modelled parametrically or non-parametrically?

• Is a shared frailty model appropriate or is some kind of extension relevant?

• What distribution model should be used for the frailty?

• Is censoring dependent on the development in the cluster?

22.13 Software

The software in the major packages only handles the shared frailty model. The univariate,
multivariate and recurrent events data are handled in the same way. For the recurrent events,
the so-called “start-stop coding” is needed. Hirsch & Wienke (2012) present a comparison
of several programs.

The R-system (as well as S+) has for many years included the possibility of frailty
terms in the proportional hazards model (the coxph procedure). This procedure allows for
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the frailty following a gamma distribution or a lognormal distribution, and the estimation
procedure uses a penalized approach. The program does present standard errors, but these
are not based on the full model and must therefore be expected to be lower than the real
standard errors.

SAS (proc phreg) includes frailty terms from version 9.3. This procedure only allows
frailties following a lognormal distribution and the estimation procedure uses a penalized
approach.

22.14 Literature

Three books cover frailty models in details. Hougaard (2000) was the first and compares
the frailty model with alternative models (particularly the multistate model), both from
a theoretical, conceptual and applied point of view. Duchateau & Janssen (2008) is more
computationally oriented. Finally, Wienke (2010) focuses more on the extensions of the
model.

22.15 Summary

The frailty model as a hazard-based random effects model for survival data has matured
over the last 30 years. Basic models in the shared frailty case have been developed, including
some asymptotic results covering both parametric and non-parametric models and software
is now available in several major packages. Extended models are certainly more complex.
While there are several potential such models, the theory as well as the software is less well
developed.
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23.1 Background

In the application of statistical models across various scientific disciplines, data that are
grouped or clustered in some way are commonly encountered. It is also extremely common
to see random-effect models used to acknowledge such data structures. A cluster-specific
random effect can reflect the reality that data observations arising in the same cluster are
likely more similar to one another than data observations arising across different clusters.
Moreover, by making these cluster-specific effects random rather than fixed, “borrowing
of strength” is attained. Inference about what happens in a particular cluster is aided by
information drawn from the other clusters as well.

The need for random-effect models to acknowledge clustered data certainly presents
itself in the survival analysis context. As a motivating example, many clinical trials have
a time-to-event as the primary outcome, and many of these are multi-center trials. Thus a
random-effect model can acknowledge that such data are clustered by center. Other studies
involve the measurement of two or more different event times per individual, in which case
a random-effect model acknowledges that event times arising from the same individual may
be strongly associated.

Outside of a survival analysis context, one commonly sees models in which random
effects act additively on a function of the mean response variable. This specification is the
backbone for the very large class of generalized linear mixed models (often just referred to
by the acronym GLMM). With survival analysis, however, the vast majority of modeling
activity does not take the mean to be the primary descriptor of the response variable. Rather,
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the hazard rate is taken as the fundamental characterization of an event time. Since hazard
rates are by definition non-negative, an obvious strategy is to introduce random effects
which are also non-negative, and have them act multiplicatively on hazard rates. This is a
particularly obvious strategy given the ubiquitous use of the Cox proportional hazards model
(Cox, 1972) to specify fixed effects as operating multiplicatively on the hazard. The general
parlance has evolved such that a frailty model (or more specifically a “shared frailty” model)
involves random effects acting multiplicatively on hazard rates. Equivalently, of course, this
can be recast as random effects acting additively on log-hazard rates.

In this chapter, we describe the basic form of a Bayesian frailty model in Section 23.2,
with particular emphasis on possible ways to model the baseline hazard function and possible
models for the frailties themselves. This is followed up with a real-data example, and then
some discussion of model selection in the Bayesian frailty model set-up. Section 23.3 turns
to reviewing recent developments in Bayesian frailty modeling, focusing on work subsequent
to the survey chapter of Ibrahim et al. (2001, Ch. 4). Some brief concluding thoughts are
given in Section 23.4. This chapter also contains two appendices on technical issues arising
in Section 23.2.

23.2 A basic frailty model

To fix some notation, say that random variable T is a time-to-event, while X is a vector
containing the values of p covariates. We assume data are clustered such that mi study units
belong to the i-th of n groups or clusters. Our datapoints can then be written as (tij , δij ,xij)
for = i = 1, . . . , n, and j = 1, . . .mi, where δij is the right-censoring indicator. That is,
δij = 1 indicates that Tij = tij was observed for the (i, j)-th unit, while δij = 0 indicates that
Tij > tij is all that is known. Generically, we shall write di = {(tij , δij ,xij) : j = 1, . . . ,mi}
as the observed data for the i-th cluster, and d1:n = (d1, . . . ,dn) as the entire observed
dataset.

A basic frailty model would have the form

hij(t;wi,xij) = lim
Δ↓0

Δ−1Pr (Tij < t+Δ | Tij > t,Wi = wi,Xij = xij)

= wi exp
(
βTxij

)
h0(t;φ). (23.1)

The first equality here is simply a definition of the hazard rate for the (i, j)-th unit’s response
Tij , conditioned on the cluster’s (unobservable) frailty Wi, and the unit’s (observable) co-
variate value Xij . The second equality is the model specification, which postulates that the
non-negative frailty acts multiplicatively on the hazard, as do the covariates via the expo-
nential of the linear predictor βTX, i.e., the parameter vector β = (β1, . . . , βp) describes
the dependence of T on X given W , in the usual manner of proportional hazards regression.
The term h0(·;φ) is the baseline hazard function. That is, h0(;φ) is a family of legitimate
hazard functions indexed by a vector of parameters φ. As is usual for survival modeling,
we do not take the first element of β to serve as an intercept, since the “baseline” behavior
of (T |W = 1,X = 0) is completely described and modeled by h0(;φ). For future reference

we also define the baseline cumulative hazard, H0(t;φ) =
∫ t

0
h0(s;φ)ds.

23.2.1 Modeling the baseline hazard

The basic frailty model (26.2) is completed upon committing to a model for the unobservable
frailty W , and a form for the baseline hazard model h(·;φ). With regard to the latter
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issue, in non-Bayesian survival modeling with only fixed effects, it is extremely common
to not make modeling assumptions about the baseline hazard. This is most commonly
achieved by use of the partial likelihood (Cox, 1975), which is a function of regression
coefficients only and can be maximized to estimate these coefficients. This approach can,
in fact, be transplanted to the context of Bayesian frailty models. Using an idea from
Kalbfleisch (1978), and extended by Sinha et al. (2003), if a diffuse gamma process prior
is applied to the baseline cumulative hazard, then the baseline hazard parameters can be
integrated away analytically. What remains is a joint posterior on (β,w1:n|d1:n), in which
the likelihood contribution of (d1:n|β,w1:n) takes the form of the partial likelihood (without
any distinction between which effects are fixed and which are random, so that (β,w1:n) is
simply treated as a vector of regression coefficients). Thus a posterior density can be formed
via the product of the partial likelihood and the chosen joint prior density of (β,w1:n). Such
use of the partial likelihood inside Bayesian frailty models has been considered by a number
of authors, including Gustafson (1997), Sargent (1998), and Zhang et al. (2008).

Another commonly seen approach in Bayesian survival models generally, and Bayesian
frailty models specifically, is the use of a piecewise-constant baseline hazard. If we choose
constants 0 < c1 < . . . < cr−1 < ∞, and define c0 = 0, cr = ∞, then

h0(t;φ) =

r∑
k=1

φkI[ck−1,ck)(t) (23.2)

defines a piecewise-constant baseline hazard across r sub-intervals of the time axis. One
reason this specification is popular is it makes (26.2) a generative model, i.e., for given
(wi,xij ,β,φ), a probability distribution for Tij is completely specified. Given that Bayesian
analysis is nothing more than reasoning probabilistically by conditioning on the values of
observed quantities, there is arguably a strong spirit within the Bayesian community that
inference should indeed be based on generative models. This spirit is also embodied in
software. Currently, versions of the BUGS software, such as WinBUGS (Lunn et al., 2000,
2009), are really the only general-purpose software options for Bayesian inference. That is,
they are the only options for users who wish to be shielded from details and implementation
choices concerning how the posterior calculations are carried out. With BUGS, the user
provides a model and prior specification, and the software outputs a representation of the
posterior distribution in the form of a Monte Carlo sample. As a result, BUGS is widely
used by practitioners. The software demands fully specified probability models for data given
parameters and proper prior distributions for parameters. Consequently, it is applicable to
specifications such as (23.2) with explicit representation of baseline hazard parameters, but
it does not support the partial likelihood approach.

23.2.2 Modeling the frailties

The basic frailty model (26.2) is completed by specifying a form of the distribution of the
frailty W across clusters. Or, in more generic statistical language, a random-effect distribu-
tion must be specified. Generically, let κ be the unknown parameter or parameters in the
frailty distribution. Most commonly, a single parameter suffices. A variety of distributional
assumptions about frailties have been entertained in the literature, with attendant ratio-
nales concerned with scientific plausibility, parameter interpretability, and computational
feasibility.

For a specific reason of interpretability, Hougaard (1986) suggests a positive stable dis-
tribution for the frailty. Along the lines of (26.2), say the association between T and X given
W follows a proportional hazards relation. A positive stable distribution with parameter
κ ∈ (0, 1] is characterized by its Laplace transform, E{exp(−sW )} = exp(−sκ). An imme-
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diate consequence of this form is that the unconditional (T,X) association will also follow a
proportional hazards structure. Specifically, if (T |W,X) has hazard rate W exp(βTX)h0(),
then (T |X) is easily seen to have hazard rate exp(κβTX){h0()}κ. Thus one has the sleek
interpretation that multiplicative hazard contrasts are constant across the time axis, both
conditionally on frailty and unconditionally. Moreover, contrasts are attenuated by a factor
κ when one moves from conditional (within-cluster) to unconditional hazard ratios.

Another nice property of the positive stable frailty distribution is a simple charac-
terization of within-cluster dependence via Kendall’s tau. For a bivariate distribution on

S = (S1, S2), Kendall’s tau is 2Pr{(S(1)
1 −S

(2)
1 )(S

(1)
2 −S

(2)
2 ) > 0}−1, where the superscript

indexes two independent and identically distributed realizations of S. This can be viewed as
describing the tendency for both components of one pair to outlive their counterparts in the
other pair. Moreover, it can be shown that Kendall’s tau simplifies to 1−κ for any bivariate
distribution induced by a positive stable (κ) frailty distribution. See Hougaard (2000) for
an in-depth discussion of dependence measures for frailty models.

Unfortunately, the nice interpretations afforded by the positive stable frailty distribution
are offset by computational challenges. Principally, the positive stable distribution lacks a
closed-form expression for its density function. This is particularly challenging when de-
signing MCMC algorithms that operate jointly on the distribution of parameters and latent
frailties given observed data. Unsurprisingly, then, the positive stable distribution is not a
supported distribution in the BUGS software. Nonetheless, algorithms for Bayesian infer-
ence in models based on positive stable frailties have been developed (Qiou et al., 1999; Chen
et al., 2002), and even extended to mixtures of positive stable distributions (Ravishanker
and Dey, 2000).

By far the most commonly used frailty distribution in Bayesian models is the gamma
distribution. The specification W ∼ Gamma(κ−1, κ−1) is commonly seen (where the second
argument is the rate parameter rather than its reciprocal, the scale parameter). This gives
E(W |κ) = 1 and Var(W |κ) = κ. The reduction to a single parameter and a known unit
mean is appropriate, since the baseline hazard function can adapt arbitrarily to capture
the absolute magnitude of the hazard for a typical unit, and the frailty distribution serves
only in the relative sense of proportional variation across clusters. As with the positive
stable case, the gamma frailty offers a simple characterization of within-cluster dependence
in terms of Kendall’s tau being 1/(1 + 2/κ).

In contrast to the positive stable model, the gamma frailty model does not preserve pro-
portionality of hazards. Thus one is more wedded to interpreting parameters with reference
to the conditional relationship of (T |W,X), in which proportionality holds. The rationale
for the gamma frailty specification involves computational ease, since conditional conjugacy
arises. The likelihood arising from (23.4), viewed as a function of wi with all other inputs
fixed, is itself proportional to a gamma density function. When combined with the gamma
density of (wi|κ) then, a further gamma density results. More formally, this identifies the
full conditional distribution of each frailty. Letting w−i = (w1, . . . , wi−1, wi+1, . . . , wn), we
have

(wi|w−i,β,φ,d1:n) ∼ Gamma
{
κ−1 + δi, κ

−1 + g(β,φ,di)
}
,

where δi =
∑mi

j=1 δij is the number of observed failures in the i-th cluster, while

g(β,φ,di) =

mi∑
j=1

exp
(
βTxij

)
H0(tij ;φ). (23.3)

Hence MCMC algorithms which make updates to blocks of parameters and/or latent vari-
ables in turn can update w1:n with all other quantities fixed, via n independent draws
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from the appropriate gamma distributions. Clayton (1991) was the first to take advantage
of this particular conditionally conjugate structure, in what was in fact one of the earliest
applications of the Gibbs sampling and MCMC revolution spawned by Gelfand and Smith
(1990). Other early examples of Bayesian frailty modeling with gamma frailties include
Sinha (1993), Sahu et al. (1997), and Aslanidou et al. (1998).

Outside of survival analysis, a huge majority of mixed modeling involves normally dis-
tributed random effects. This is certainly an option in the frailty model situation as well,
via the log-normal specification W ∼ LN(0, κ2), or equivalently logW ∼ N(0, κ2). This
is slightly less computationally convenient than the gamma frailty model, though empiri-
cally, of course, it might provide a better (or worse) fit to a given dataset. There is also
less in the way of simple interpretation available. For example, there isn’t a closed-form
expression for Kendall’s tau to quantify the within-cluster dependence. However, an obvi-
ous advantage of the log-normal frailty model arises when we go beyond the basic frailty
model, to consider multivariate frailties. For instance, consider the setting of a multi-center
clinical trial, and say the first component of the covariate vector X is a binary treatment
group indicator. Conceivably there could be center-to-center variation in the efficacy of
treatment, as well as in the overall risk of failure. A natural generalization of the basic
frailty model would then be to replace the multiplicative effect exp(logwi + β1xij,1) act-
ing upon the hazard with exp{logwi,1 + (β1 + logwi,2)xij,1}, in the spirit of having both
a random intercept and random slope, as is commonly seen in GLMM applications. Thus
W = (W1,W2) now constitutes a bivariate frailty. Whereas bivariate gamma distributions
are not commonly encountered, an interpretable bivariate log-normal distribution is triv-
ially obtained by applying the bivariate normal distribution as a model for (logW1, logW2).
Thus the log-normal frailty model extends quite readily to multivariate frailties. An exam-
ple of a bivariate Bayesian frailty model along these lines is found in Gray (1994). Legrand
et al. (2005) adopt a similar approach, though they make a strong assumption that the two
frailties are independent of one another.

To some extent, the issue of selecting a frailty model for a given application may not be
crucial. There is a general sentiment, supported by evidence, that somewhat misspecified
random effect distributions still yield estimators with reasonable inferential properties. This
is particularly thought to be the case, when, as is typical, fixed effect parameters are of in-
ferential interest. Some evidence in this direction for the GLMM setting includes Neuhaus
et al. (1992), Gustafson (1996), and Litière et al. (2008), while Pickles and Crouchley (1995)
considers frailty models specifically (though not in a Bayesian context). Of course insensi-
tivity of inference to the choice of frailty model does not yield a license to omit a frailty
model. In a survival analysis context, the deleterious effects of not modeling across-cluster
variation when it is present are examined by Henderson and Oman (1999).

23.2.3 Example

To give an example of fitting a basic Bayesian frailty model, we take data originally reported
on by Byar and Green (1980), and used as an example by several authors, including Wei
et al. (1989) and Kleinbaum and Klein (2011). In this study, 85 patients were followed after
surgical excision of bladder cancer tumors, with sequential monitoring and removal of tumor
recurrences. (The datafile includes an 86th patient, but since he/she is recorded as right-
censored at time zero, he/she makes no contribution to the likelihood.) Each patient was
randomized to either placebo or a chemotherapeutic agent, thiotepa. For the i-th patient,
Ti1 is the time, in months, from initial excision to first recurrence, Ti2 is the gap time from
first recurrence to second recurrence, and so on. Overall, the data comprise

∑n
i=1 mi = 190

records and
∑n

i=1

∑mi

j=1 δij = 112 observed recurrences. The number of observations per
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subject is distributed as
∑n

i=1 I{mi = j} = 39, 19, 7, 8, 12, for j = 1, . . . , 5. For all but
seven subjects, the cluster size of mi arises from mi − 1 observed recurrences along with
a censoring time prior to an mi-th recurrence. The seven exceptional subjects had mi

observed recurrences, but no further follow-up time after the last recurrence. There are
p = 3 explanatory variables. The first is the treatment assignment (X1 = 0 for placebo,
X1 = 1 for thiotepa), with 38 patients in the active treatment group. The number of tumors
at study enrollment is given as X2, which is treated as a numerical covariate (although the
three subjects with X2 = 8 are in actuality subjects with eight or more tumors initially).
The final covariate X3 is the initial tumor size (in centimeters).

We fit several versions of the basic frailty model (26.2) to these data. We fix the cutpoints
for the piecewise-constant baseline hazard at (c1, . . . , c4) = (2.5, 4.5, 6.5, 12.5), which yields
about equal numbers of observed recurrences in each the r = 5 subintervals. While not
pursued here, a fuller analysis could involve an investigation of whether results are sensitive
to the choice of r, or whether model selection criteria speak strongly to an appropriate choice.
Diffuse normal priors (mean=0, SD=1000) are assigned to each of log φj , j = 1, . . . , r, and
βj , j = 1, . . . , p. To approach the gamma and log-normal frailty models in a comparable
manner, we define τ = τ(κ) = SD(W ) to be the frailty standard deviation. Thus for
the frailty model W ∼ gamma(κ−1, κ−1), τ = κ1/2. Whereas for W ∼ LN(0, κ2), τ =
{exp(2κ2)− exp(κ2)}1/2. For either model, we induce a prior on κ by specifying a prior on
τ , particularly τ ∼ Unif(0, 1.5). Under either choice of frailty distribution, the upper bound
of τ = 1.5 corresponds to very large across-cluster variation in response time distribution,
so this prior specification can be regarded as “weakly informative.” See Gelman (2006) for
some general discussion of priors for variance components.

The models are fit using MCMC as implemented in WinBUGS. Since this software does
not have the piecewise-constant hazard distribution as one of its supported probability
distributions, we resort to a latent variable trick to fit the model, as elaborated on in Ap-
pendix A. The reported results are based on two MCMC chains each with 20,000 iterations
after 2,000 burn-in iterations, and every second iteration retained. The computed posterior
quantities are stable across the two chains, lending credence to reported inferences based on
pooling the chains. In addition to the gamma and log-normal frailty models, the no-frailty
model is fit. This can be regarded as the model arising with all frailties fixed at one, so that
responses are analyzed without regard to their clustering within patients. Posterior infer-
ences for the treatment effect (β1) and the frailty SD (τ) are given in Table 23.1. The point
estimate of the treatment effect is insensitive to presence or choice of the frailty model, but
the interval estimate is 15% wider when a frailty model is used. This makes sense, since an
analysis which treats all observations as independent without regard to their clustering is
over-confident, so that an artificially narrow interval estimate arises. The choice between
a gamma frailty model and a log-normal frailty model has only a modest impact on the
point estimate of the frailty SD, but has slightly more impact on the corresponding interval
estimate.

23.2.4 Model comparison

Two popular techniques for comparing various Bayesian survival models are the deviance
information criterion (DIC) (Spiegelhalter et al., 2002), and the conditional predictive or-
dinate (CPO) (Geisser, 1993).

Both are attractive on computational grounds relative to full Bayesian model comparison
which requires computing the marginal density of the observed data under each model,
quantities which are very challenging to obtain from MCMC output for the respective
models. Before saying more about DIC and CPO, we note that in the present context both
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TABLE 23.1
Parameter estimates in the bladder cancer data example. The no-frailty model, the gamma
frailty model, and the log-normal frailty model are considered. Posterior means and 95%
equal-tailed confidence intervals are reported for the treatment effect β1 and the frailty SD
τ .

Frailty model treatment effect (β1) frailty SD (τ)

None -0.35 (-0.76, 0.04)

Log-Normal -0.37 (-0.84, 0.08) 0.41 (0.03, 1.14)

Gamma -0.37 (-0.84, 0.08) 0.35 (0.02, 0.80)

require computation of the per-cluster likelihood with the frailty integrated out, i.e.,

Li(β,φ, κ) = f(di|β,φ, κ)
= E{f(di|Wi,β,φ, κ)}
= ciEκ{W δi exp(−giW )}, (23.4)

where

log ci =

mi∑
j=1

δij
{
βTxij + log h0(tij ;φ)

}
,

gi = g(β,φ,di) is as per (23.3), and the expectation in (23.4) is understood to be with
respect to the frailty distribution of (W |κ).

We have already described the computational advantage of the gamma frailty model
over the log-normal model in terms of MCMC algorithms to fit either model. A further
advantage accrues in that (23.4) can be evaluated exactly in the gamma case, but some
form of quadrature is required in the log-normal case. Further discussion on this point is
given in Appendix B.

The per-cluster likelihood can be used to evaluate models according to the CPO criterion
as follows. Let d−i = (d1, . . . ,di−1,di+1, . . . ,dn) be all the data except for that of the i-th
cluster. Also, let θ generically denote the parameters, i.e., θ = (β,φ, κ) at present. Then
the i-th CPO is f(di|d−i), the predictive density of the i-th cluster’s data given all the
other data, evaluated at the actual i-th cluster data values. Intuitively then, a higher CPO
value corresponds to a model doing a better job predictively.

It is easy to check that the i-th CPO can be expressed as

f(di|d−i) =

∫
f(di|θ)f(θ|d−i)dθ

=
(
E
[
{Li(θ)}−1|d1:n

])−1
.

This gives a route to computing the i-th CPO directly from MCMC output based on fitting
the model to all the data, i.e., for each i we need to compute a posterior expectation based on
the posterior distribution of (θ|d1:n). It is customary to summarize the model’s predictive
performance via the log pseudomarginal likelihood (LPML), given by

LPML =
n∑

i=1

log f(di|d−i). (23.5)
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Note here the passing resemblance to the actual log marginal density of the data, given by

log f(d1:n) = log f(d1) +

n∑
i=2

log f(di|d1:(i−1)), (23.6)

where the ordering of the n datapoints is actually arbitrary. Whereas (23.6) aggregates over
predictions based on different amounts of data, (23.5) focuses only on predictions based on
data from n − 1 clusters. Otherwise, the two criteria operate in a very similar spirit. Note
also that we can get some sense of the magnitude of differences in predictive performance,
in that exp(n−1LPML) can be interpreted as the typical height of the predictive density at
the realized cluster data. Hence, for comparing two models, exp{n−1(LPML2 −LPML1)}
describes a density ratio sense in which one model predicts better than another.

In the present example, there is no appreciable difference in predictive performance
between the no-frailty model (LPLM= -462.7) and the gamma frailty model (LPLM=-
462.6). However, the log-normal frailty model is somewhat worse (LPLM=-465.6). In the
density ratio sense described above, the gamma frailty model predicts 3.6% better than the
log-normal frailty model.

In contrast, the DIC criterion has a similar spirit to the BIC criterion (Schwarz, 1978)
that is often used as a heuristically Bayesian model selection scheme when maximum like-
lihood model fits are applied. Defining the deviance as D(θ) = −2

∑n
i=1 logLi(θ), the DIC

criterion is based upon the deviance evaluated at the posterior mean parameter estimates,
which we write as D(θ), and the posterior mean of the deviance, which we write as D(θ).
In particular, D(θ) is taken to summarize the fit of the model to the data (lower values
are better), while the model complexity is reflected by the effective number of parameters,
pD = 2{D(θ)−D(θ)}. Overall, to trade off fit and complexity, theory suggests favoring the
model with the lower value of D(θ) + 2pD.

While the DIC criterion is successful and widely used, our experience with it in the
present context is less successful. One concern is that we obtain a somewhat lower value
of D(θ) from the no frailty model than from the gamma frailty model, even though the
former is a sub-model of the latter. Though this is not precluded theoretically (as it is
when maximum likelihood estimates are used), it makes it difficult to regard D(θ) as a pure
measure of fit. Another concern is that we obtain an implausibly large pD ≈ 30 from the
no-frailty model, even though this model has no latent variables and only eight unknown
parameters. Thus we do not have a great deal of confidence in the DIC results, and prefer
to rely on the CPO results given above.

23.3 Recent developments

The state of the Bayesian frailty world in 2001 was surveyed by Ibrahim et al. (2001, Ch. 4).
Thus for present purposes we define “recent” to be 2001 onwards, and mention some research
themes in Bayesian frailty models over this period of time.

One interesting recent variation on the basic Bayesian frailty model arises when the
clusters are based on geographic areas. For instance, Zhao et al. (2009) consider time to
death due to breast cancer for a cohort of patients clustered by county, so that wi reflects the
extent to which subjects in the i-th county are at higher or lower risk than other counties, in a
sense going beyond variation explained by county variation in the distribution of covariates.
It is scientifically plausible that small-area frailties would vary smoothly across the large
area being considered. Consequently, the specification that the n frailties are independent
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and identically distributed could be replaced with a specification permitting the correlations
between frailties for pairs of close (say adjacent) small areas to be higher than those between
distant pairs. Thus the rich literature on spatially structured prior distributions for random
effects, much of which traces back to conditionally autoregressive models as popularized by
Besag et al. (1991), can be brought to bear. This is demonstrated to good effect by Banerjee
et al. (2003), Banerjee and Carlin (2003), and Zhao et al. (2009), amongst others. As a
further extension, Diva et al. (2008) consider multiple event times per person in addition
to clustering by small areas.

Another topic attracting considerable recent attention is the use of frailties in Bayesian
modeling for recurrent event data. In Section 23.2.3 we saw a very simple approach to
recurrent events, with an assumption of a unit’s gap times being conditionally independent
of one another given the unit’s frailty which acts on the hazard of each such time. However,
there are much more complex recurrent event settings, as surveyed, for instance, by Cook
and Lawless (2007). The Bayesian frailty model approach can indeed be infused into more
complicated settings. For instance, Sinha and Maiti (2004) consider situations with fixed
inspection times, so that actual event times are not observed. Also, Sinha et al. (2008)
explore the dependent termination issue, whereby association between the hazard rate of
recurrent events and termination time is dealt with via frailties. The work of Manda et al.
(2005) is motivated by dental applications, where nested frailties are useful. In the case of
amalgam restoration, there is a recurrent event process for each tooth of each subject. Thus
a tooth-level frailty accommodates dependence between gap times, while a subject-level
frailty accommodates dependence of times across teeth but within subject.

Still in the recurrent event framework, a potentially big new idea is that of time-
dependent frailty. This allows a unit’s hazard rate or intensity rate for recurrent events
to exhibit more change over time than is explained just by observable time-varying covari-
ates. This notion is explored in a Bayesian manner by both Manda and Meyer (2005) and
Pennell and Dunson (2006). For instance, in the former work, an autoregressive model is
prescribed for the evolution of each cluster’s frailty over time.

A nice feature of Bayesian frailty models is that they can be used as “modules” in
tandem with other modeling features, to result in quite complex and flexible models. For
instance, there has been quite a lot of recent work on relaxing the proportional hazard
assumption in Bayesian survival modeling, via the use of a transformation involving an
unknown parameter. Yin and Ibrahim (2005b) and Yin and Ibrahim (2005a) assume that
frailty acts multiplicatively on the baseline hazard, and then use a Box-Cox transformation
to express uncertainty about how the covariates act upon the cluster-specific hazard. Upon
varying the transformation parameter one obtains a proportional hazards structure, or an
additive hazards structure, or something in between. In a less parametric vein, Mallick and
Walker (2003) include frailties in a model structure where a transformation is modeled
nonparametrically, such that a proportional hazards model and a proportional odds models
are but two points within a vast space of possibilities concerning how covariates act upon the
hazard rate. Also in the spirit of considering alternatives to the proportional hazards model,
Komárek et al. (2007) use cluster-specific random effects which act upon the location of the
log failure time distribution, in a Bayesian treatment of an accelerated failure time model.
And Hanson and Yang (2007) use cluster-specific random effects which act upon the survival
odds, in a Bayesian treatment of a proportional odds model. One might debate whether
these random effect models should be called frailty models or whether frailty should be
reserved exclusively to describe a multiplicative action on a hazard rate. Terminology aside,
however, the point is that there exists a rich array of possibilities for Bayesian treatment of
clustered failure-time data.

Another modular use of Bayesian frailty models arises in the area of cure-rate models.
Such models involve a survival function with a positive limit as time goes to infinity, to
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reflect the possibility that some subjects are cured by treatment and no longer susceptible
to failing due to the cause being considered. Chen et al. (2002) use frailties combined
with a cure rate model in a Bayesian context, with a further variant given by Yin (2005).
Then Yin (2008) extends the model further to involve (i) frailties, (ii) cure rates, and (iii)
transformation structure that ranges from a proportional hazards model to a proportional
odds model. This proves an excellent example of how the Bayesian approach allows a number
of sophisticated modeling features to be drawn together.

23.4 Final thoughts

A great part of the strong uptake of Bayesian methods seen over the last two decades is
the application of hierarchically structured models across a wide array of application areas.
And much of this hierarchical model milieu is effectively a random-effect model milieu, with
a first-stage model that conditions on random effects, and a second stage that models the
random effects. As outlined in this chapter, Bayesian frailty models comprise an important
and well-studied class of Bayesian random-effect models.

One unclear issue is whether, going forward, work on Bayesian frailty models might
become more integrated with research on other Bayesian random-effect models. On the one
hand, in the spirit of generalized linear models, one might think that the distinction between
failure-time outcomes and other kinds of outcomes is a minor technical distinction, and
when we discuss random-effect models we should try to minimize the bandwidth consumed
by distinctions between the type of response variable involved. On the other hand, in the
survival analysis world the primacy of multiplicative effects acting upon hazard rates is
strong, and does constitute something of a wedge between Bayesian frailty models and
Bayesian GLMM instantiations. In fact, one might speculate that new developments such
as time-varying frailties could even strengthen this wedge. In any event, regardless of the
level of integration with other outcome types, it seems safe to forecast that new ideas for
Bayesian analysis of clustered failure-times will continue to come forth.

Appendix A

One way to implement the frailty model (23.2) in WinBUGS is to associate latent variables
Zij = (Zij1, . . . Zijr) with the observable failure time Tij . Conditioned on all the parameters
and frailties, we presume that the Zijk are mutually independent of one another, with

Zijk ∼ Exponential
{
wiφk exp

(
βTxij

)}
.

Then Tij is determined from Zij as follows. Let Δk = ck − ck−1 be the width of the k-th
subinterval of the time axis, for k = 1, . . . , r, (with this definition implying that Δr = ∞).
We set Tij = ck∗−1+Zijk∗ , where k∗ = min{k ∈ {1, . . . , r} : Zk < Δk}. That is, if Zij1 does
not exceed the first cutpoint c1, we take Tij = Zij1. Otherwise, we try to set Tij = c1+Zij2

if this does not exceed the second cutpoint c2, and so on. By this construction we see
intuitively that Tij will have the claimed piecewise-constant hazard function. Also, note
that for t ∈ (ca−1, ca), we have

{Tij = t} ↔ {Zij1 > Δ1, . . . , Zij,a−1 > Δa−1, Zija = t− ca−1}.
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Thus an observed failure at a value t in the a-th sub-interval of the time axis can be encoded
as right censoring of Zijk at Δk for k = 1, . . . , a−1, observed failure of Zija at time t−ca−1,
and right censoring of Zijk at time zero, for k = a+1, . . . , r. Similarly, right censoring at a
value t in the a-th sub-interval of the time axis can be encoded as right censoring of Zijk

at Δk for k = 1, . . . , a − 1, right censoring of Zija at time t − ca−1, and right censoring
of Zijk at time zero, for k = a + 1, . . . , r. Bluntly, we can recast the frailty model with
piecewise-constant baseline hazard applied to n∗ =

∑n
i=1 mi datapoints into a frailty model

with constant baseline hazard (i.e., an exponential baseline distribution) applied to rn∗

datapoints. While this may not be the most computationally efficient scheme, it does yield
an easy route to specifying the desired model in WinBUGS. Example code is given on the
website.

As some notes about this implementation, with WinBUGS right censoring is treated
stochastically, so that MCMC is applied to the joint posterior distribution of all parameters
(β,φ,κ), the frailties w1:n, and all those Zijk to which right censoring applies. Thus initial
values are required for all these, and for Zijk initial values exceeding the censoring times
must be supplied. It should also be mentioned that in concept it is not actually necessary to
include those Zijk which are right censored at zero, i.e., the number of effective datapoints
could be taken to be smaller than rn∗. This, however, would require the use of a ragged array
to represent the necessary Zijk components. While this is not a difficultly in WinBUGS, it
presents challenges when using suitable R packages to call WinBUGS from R.

There are other routes to implementing a piecewise-constant hazard function in Win-
BUGS. One we are aware of is described in Yu (2010), using the “zeros trick” described
in the WinBUGS manual (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/manual14.pdf).
This is a general trick to implement a model which is not explicitly supported by the soft-
ware. It is unclear whether this might be less or more computationally efficient than the
approach described above, though the approach described above can be coded in a sleeker
fashion.

Appendix B

To evaluate (23.4), when W ∼ gamma(κ−1, κ−1) we immediately have

logLi = log ci + log Γ(κ−1 + δi)− log Γ(κ−1) +

κ−1 log(κ−1)− (κ−1 + δi) log(κ
−1 + gi).

In the case of W ∼ LN(0, κ2), we can write

Li = ciE[exp{δiκZ − gi exp(κZ)}],

where Z ∼ N(0, 1). If we write ti(z) = exp
[
gi
{
exp(κz)− 1− κz − (1/2)κ2z2

}]
, then

Li = cie
−giE

[
ti(Z) exp

{
−(1/2)giκ

2Z2 − κ(gi − δi)Z
}]

.

From here, we can “complete the square.” If we set ν2 = (1+ giκ
2)−1 and µ = κ2(δi− gi)κ,

then

Li = ci exp{(1/2)µ2/ν2 − gi}E {ti(Z∗)} , (23.7)

where Z∗ ∼ N(µ, ν2). Thus (23.7) is in a form to which we can directly apply Gauss-Hermite
quadrature.
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24.1 Introduction

Multivariate failure time data arise when a sampling unit contains a cluster of multiple,
possibly correlated failure times. The sampling unit may be an individual at risk of multiple
failures or a cluster of multiple individuals such as twin and household. For example, in a
diabetic study, treatment regimens were randomly assigned to right eye and left eye of an
individual. In this case, the sampling unit is patient and times to blindness of the right
and left eye from the same patient were matched and may be correlated because they share
common patient characteristics. The purpose of the matched design was to improve efficiency
of the treatment comparison (Ederer et al., 1984). In family studies such as twin studies with
survival endpoint (Anderson et al., 1992; Hougaard et al., 1992), age at onset can be used to
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assess the familial aggregation of the disease of interest. The sampling unit here is family, and
ages at onset of a certain disease of family members are correlated because they share some
common genetic and environmental risk factors. In cancer studies patients may experience
multiple tumor recurrences during the course of follow-up, whereas patients after receiving
bone marrow transplantation may be at risk of a range of treatment-related complications
such as acute graft-versus-host disease and cytomegalovirus. Recurrent event times in the
former are of the repeated events of the same type and times to different complications
in the latter belong to different failure types. Competing risks result in another type of
correlated failure times. They occur when a subject is at risk of multiple distinct failure
types and only the first failure type is observed. Since other failure types are censored by
the first observed failure type, dependency of failure times of the multiple failure types is
not directly observable, and will not be considered in this chapter.

Two approaches are commonly used in modeling multivariate data: conditional and
marginal approaches. Conditional models induce the dependency structure by including
random effects. One typically assumes multivariate failure times are independent conditional
on a scalar non-negative random variable, the so-called frailty. Mixing over the distribution
of frailty produces dependency. In contract, the marginal approach models the marginal
distribution directly and then imposes a dependency structure to construct the multivariate
distribution. For gaussian data, in presence of covariates, generally the interpretation of
regression coefficients for the two approaches are the same, but for non-gaussian data,
as typically the case for failure time data, conditional and marginal approaches usually
lead to different distributional forms. For example, if one proposes a proportional hazards
model for failure time data conditional on the frailty, then proportionality no longer holds
for the marginal distribution unless the frailty term is degenerate or follows a stable law.
On the other hand, if the marginal hazard is proportional, then the conditional model
is different from the marginal model. Consequently, the choice of model depends on the
research problem and inferential goals.

This chapter explores a marginal approach for modeling multivariate failure time data,
where association between failure times is modeled by a copula function. A k−dimensional
copula function is defined as the joint continuous cumulative distribution (survival) function
on the unit cube [0, 1]k with uniform marginals. Since an absolutely continuous distribution
function can be transformed to a uniform distribution, a generalized copula function can
have arbitrary margins. There is abundant literature contributed to the study of copula
functions, including Sklar (1959); Nelsen (1999); Genest and MacKay (1986); Marshall and
Olkin (1988), to name just a few. One attractive feature of a copula function is that the
marginal distributions do not depend on the choice of dependency structure, and one can
model and estimate the margins and dependency separately. This feature is analogous to the
multivariate normal distribution, where the mean vectors are separable from the covariance
matrix and jointly determine the multivariate distribution.

The chapter is organized as follows. In Section 24.2, the copula function is defined and a
few examples of bivariate survival functions belonging to copula models are presented. Local
as well as global association measured are introduced and used to compare these bivariate
survival functions. In Section 24.3, a two-stage estimation procedure and its asymptotic
properties are presented. Section 24.4 is devoted to diagnostic procedures for assessing the
goodness-of-fit of a copula model. An analysis of veteran twins study data is provided in
Section 24.5. The chapter is ended with a brief summary in Section 24.6.
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24.2 Copula

24.2.1 Definition

Consider a vector of clustered failure times (T1, · · · , Tk) with marginal survival functions
S1, · · · , Sk and joint survival function S. Based on Sklar’s theorem (Sklar, 1959) that relates
an arbitrary distribution function on Rk to a copula function via the univariate marginal
distributions, there exists a copula Cα such that S(t1, · · · , tk) = Cα(S1(t1), · · · , Sk(tk)).
Furthermore, if S is continuous, then the copula Cα is uniquely specified and is given by
Cα(u1, · · · , uk) = S(S−1(u1), · · · , S−1(uk)) for (u1, · · · , uk) ∈ (0, 1)k and α ∈ R1, where
S−1(u) = inf{x : Si(x) ≤ u}, i = 1, · · · , k.

24.2.2 Archimedean copula

One special class of copula functions is Archimedean copula which has the representation

Cα(u1, · · · , uk) = φ[φ−1(u1) + · · ·+ φ−1(uk)], (24.1)

where φ is an Archimedean generator. The representation in (24.1) is a k−dimensional
copula if and only if φ is k-monotone on [0,∞](McNeil and Slehová, 2009). That is, the
jth derivatives of φ satisfy (−1)jφ(j)(u) ≥ 0 for all u ≥ 0 and j = 0, 1, · · · , k − 2, and
(−1)k−2φk−2(u) is non-increasing and convex. One such generator is the Laplace transform
of a non-negative random variable. In that case, the Archimedean copula reduces to the
proportional hazard frailty model (Marshall and Olkin, 1988; Oakes, 1989). The multivariate
survival function generated by the proportional hazard frailty model takes the form

S(t1, · · · , tk) = E[e−Z
∑

i Hi(ti)], (24.2)

where the expectation is taken over frailty Z, and Hi, i = 1, · · · , k are the cumulative hazard
functions given Z. Equating (24.1) and (24.2) results in Hi = φ−1(Si).

24.2.3 Bivariate association measures

Global association measures

The Pearson correlation coefficient is a commonly used statistic for measuring the strength
of dependency of two random variables. It is a convenient and concise measure of association
for Gaussian type. However, for survival data which is usually skewed and non-Gaussian, the
correlation coefficient might not adequately represent the true association but is dominated
by influential observations and outliers. To describe adequate association for correlated
failure time data, a measure which does not depend on the absolute magnitude of the
variates is desirable. Kendall’s coefficient of concordance, τ , meets this requirement. It is
defined by

τ = p[(Tii − Tj1)(Ti2 − Tj2) ≥ 0]− p[(Tii − Tj1)(Ti2 − Tj2) < 0],

where (Ti1, Ti2) and (Tj1, Tj2) are two random draws from a common bivariate distribution.
Two pairs are concordant if (Ti1 − Tj1)(Ti2 − Tj2) ≥ 0 and discordant, otherwise. Kendall’s
τ is the difference between the probability of having concordant pairs and the probability
of having discordant pairs. It is clear from the definition that τ depends only on ranks, not
actual values of the variables. Kendall’s τ is bounded between -1 and 1. It is positive when
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T1 and T2 are positively associated, and negative when they are negatively associated, and
equals 0 when they are independent.

There is a close relation between Archimedean copula and Kendall’s τ . Genest and
MacKay (1986) showed that τ is determined by a simple function in terms of the inverse of
the Archimedean generator, denoted by ψ = φ−1,

τ = 4

∫ 1

0

κ(s) ds+ 1, κ(s) = ψ(s)/ψ′(s). (24.3)

There is a one-to-one correspondence between κ(s) and the bivariate survival function
generated by a Archimedean copula. By the definition of κ above, it is clear that the bivariate
survival function S determines κ. By simple algebra, it can be shown that ψ is determined
in terms of κ by

ψc(s) = exp[

∫ s

c

1/κ(u) du], (24.4)

where c is inserted so that 1/κ(s) is bounded in [c, 1). Since φ and equivalently ψ determines
the bivariate survival function, by (24.4) κ determines the bivariate survival function. Con-
sequently, κ contains all the information about the dependency of bivariate failure times.
Genest and Rivest (1993) and Wang and Wells (2000) proposed a diagnostic procedure
based on κ.

Another global association measure invariant to monotone transformation of variable is
Spearman’s correlation coefficient, defined by

ρ = 12E{(S1(T1)− 1/2)(S2(T2)− 1/2)} = 12

∫ 1

0

∫ 1

0

C(u, v) du dv − 3.

Local association measures

In some applications, interest centers on changes of the dependency over time. For example,
in an identical twins study, researchers are interested in studying how the influence of the
genetic and environmental factors shared by the twins changes as they age. For applications
as such, local quantities describing change of strength of association over time are needed.
Local association refers to the relationship of variables at local levels.

Clayton (1978) introduced the following cross-ratio function to measure the association
in chronic disease incidence among family members,

θ(t1, t2) =
λ(t1 | T2 = t2)

λ(t1 | T2 ≥ t2)
, (24.5)

where λ(t1 | T2 = t2) and λ(t1 | T2 ≥ t2) are the conditional hazard function of T1 given
T2 = t2 and T2 ≥ t2, respectively. Following the definition of the hazard function, θ(t1, t2)
can be expressed by

θ(t1, t2) =
S(t1, t2)

∂2S(t1,t2)
∂t1∂t2

∂S(t1,t2)
∂t1

∂S(t1,t2)
∂t2

.

The cross-ratio can be interpreted as the instantaneous odds ratio at t1, t2 (Anderson
et al., 1992), and therefore is useful in measuring the local association between T1 and T2.
The cross-ratio equals 1 if and only if T1 and T2 are independent. Oakes (1989) showed the
unique relation between the bivariate survival function generated by Archimedean copula
and cross-ratio. Suppose that Archimedean representation (24.1) holds for k = 2. Then
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θ(t1, t2) can be denoted by θ(s), s = S(t1, t2), because it depends on t1, t2 only through s.
Some simple algebra yields the following explicit formula

θ(s) = −sψ′′(s)/ψ′(s).

Furthermore, Oakes (1989) related the cross-function to Kendall’s coefficient of concor-
dance by showing that

θ(s) =
p(Ti,Tjconcordant | T̃ij = t)

p(Ti,Tjdiscordant | T̃ij = t)
, (24.6)

where Ti = (Ti1, Ti2), T
ij = (Ti1∧, Tj1, Ti2 ∧ Tj2), and t = (t1, t2), s = S(t1, t2). To see

this note that the numerator of Equation (24.6) equals S(t1, t2)
∂2S(t1,t2)
∂t1∂t2

and the denom-

inator equals ∂S(t1,t2)
∂t1

∂S(t1,t2)
∂t2

. Consequently, the ratio θ(s)−1
θ(s)+1 is a conditional version of

Kendall’s coefficient of concordance. Due to the one-to-one correspondence between θ(.)
and the bivariate survival function generated by Archimedean copula, Oakes (1989) sug-
gested a diagnostic procedure based on θ for bivariate uncensored data.

24.2.4 Examples

Clayton

The multivariate survival function in Clayton’s family has the representation

S(t1, · · · , tk) = {
k∑

i=1

Si(ti)
−α − k + 1}−1/α, , α > 0, ti > 0, i = 1, · · · , k. (24.7)

The density function of (24.7) is

k∏
i=1

{λi(ti)Si(ti)
−α}δiS(t1, · · · , tk)1+αδ̄αδ̄Γ(1/α+ δ̄)/Γ(1/α),

where λi is the marginal hazard function, δi = 1 if Ti is observed and 0 if Ti is censored,
and δ̄ =

∑
i δi.

The Clayton family belongs to the Archimedean copula where the generator φ(u) = (1+
u)−1/α, α > 0 is the Laplace transform of a gamma distribution. Hence, in the literature the
Clayton model is also called the “gamma frailty model.” The inverse of φ is ψ(v) = v−α−1.
The parameter α determines the dependency of the multivariate failure times with α > 0
corresponding to positive dependency and α → 0 corresponding to independence. The cross-
ratio is constant and equals α+1. According to (24.6), Kendall’s τ = α/(α+2). Spearman’s
correlation coefficient can be evaluated by numerical integration or by the formula

ρ = 12
(α+ 1)

(α+ 2)2
3F2((α+ 1)/α, 1, 1, 2(α+ 1)/α, 2(α+ 1)/α, 1), (24.8)

where the hypergeometric function 3F2 (Hougaard, 2000) is defined by

3F2(a, b, c, d, e, x) =

∞∑
m=0

Γ(a+m)Γ(b+m)Γ(c+m)Γ(d)Γ(e)xm

Γ(a)Γ(b)Γ(c)Γ(d+m)Γ(e+m)m!
.

Genest and MacKay (1986) extended the Clayton model to allow for negative depen-
dency by the generator φ(u) = (1−u)−1/α, α < 0 with the inverse function ψ(v) = 1−v−α.
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Since φ is not a Laplace transform, it does not correspond to a frailty model. McNeil and
Slehová (2009) showed that the above generator is k-monotone for a particular k ≥ 2 if
and only if α ≥ −1/(k − 1). Correspondingly, for a bivariate Clayton model with negative
dependency, α ≥ −1. To avoid negative probability in some regions of sample space, the
bivariate survival function is expressed as

S(t1, t2) = [max{S1(t1)
−α + S2(t2)

−α − 1, 0}]−1/α, −1 ≤ α < 0.

Frank

The multivariate survival function in Frank’s family has the representation

S(t1, · · · , tk) = logα

[
1 +

∏k
i=1(α

Si(ti) − 1)

(α− 1)k−1

]
, 0 < α < 1, ti > 0, i = 1, · · · , k. (24.9)

No simple expression of the corresponding density exists for general k. For k = 2, the
density function is[

(α− 1) log(α)αS1(t1)+S2(t2)

{(α− 1) + (αS1(t1) − 1)(αS
2 (t2)− 1)}2

]δ1δ2 [
α−S(t1,t2)αS2(t2)−1αS1(t1)/(α− 1)

]δ1(1−δ2)

×
[
α−S(t1,t2)αS1(t1)−1αS2(t2)/(α− 1)

]δ2(1−δ1)

S(t1, t2)
(1−δ1)(1−δ2).

The Frank family belongs to the Archimedean copula with φ(u) = logα{1− (1−α)e−u}
which is a Laplace transform for 0 < α < 1. The inverse function of φ is ψ(v) = − log{(1−
αv)/(1 − α)}. When α > 1, the generator is not d-monotone and hence cannot be used
to generate multivariate survival function of any dimensions. When k = 2, the survival
function in (24.9) is valid for α > 1. The cross-ratio takes the form,

θ(s) = −s logα{1 + αs

(1− αs)
},

where θ(s) > 1 if 0 < α < 1, θ(s) < 1 if α > 1, and → 1 when α → 1 corresponding to
independence.

It can be shown that
τ = 1 + 4[D1(γ)− 1]/γ,

where γ = − logα and for integer k ≥ 1,

Dk(γ) =
k

γk

∫ γ

0

tk

et − 1
dt.

Spearman’s ρ is given by
ρ = 1 + 12{D2(γ)−D1(γ)}/γ.

Gumbel-Hougaard

The multivariate survival function in the Gumbel-Hougaard family has the representation

S(t1, · · · , tk) = exp[−{
k∑

i=1

Λi(ti)
1/α}α], (24.10)
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FIGURE 24.1
Cross-ratios of three Archimedean-copula models with τ = 0.2

where Λi = − logSi. The multivariate density function has a complex form given by∏
i

{λi(ti)Λi(ti)
1/α−1/α}δiQS(t1, · · · , tk),

where Q =
∑δ̄

i=1 cδ̄,iα
i{∑j Λj(tj)

1/α}iα−δ̄, and cik is polynomial in α given by the recursive
formula

cp,1(α) = Γ(p− α)/Γ(1− α), cpp = 1

pp,j(α) = cp−1,j−1(α) + cp−1,j(α){(p− 1)− jα}.
The Gumbel-Hougaard family is also called the “positive stable frailty model” because

it belongs to the Archimedean copula and the generator φ(s) = exp(−sα), 0 < α < 1
is the Laplace transform of a positive stable distribution. The inverse of the generator is
ψ(v) = (− log v)1/α. Kendall’s τ is simply 1−α. Spearman’s ρ does not have a closed form.

One attractive feature of the multivariate survival function induced by positive sta-
ble frailty is that proportional hazard model holds for both the marginal and conditional
approach ((Hougaard, 1986a,b)), although the proportionality constant is changed.

The cross-ratio is θ(s) = 1 + (1− α)/(−α log s), 0 < s < 1. It increases from 1 to ∞ as
s increases from 0 to 1. Hence the Gumbel-Hougaard model implies high early dependency
which diminishes as failure times increase. For comparison, the cross-ratio for the above
three Archimedean copula models were plotted and displayed in Figure 24.1, where Kendall’s
τ is set at 0.2 in all the three models.

Gaussian copula

The Gaussian copula over the unit cube [0, 1]k with correlation matrix Σ is given by

CΣ(u1, · · · , uk) = ΦΣ(Φ
−1(u1), · · · ,Φ−1(uk)),

where Φ−1 is the quantile of the standard normal distribution and ΦΣ is the multivariate
normal distribution with mean 0 and correlation matrix Σ. By setting Si(Ti) = ui, the
density function of T1, · · · , Tk can be written as

ΦΔ̄
Σ (Φ

−1(u1), · · · ,Φ−1(uk))
k∏

i=1

{fi(ti)/φ(Φ−1(ui))}δi ,



496 Handbook of Survival Analysis

where Φδ̄
Σ is the δ̄th derivative of ΦΣ with respect to ui’s such that failures for Ti are

observed. If all the failures are observed, the multivariate density has the following repre-
sentation

|Σ|−1/2 exp{−qt(Ik − Σ−1)q/2}
k∏

i=1

fi(ti),

where q = (q1, · · · , qk)t, qi = Φ−1(ui), and Ik is the k-dimensional identity matrix. Gaus-
sian copula is not an Archimedean copula and the corresponding joint survival function
does not have a explicit formula. The cross-ratio does not have a closed form. Kendall’s
τ and Spearman’s ρ equal 2 arcsin(α)/π and 6 arcsin(α/2)/π, respectively, where α is the
correlation coefficient of the bivaraite Gaussian copula model.

24.3 Estimation

Bivariate and multivariate survival functions in copula models are characterized by arbi-
trary continuous univariate survival functions and a dependency function C. This special
structure suggests that one may estimate the marginals and association parameter α in
C separately. Genest et al. (1995) proposed a semiparametric estimation procedure for
dependency parameter where the marginal distributions were estimated by the empirical
cumulative distribution function. Shih and Louis (1995b) proposed a similar two-stage es-
timation approach for possibly censored data without covariates. At the first stage, the
marginal distribution was estimated assuming working independence. Any estimation pro-
cedure which produces consistent estimators for the marginal distributions may be used.
At the second stage, the association parameter was estimated by fixing the margins at the
estimates obtained from stage 1. One advantage of the two-stage estimation is that estima-
tors of parameters in the marginal distributions are consistent upon correct specification
of the marginal distributions and robust against mis-specification of the copula model.
Glidden (2000b) extended the two-stage estimation approach to incorporate covariates in
the marginal distributions, where covariates effects follow a marginal proportional hazards
model and clustered failure times follow the Clayton model. For parametric marginal distri-
butions, the two-stage parametric estimation is straightforward, and asymptotic properties
of the estimators follow that of the GEE estimators, where scores and Fisher information
can be derived analytically or approximated numerically. See, for example, Bjarnason and
Hougaard (2000) and Wang et al. (1995) for the scores and Fisher information of the gamma
and positive frailty model with marginal Weibull model, respectively. For the rest of the
section, the focus is on semi-parametric estimation, where the marginal distribution is mod-
eled as the proportional hazards model and the baseline hazard is unspecified. Direct full
maximum likelihood estimation is complex and unstable because it involved possibly infinite
number of parameters in the baseline hazard. In contrast, the two-stage semi-parametric
estimation approach is computationally stable and efficient.

Suppose the cohort under study consists of n independent clusters, each of at most L
subjects and K failures. Let Tijk and Cijk, i = 1, · · · , n, j = 1, · · · , ki, denote failure and
censoring times for observation j of failure type k in cluster i. Let Xijk = min(Tijk, Cijk)
denote the observed failure time and δijk the censoring indicator (1 for failure and 0 other-
wise). The p-dimensional vector Zijk denotes a set of covariates. Throughout the estimation,
it is assumed that failure times Tijk are independent of censoring time Cijk conditional on
the observed covariates Zijk. It is convenient to introduce additional counting process no-
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tation. Let Yijk(t) = I(Xijk ≥ t) and Nijk(t) = δijkI(Xijk ≤ t). The maximum follow-up
time is denoted by ν. Let Ti = (Tijk, j = 1, · · · , L, k = 1, · · · ,K), i = 1, · · · , n denote n
independent failure time vectors. Finally assume that Ti, i = 1, · · · , n follow a copula model

with marginal proportional hazards given by λijk(t | Zijk) = λ0k(t)e
βT

0 Zijk , where λ0k(.) is
an unspecified marginal baseline hazard function and β0 is a p-variate regression parameter
with a population relative risk interpretation. If there is only one failure type, K = 1 and
λ01(.) ≡ λ0(.).

At stage 1, under working independence among failure times in each cluster, the esti-
mator β̂ of β0 is the solution to the estimation equation U(β) = 0, where

U(β) =

n∑
i=1

mi∑
j=1

K∑
k=1

∫ ν

0

{Zijk − ēk(β, u)} dNijk(u),

ek(β, t) =
S
(1)
k (β, t)

S
(0)
k (β, t)

, S
(r)
k (β, t) = n−1

n∑
i=1

L∑
j=1

Yijk(t)e
βTZijkZ⊗r

ijk, r = 0, 1, 2,

where for a column vector a, a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT . The Nelson-type estimator
of the cumulative hazard, defined as Λ0k(t) =

∫ t

0
λ0k(u) du, 0 < t ≤ ν, has the form

Λ̂0k(t; β̂) =

∫ t

0

dN++k(u)

nS
(0)
k (β̂, u)

,

where N++k(t) =
∑n

i=1

∑L
j=1 Nijk(t).

With given marginals, the contribution from each cluster to the likelihood of α is ob-
tained by taking the derivative of the joint survival function with respect to uncensored
failure times as shown in the previous section. The likelihood is given by

n∏
i=1

L∏
j=1

K∏
k=1

{λijk(Xij)Sijk(Xijk)
−α}δijkSi(Xij1, · · · , XiLK)1+αδi++ ×

αδi++Γ(1/α+ δi++)/Γ(1/α), (24.11)

where δi++ =
∑

j

∑
k δijk.

The logarithm of (24.11) can be simplified to the following form

l(α) = n−1
∑
i

li

= n−1
n∑

i=1

[

δi++∑
j=1

log{1 + (j − 1)α}] + [

L∑
j=1

K∑
k=1

αδijkΛijk]−

(α−1 + δi++) log{Ri(α)}, (24.12)

where Λijk = eβ
T

0 ZijkΛ0k(Xijk), and Ri(α) =
∑L

j=1

∑K
k=1 e

αΛijk −KL+ 1.

At stage 2, β̂ and Λ̂0k(.; β̂) calculated from stage 1 replace β0 and Λ0k in (24.12),

respectively. The estimation of α is obtained by maximizing the pseudo log-likelihood l̂(α),

whereˆover l indicates that Λ̂0k and β̂0 are inserted in the likelihood.

The consistency and asymptotic normality of (β̂, Λ̂0k(.), k = 1, · · · ,K) were established
by Spiekerman and Lin (1998) for general dependency structures. Extending the results
of Wei et al. (1989), Lee et al. (1992) and Spiekerman and Lin (1998) showed that the
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estimator β̂ converges in probability to β0, and n−1/2(β̂−β0) is asymptotically equivalent
to the sum of n independent variables, n−1/2A−1

∑n
i=1 wi++, where

wi++ =

L∑
j=1

K∑
k=1

∫ ν

0

{Zijk − ek(β, u)} dMijk(u),

and

A = lim
I→∞

AI

= n−1
n∑

i=1

L∑
j=1

K∑
k=1

∫ ν

0

{
S
(2)
k (β, u)

S
(0)
k (β, u)

− ek(β, u)
⊗2

}
dNijk(u).

In addition, Spiekerman and Lin (1998) showed that the estimator Λ̂0k(t; β̂) converges
in probability to Λ0k(t) uniformly in t ∈ [0, τ ] and n1/2(Λ̂0k(t) − Λ0k(t)) is asymptotically
equivalent to n−1

∑n
i=1 Ψij(t), where

Ψik(t) =

∫ t

0

dMi+k(u)

s(0)(β, u)
+ hT

k (t)A
−1wi+,

where

Mijk(t) = Nijk(t)−
∫ t

0

Yijk(u)e
βTZij dΛ0k(u),

hk(t) =

∫ t

0

ek(β, u) dΛ0k(u), where

s
(r)
k (β, t) = E{S(r)

k (β, t)} and ek(β, t) =
s
(1)
k (β,t)

s
(0)
k (β,t)

. The asymptotic properties of α̂ with

covariates were developed by Glidden (2000b). Under the regularity conditions detailed in
Spiekerman and Lin (1998) and assuming the given copula model holds and α0 belongs to
the parameter space, the semi-parametric estimator α̂ of α0 is consistent and

√
n(α̂ − α0)

converges weakly to a zero-mean normal distribution. The asymptotic variance has the
sandwich form σ2 = B−1(α0)σ

2
ΦB

−1, where B is the limit of minus second derivative of the
mean log-likelihood of α given by

B(α) = lim
n→∞−∂2l2(α)

∂α2

= lim
n→∞n−1

I∑
i=1

δi++∑
l=1

(l − 1)2

{1 + (l − 1)α}2 + 2α−3 log{Ri(α)} − 2α−2Ui(α)R
−1
i (α)

+{α−1 + δi++}{Vi(α)R
−1
ij (α)− U2

i (α)R
−2
i (α)},

where Ui(α) =
∑

j

∑
k=1 Λijke

αΛijk and Vi(α) =
∑

j

∑
k=1 Λ

2
ijke

αΛijk .

The term σ2
Φ is the asymptotic variance of the sum of n independent random variables

Φi, where

Φi = φi +

K∑
k=1

∫ ν

0

πk(s) dΨik(s) + FTA−1wi++, (24.13)

where φi = ∂Ui/∂α, Ui = ∂li/∂α, and

πk(t) = lim
n→∞ ∂U(α)/∂dΛ0k(t),
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F = lim
n→∞ ∂U(α)/∂β,

where U = n−1
∑n

i=1 Ui. The asymptotic variance can be consistently estimated by σ̂2 =

B̂−1(α̂)σ̂2
ΦB

−1(α̂), where B̂ and and σ̂2
Φ are obtained by inserting β̂, Λ̂0k for β0 and Λ0,

and α̂ for α0. The terms φi and πk(t) and F have the following forms

φi = {
δij+∑
l=1

l − 1

1 + (l − 1)α
}+ {

L∑
j=1

K∑
k=1

δijkΛijk}+ α−2 log{Ri(α)}

−(α−1 + δi++)R
−1
i+ (α)

L∑
j=1

K∑
k=1

Λijke
αΛijk ,

πk(t) = lim
n→∞n−1

n∑
i=1

L∑
j=1

eβ
TZijkYijk(t)

⎡⎣α−1R−1
i (α)eθΛijk − (α−1 + δi++)

×(1 + αΛijk)R
−1
i (α)eαHijk + (1 + αδi++)R

−2
i

∑
i

∑
j

Λijke
αHijk + δijk

⎤⎦ ,

F = n−1
n∑

i=1

L∑
j=1

K∑
k=1

HijkZijk

{
α−1R−1

i (α)eαΛijk − (α−1 + δi++)(1 + αΛijk)

×R−1
i (α)eαΛijk +(1 + αδi+){

∑
j

∑
k

Λijke
αΛijk}R−2

i (α)eαΛijk + δijk

⎫⎬⎭ .

Fisher information with clustered censored data for the Gumbel-Hougaard model (Wang
et al., 1995) can be modified to obtain the analytical expression of φi and πk(t) and F.
Using these terms together with terms in the marginal inference, the sandwich form of the
asymptotic variance of the two-stage estimator α̂ for the positive stable frailty model can
be obtained. Alternatively, numerical approximation to the first and second derivatives of
the log-likelihood function may be used to calculate the estimates of φi, πk(.), k = 1, · · ·K
and F.

24.4 Model assessment

As the dependency structure of the copula model and the marginal distributions are mod-
eled separately, goodness-of-fit assessment for the marginal distributions and dependency
structure can be performed separately. Model checking procedures for the marginal Cox
model for correlated failure times have been established (Spiekerman and Lin, 1996).

A number of goodness-of-fit testing and model selection procedures for the subclass
Archimedean models have been developed and are described here.

Local association measures

As the cross-ratio under Archimedean model depends on bivariate failure times only through
values of bivariate survival, Oakes (1989) proposed a diagnostic procedure for Archimedean
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models by plotting a discretized version of θ(s) vs. bivariate survival value s, where the
bivariate survival function was estimated non-parametrically. Various non-parametric sur-
vival functions for bivariate censored data have been proposed including Campbell and Oldes
(1982); Dabrowska (1988); Lin and Ying (1993); Prentice and Cai (1992), to name just a
few. Such a plot can aid in assessing the appropriate relationship between θ and bivariate
survival. For example, if there is no evidence of any smooth trend with increasing values of
s, then the Clayton model might be appropriate. However, there are some challenges and
disadvantages of this diagnostic approach. First data have to be grouped or discretized and
different discretizing may yield different estimate of θ and that non-parametric estimate of
S may be unstable for highly censored data.

Another Archimedean model selection procedure based on κ(s) = ψ(s)/ψ′(s) in (24.3)
was proposed by Genest and Rivest (1993) for bivariate uncensored data and by Wang
and Wells (2000) for bivariate censored data. The main idea is to assess the goodness-of-fit
based on the distance between model-based estimator of κ(s) and the non-parametric coun-
terpart, where the former can be obtained by the two-stage estimation procedure described
in the previous section, and the latter is a function of the non-parametric bivariate survival
function estimator. The distribution of the distance statistic, however, is quite complicated.
As alternatives, some resampling based procedures have been proposed to approximate the
null distribution of the distance statistic (Dobric̀ and Schmid, 2007; Nikoloulopoulos and
Karlis, 2008).

Concordance estimators

A simple goodness-of-fit test to check the assumption of the Clayton model for bivariate
right-censored data was developed by Shih (1998). The idea is to compare the unweighted
and weighted concordance estimator, where the weighted estimator is the maximizer of a
pseudo-likelihood (Clayton, 1978). If the Clayton model holds, both estimators are consis-
tent, but the weighted estimator is more efficient and the difference of the two estimators
converges to zero. The proposed test is consistent against alternatives under which the two
concordance estimators converge to different values. An explicit formula for the asymptotic
variance of the test statistic for uncensored data was developed. The test has been extended
to general Archimedean models (Emura et al., 2010).

For a set of n paired failure times {(Ti1, Ti2); i = 1, · · · , n}, let Δij = I[(Ti1−Tj1)(Ti2−
Tj2) > 0], i �= j denote the concordance indicator. Under an Archimedean model, according
to (24.6),

E[Δij | T̃ij = t] =
θ(s)

θ(s) + 1
, (24.14)

where t = (t1, t2) and s = S(t1, t2). A class of estimation equations for the association
parameter α in the Archimedean model based on (24.14) can be formulated by

Uk(α) =
∑
i<j

Wk(T̃
ij , α)

[
Δij −

θ(ŝij)

θ(ŝij) + 1

]
, (24.15)

where Wk is a weight function and ŝij = Ŝ(T̃ij) and Ŝ is an estimator of S. Similar to
Shih (1998), Emura et al. (2010) compared the unweighted estimator, i.e., W1 = 1 and
a weighted estimator such that U2(α) is the estimating equation of a pseudo-likelihood
which generalizes the likelihood proposed by Clayton (1978). Define the set of grid points,
ω = {(t1, t2) | ∑n

i=1 I(Ti1 = t1, Ti2 ≥ t2) = 1,
∑n

i=1 I(Ti1 ≥ t1, Ti2 = t2) = 1}. Define
D(t1, t2) =

∑n
i=1 I(Ti1 = t1, Ti2 = t2), (t1, t2) ∈ ω, and R(t1, t2) =

∑n
i=1 I(Ti1 ≥ t1, Ti2 ≥

t2) which is the size of the risk set at (t1, t2) ∈ ω. In the absence of tie, conditional on
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R(t1, t2) and (t1, t2) ∈ ω, p(D(t1, t2) = 1 | R(t1, t2) = r, (t1, t2) ∈ ω) = θ(s)
r−1+θ(s) . Under the

working independence assumption among the grids in ω, the pseudo-likelihood function of
α can be written as

L(α) =
∏

t1,t2∈ω

θ(S(t1, t2))
D(t1,t2)[R(t1, t2)− 1]1−D(t1,t2)

R(t1, t2)− 1 + θ(S(t1, t2))
(24.16)

After some algebraic operation, the score function of the above pseudo-likelihood can be
written as

U2(α) =
∑
i<j

θ̇(Ŝ(T̃ij)(θ(Ŝ(T̃ij)) + 1)

θ(Ŝ(T̃ij))[Rij − 1 + θ(Ŝ(T̃ij))]

[
Δij −

θ(Ŝij)

θ(Ŝ(T̃ij)) + 1)

]
, (24.17)

where Rij = R(T̃ij) = nŜ(T̃ij) and ˙θ(s) = ∂θ(s)/∂α. Hence, the weight func-

tion W2(T̃
ij , α) = θ̇(ŝij)(θ(ŝij)+1)

θ(ŝij)[Rij−1+θ(ŝij)] . For the Clayton model, W2 is simplified to
(θ+1)

θ[Rij−1+θ] , which assigns higher weight to later events. For the Gumbel model, W2 =

2 log ŝij−α

{log Ŝ(Tij)−α}{α−Rij Ŝ(Tij)} , which approaches ∞ at Tij = 0 and decreases over time. For

the Frank family, W2 = {1−θ(ŝij)αŝij }{θ(ŝij)+1}
Rij−1+θ(ŝij) , which approaches a finite value at Tij = 0

and also decreases over time. Let α̂k, k = 1, 2 denote the solution to Uk = 0. Thus, among
the three copula models, the Clayton model emphasizes late dependency and the Gumbel-
Hougaard model emphasizes early dependency, whereas the Frank family implies early de-
pendency but to a less degree than the Gumbel-Hougaard model. If the association pa-
rameter α has positive value, taking γ = log(α) can improve the normal approximation
of its estimators. Emura et al. (2010) showed that under the correct model and the reg-
ularity conditions, log(α̂) = γ̂k, k = 1, 2 are consistent, and n1/2(γ̂k − γ0) converges to a
zero-mean normal distribution. Consequently, n1/2(γ̂1 − γ̂2) converges in distribution to a
normal distribution with mean zero and variance σ2 = E[h(T1,T2)h(T1,T3)], where

h(Ti,Tj) =
1

α

(
θ̇(S(T̃ij)(θ(S(T̃ij)) + 1)

ALθ(S(T̃ij)S(T̃ij)
− 1

A

)[
Δij −

θ(S(Tij))

θ(S(T̃ij)) + 1

]
,

A ≡ E

(
θ̇(S(T̃ij)

[θ(S(T̃ij)) + 1]2

)
AL ≡ E

(
θ̇(S(T̃ij)2

θ(S(T̃ij))[θ(S(T̃ij)) + 1]

)
.

The asymptotic variance σ2 can be estimated by averaging over all possible triples of empir-
ical h(T1,T2)h(T1,T3). Alternatively, σ2 can be estimated by either jackknife or bootstrap
resampling procedure.

In the presence of right censoring, let Ci = (Ci1, Ci2) denote the censoring times and
are independent of Ti, i = 1, · · · , n. Let Xij = min(Tij , Cij) Δij is observed if and only if

T̃ij ≤ C̃ij , where C̃ij = (Ci1 ∧ Cj1, Ci2 ∧ Cj2). Let Zij denote the indicator of this event.
The modified estimation function Uk, k = 1, 2 which includes only pairs of which Δij is
observed (i.e., Zij = 1) is given by

Uk(α) =
∑
i<j

ZijWk(T̃
ij , α)

[
Δij −

θ(ŝij)

θ(ŝij) + 1

]
, (24.18)

where Ŝ can be estimated non-parametrically or semi-parametrically by solving U2 with the
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marginal survival functions estimated by Kaplan-Meier or Nelson estimators. The asymp-
totic normal distribution of the estimator and test statistic can be established using similar
arguments as for the uncensored case. The asymptotic variance σ2 of n1/2(γ̂2 − γ̂1) can be
estimated by

σ̂2 =
1

n

∑
i=j =k

ZijZikĥ(Ti,Tj)ĥ(Ti,Tk),

where ĥ(Ti,Tj) is estimated by replacing α by α̂2 and S by Ŝ.

Posterior mean frailty process

Shih and Louis (1995a) proposed a parametric graphical diagnostic procedure for assessing
the gamma frailty model for clustered failure time data. The basic idea is to assess the
gamma frailty assumption by its posterior mean process over time. If the gamma frailty
model is correct, the average of posterior mean process converges in probability to the prior
mean. Large discrepancies between the two quantities indicate lack of fit. Glidden (2000a)
extended the approach to allow for non-parametric marginal distributions without covari-
ates, and compared the observed posterior mean process to simulated realizations generated
under the null hypothesis that the gamma frailty model is correct. Cui and Sun (2004) and
Shih and Lu (2007) further extended the approach to incorporate covariates in the marginal
proportional hazards model. Using the same notation as in Section (24.2.4), under the
gamma frailty model with mean 1/α and variance 1/α, it follows that the conditional dis-
tribution of the frailty given the data up to time t, t ≤ τ , is also gamma with posterior expec-
tation proportional to γ̄i(t;β0, α0) = {1 + α0Ni++(t)}/Ri(t;β0, α0), where Ri(t;β0, α0) =∑

j

∑
k exp[α0Λijk(t ∧ Xijk)] − KL + 1 and Λijk(t ∧ Xijk) = exp{βT

0 Zijk}Λ0(t ∧ Xijk).
Under the gamma frailty model, the posterior mean process γ̄i(t;β0, α0), i = 1, · · · , n are
independent with mean vector 1. Furthermore, the process

W (t) = n−1/2
n∑

i=1

{γ̄i(t;β0, α0)− 1} (24.19)

converges to a zero-mean gaussian process. Since W (t) involves the unknown parameters
β0 and α0 and baseline cumulative hazard function Λ0k(.). Estimates obtained from the
two-stage estimation approach described in the previous section were plugged in (24.19). Let
Ŵ (t) denote the W (t) process with the plug-in estimators. It follows that Ŵ (t) is asymp-
totically equivalent to n−1/2

∑n
i=1 Υi(t) which converges to a zero-mean Gaussian process

Ω(t) with covariance function E{Ω(t)Ω(s)} = limn→∞ n−1
∑

i E{Υi(t)Υi(s)}, where Υi(t)
is given by

n∑
i=1

εi(t) +B2(α0)
−1Φ2if(t) +

∫ t

0

g(u; t) dΨi(u) + qT (t)A−1wi++,

where εi(t) = {γ̄i(t;β0, θ20)− 1}, f(.) is the limit of f̃(.) given by

f(t) = lim
n→∞ f̃(t) = n−1

∑
i

∑
j

R−1
i (α0; t)){Ni++(t)− γ̄i(t;β0, α20)Ui(α0; t)},

where Ui(α20; t) =
∑

j

∑K
k=1 Λijk(t ∧Xijk)e

α0Λijk(t∧Xijk),
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g(.) is the limit of g̃(.) given by

g(t) = lim
n→∞ g̃(t)

= lim
n→∞n−1

∑
i

α0R
−1
i (α0; t))γ̄i(t;β0, α0)

×
∑
j

∑
k

eα0Λijk(t∧Xijk)+β
′
0ZijkYijk(t),

and q(.) is the limit of q̃(.) given by

q(t) = lim
n→∞ q̃(t)

= lim
n→∞n−1

∑
i

α0R
−1
i (α20; t))γ̄i(t;β0, α0)

×
∑
j

∑
k

eα0Λijk(t∧Xijk)Λijk(t ∧Xijk)Zijk.

The covariance function may be consistently estimated by its empirical counterpart. The
test statistic for assessing the gamma frailty model takes the form V = supt |Ŵ (t)|. Because
the asymptotic distribution of V is not analytically tractable, the resampling method of Lin
and Ying (1993) was used to simulate the distribution of the process Ŵ (.). Let W̃ (t) =
I−1/2

∑
i Υ̂i(t)Zi, where Υ̂i(t) is the empirical counterpart of Υi(t), and Zi, i = 1, · · · , n are

independent standard normal random variables independent of the observed data. By the
arguments of Spiekerman and Lin (1996), W̃ (.) and Ŵ (.) are asymptotically equivalent and
both converge to Ω(.). Thus the null distribution of Ŵ (.) can be approximated by repeatedly
generating random values of (Z1, · · · , ZI) from the standard normal distribution a large
number of times with the observed data fixed. Once the approximated null distribution of
Ŵ (.) is generated, the null distribution of a test statistic such as V is available, and the
p-value of the V test is estimated by the proportion of simulated test statistics that exceed
the observed value of V .

24.5 Example

24.5.1 Data

In 1955 the National Academy of Science-National Research Council (NAS-NRC) initiated
the development of a white twin registry of U.S. Armed Forces veterans (Jablon et al.,
1967). A panel of 16,000 pairs of twins, all of them are veterans, were obtained by matching
Veterans Administration (VA) Master Index against the names given on record of multiple
births in 42 vital statistics offices for the years 1917-1927. Of the 32,000 individuals in
the Registry about 20,000, including both members of 7,000 twins pairs, responded to
questionnaires mailed since 1965. The questionnaire was short, seeking follow-up medical
information and the twins’ opinions of their zygosity.

Covariates included in the analysis were history of hypertension and smoking status. Co-
variate hypertension is binary, taking value 1 if the individual was hypertensive at the time
of survey and 0 otherwise. Covariate smoking status had three categories: never smoker(0),
former smoker (1) and current smoker (2). The survival time was age of death which was
censored if the individual was alive as of December 31, 1990. Deaths from this twin reg-
istry data were ascertained only partly through National Death Index (NDI) and mostly
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through military death benefits services. Only twin pairs who had complete data on the
two covariates were included in the analysis, yielding 1875 MZ twin pairs and 1992 DZ
twin pairs. Among these individuals, 17.2% of MZ twin members and 18.9% of DZ twin
members died as of December 31, 1990, with 41 the minimal age of death. The finding of
less mortality in MZ than in DZ pairs is consistent with that from the data with shorter
follow-up (Hrubec and Neel, 1981). They and others attributed the reduction in mortality
in MZ pairs relative to DZ pairs to selection effects at the induction screening. An MZ pair
would more likely be excluded from military service than a DZ pair for factors that were
more concordant in MZ twins in the population and which predicted subsequent morbidity
and mortality, because both members of the pair had to pass the induction physical exam.
Fifty-nine percent of the MZ twin members were current smokers at the time of responding
to the questionnaire, compared to 61% of DZ twin members. Thirty-five percent of both
MZ and DZ twin members were hypertensive.

24.5.2 Analysis

The MZ twins and DZ twins data were analyzed separately. The marginal distribution for
each twin type was specified by the Cox proportional hazards model containing smoking
status and hypertension with a common baseline hazard. Interaction terms between the
two covariates were not significant for both MZ and DZ twins data. The estimates of the
regression coefficients are listed in Table 24.1. For MZ twins, the difference in risk of death
between former smokers and never smokers and the effect of hypertension were not signif-
icant. Correspondingly, never and former smokers were lumped into one single subgroup,
and a final Cox model containing only one covariate, current smoker vs. not, was fitted. The
estimate of the regression coefficient equaled 0.743 (p < 0.0001). For DZ twins, the three
smoking groups had significantly different risks of death, and the effect of hypertension was
also significant (p < 0.01).

The two-stage semi-parametric estimation procedure was applied to estimate the asso-
ciation of lifespans between MZ and DZ twin members. The estimates of the association
parameters, Frank family, and Gumbel-Hougaard models are listed in Table 24.2. As ex-
pected, the association between the MZ pairs was stronger than between the DZ pairs.

TABLE 24.1
Estimates of marginal regression parameters for the veteran twins study.

Variable Parameter Standard p-value

estimates error

MZ twins

Former smoker 0.290 0.164 0.076

Current smoker 0.886 0.128 < 0.0001

Hypertension 0.097 0.085 0.255

DZ twins

Former smoker 0.394 0.152 0.010

Current smoker 1.092 0.122 < 0.0001

Hypertension 0.202 0.074 0.007
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TABLE 24.2
Estimates of association parameters (α) for the veteran twins study.

Model Parameter Standard τ

estimates error

MZ twins

Clayton 1.29 0.234 0.392

Frank 0.090 0.033 0.253

Gumbel-Hougaard 0.878 0.022 0.122

DZ twins

Clayton 0.213 0.127 0.096

Frank 0.610 0.173 0.055

Gumbel-Hougaard 0.988 0.017 0.012

Kendall’s tau equaled 0.39 for MZ twins and only 0.096 for DZ twins. It is interesting to
note that the values of Kendall’s tau were very different between the three estimated mod-
els. The smaller values of τ under Frank family and Gumbel-Hougaard model are due to the
fact that these two models imply high early dependence whereas the Clayton model implies
high late dependence and that not many twins in this cohort died at young ages.

24.5.3 Goodness-of-fit

The goodness-of-fit test of the marginal Cox model for multivariate failure times (Spieker-
man and Lin, 1996) was applied. Since the covariates were dichotomous, only the assump-
tion of proportional hazards was checked. For the MZ twins, the observed score process for
current smoker (yes vs. no) vs. 20 realizations under the null distribution is displayed in Fig-
ure 24.2. The p-value for the proportional hazards test obtained based on 5,000 realizations
of the null score process is 0.783. The plots for the DZ twins were similar. The p-values are
0.510, 0.809 and 0.241 with respect to former smoker, current smoker, and hypertension,
respectively.

As the life times of DZ twin members were nearly independent, only the dependency
structure of MZ twins was assessed. The observed posterior gamma frailty process vs. 20
realizations of the null process is displayed in Figure 24.3. The plot is indicative of some
lack of fit of the dependency induced by gamma frailties, although the V-test based on
the supremum of the absolute posterior mean frailty process was not significant (p=0.112).
From the graphical posterior process, it is hard to tell how the dependency structure was
misspecified. One plausible explanation for the negative (i.e., less-than-expected) posterior
mean frailty process before age 60 is that not many deaths were observed at young ages.
Since there was only one binary covariate in the marginal model, the test of constant cross-
ratio for Clayton model was tested for each subgroup according to the smoking status
of each twin (both members current smoker, one member current smoker, neither current
smoker). The standard error of the test of concordance estimators for the Clayton model was
based on Shih (1998). The p-value equaled 0.844, 0.131 and 0.029 for the three subgroups,
respectively. Thus, the constant cross-ratio was rejected for the non-current smoking twins.
The tests of concordance estimators for Frank’s family and Gumbel-Hougaard were also
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FIGURE 24.2
Score process of MZ twins.

applied. The standard errors of the test statistics for these two models were obtained by
Jackknifing. The p-value equaled (0.704, 0.150, 0.075) and (0.121, 0.312, 0.032) for the
three subgroups under Frank’s family and Gumbel-Hougaard model, respectively. These p-
values suggest that Frank’s family fits the MZ twins data better than the other two models.
Under Frank’s family, the unweighted (α̂1) and weighted estimate (α̂2) of the association
parameter equaled (0.10, 0.095), (0.037, 0.055) and (0.019, 0.048) for the three subgroups of
both current smokers, one current smoker, and neither current smokers, respectively. The
associated Kendall’s τ equaled (0.243, 0.248), (0.333, 0.298), and (0.385, 0.310), respectively.

24.6 Summary

Copula models have become increasingly popular in modeling dependency of correlated
continuous random variables. The wide spectrum of their applications encounters many
fields, including finance (Cherubini et al., 2004; Embrechts et al., 2003), engineering (Genest
and Favre, 2007; Yan, 2006), actuarial science (Frees and Valdez, 1998; Frees, 2005) and
clinical studies (Shih and Louis, 1995b; Wang and Wells, 2000). Their popularity stems
partly from the fact that multivariate normality may be in question in many applications
and their flexibility in modeling dependency while allowing for separate specification of the
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FIGURE 24.3
Posterior gamma frailty mean process of MZ twins.

possibly skewed marginal distributions. In this chapter, special attention was devoted to
the subclass of Archimedean models for its appealing features for survival data and its link
to proportional hazards frailty models. A number of local and global association measures
were described and compared between three Archimedean copulas: Clayton, Frank and
Gumbel-Hougaard models. As these Archimedean copulas exhibit different time-dependent
dependency structures and result in different interpretations, model assessment is essential
for copula model applications. A number of graphical diagnostic and non-parametric and
semi-parametric testing procedures have been developed and presented in this chapter.
While the graphical diagnostic procedures based on θ(.) and κ are complex for censored
survival data, tests based on non-parametric concordance estimators and posterior mean
frailty process appear promising and are relatively easy to implement.

The Akaike information criterion (AIC) has become a popular measure for model se-
lection. While it provides relative goodness of fit of a statistical model, it does not test a
specific null hypothesis. The original AIC is restricted to parametric models. Later Xu et al.
(2009) developed AIC using profile likelihood for semi-parametric model selection with ap-
plication to proportional hazards mixed model. However, statistical properties of AIC under
pseudo-likelihood for semi-parmatric copula models described in this chapter are unknown
and its applicability to these models is yet to be established.

All the analyses done in this chapter were implemented by the author’s own GAUSS
and R code, which are not for the moment publicly available.
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25.1 Introduction

Competing risks data are commonly encountered in clinical trials and observational studies,
when subjects are subject to failure from one of distinct causes (Kalbfleisch and Prentice,
1980). In several applications, competing risks data cannot be considered as independent
because of a clustered design, for instance in multicentre clinical trials and family stud-
ies. Two challenges arise naturally in the analysis of clustered competing risks data. First,
methodologies for standard survival data cannot be applied to competing risks data di-
rectly without modifications. Secondly, appropriate procedures are needed to account for
the correlations of event times among subjects from the same cluster.

The aim of this article is to provide an overview of the statistical analysis of clustered
competing risks data. We first describe the data structure and necessary definitions of im-
portant concepts. We then focus on three major issues arising in the analysis of clustered
competing risks data, namely: (1) estimation of the multivariate cause-specific hazard func-
tion and cumulative incidence function; (2) estimation and inference of properly defined
measure of association among the clustered competing risks data; and (3) regression anal-
ysis to assess the covariate effects on the cause-specific hazard function and cumulative
incidence function. Extensions and future research directions will be discussed.

511
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25.2 Notation and definitions

Suppose that there are n independent clusters, with ni subjects in the ith cluster. We
assume that there are K possible distinct competing risks for each subject. Let Tij be the
time to failure for the jth subject (j = 1, ..., ni) in the ith cluster, εij the cause of the
failure, and Zij a p× 1 vector of covariates. The failure time is subject to right censoring.
We assume non-informative censoring and denote by Cij the censoring time. Suppose that
Δij = 0 indicates that the failure time is censored and that Δij = 1 otherwise. Therefore,
the observed data consist of triplets {Xij ≡ min(Tij , Cij), εijΔij ,Zij} for i = 1, ..., n and
j = 1, ..., ni. Throughout this chapter, we assume conditional independent censoring, i.e.,
(Tij , εij) and Cij are independent given Zij for each i and j.

Consider a single observation {X ≡ min(T,C), εΔ,Z}. Several approaches have been
used to describe the distribution of T and ε and assess their relationship with covariates Z.
One approach is through the cause-specific hazard (CSH) function defined as

λk,C(t|Z) = lim
h→0

Pr(T ∈ [t, t+ h), ε = k|Z, T ≥ t)/h, k = 1, ...,K,

where λk,C(t|Z) is the rate of failure at time t from cause k. One can in turn define the
cause-specific cumulative hazard function

Λk,C(t|Z) =
∫ t

0

λk,C(u|Z)du.

Another approach is to use the so-called “subdistribution” or “cumulative incidence
function” (CIF)

Fk(t|Z) = Pr(T ≤ t, ε = k|Z), k = 1, ...,K.

Note that Fk(t|Z) is not a proper distribution in the presence of all causes of failure as
the probability that the subject will fail from cause k, Fk(∞|Z) < 1. The subdistribution
hazard described by Gray (1988) is defined as

λk(t|Z) = lim
h→0

Pr{T ∈ [t, t+ h], ε = k|T ≥ t ∪ (T ≤ t ∩ ε �= k),Z}/h

= {dFk(t|Z)/dt}/{1− Fk(t|Z)}
= −d log{1− Fk(t|Z)}/dt.

Unlike in the case of standard survival data, there is no direct relationship between
the cause-specific cumulative incidence function and the cause-specific hazard function. To
connect Fk(t|Z) and Λk,C(t|Z), one needs to define the following cumulative hazard function
from any cause

ΛC(t|Z) =
K∑

k=1

Λk,C(t|Z),

and the survival function

S(t|Z) = Pr(T > t|Z) = exp{−ΛC(t|Z)}.

Simple calculus yields

Fk(t|Z) =
∫ t

0

λk,C(u|Z)S(u|Z)du.

The above equation implies that one needs the cause-specific hazard function from each
cause in order to calculate the cumulative incidence function for a particular cause.
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Now consider two observations in a cluster {X1 ≡ min(T1, C1), ε1Δ1,Z1} and {X2 ≡
min(T2, C2), ε2Δ2,Z2}. Cheng et al. (2007) generalized the definition of univariate cause-
specific hazard functions to the bivariate setup and defined the cause-specific bivariate
hazard function

λkl(s, t) = lim
(h1,h2)↓0

Pr(T1 ∈ [s, s+ h1], ε1 = k, T2 ∈ [t, t+ h2],

ε2 = l|T1 ≥ s, T2 ≥ t)/(h1h2),

which can be interpreted as the instantaneous rate of a double failure of subject 1 from
cause k event and subject 2 from cause l event at time (s, t) given that the subjects were
at risk at times s and t. The bivariate cumulative cause-specific hazard function is then
defined as

Λkl(s, t) =

∫ s

0

∫ t

0

λkl(u, v)dudv.

The bivariate cumulative incidence function is defined as

Fkl(s, t) = Pr(T1 ≤ s,D1 = k, T2 ≤ t,D2 = l)

=

∫ s

0

∫ t

0

λkl(u, v)S(u−, v−)dudv,

where S(u, v) = Pr(T1 > u, T2 > v) is the overall bivariate survival function. Note that
S(u, v) involves the bivariate cause-specific hazard functions for all combinations of causes
(k, l). Hence, there is no direct relationship between Λkl(s, t) and Fkl(s, t).

25.3 Estimation of multivariate CSHs and CIFs

One important issue in clustered competing risks data analysis concerns the nonparametric
estimation of multivariate cause-specific hazard and cumulative incidence functions. Most
existing work focuses on the analysis of bivariate competing risks data. Particularly, Cheng
et al. (2007) derived nonparametric estimators for Λkl and Fkl defined in Section 25.2
without making any assumptions about the dependence of the risks. We describe the non-
parametric estimators below.

Consider a pair of observations {X1 ≡ min(T1, C1), ε1Δ1} and {X2 ≡ min(T2, C2), ε2Δ2}.
We first define counting processes Njk(s) = I(εjΔj = k)I(Xj ≤ t) and at risk processes
Hj(t) = I(Xj ≥ t), for j = 1, 2, and k = 1, ...,K. We then define N(s, t) = N1k(s)N2l(t)
and H(s, t) = H1(s)H2(t). It can be shown that

Λkl(s, t) =

∫ s

0

∫ t

0

EN(du, dv){EH(u, v)}−1,

where EF denotes the expectation of a random function F . Naturally, the nonparametric
estimator of Λkl(s, t) can be obtained by replacing the theoretical quantities in the above
equation by their empirical counterparts from the data, i.e.,

Λ̂kl(s, t) =

∫ s

0

∫ t

0

EnN(du, dv){EnH(u, v)}−1,

where EnF is the empirical process for F based n i.i.d. pairs of observations. The bivariate
CIFs can in turn be estimated by

F̂kl(s, t) =

∫ s

0

∫ t

0

Ŝ(u−, v−)Λ̂(du, dv),
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where Ŝ(u−, v−) is an estimator of the overall bivariate survival function. The Breslow-type

estimator of S(u−, v−) can be given by exp
{
−∑K

k=1

∑K
l=1 Λ̂kl(u, v)

}
. Cheng et al. (2007)

established the uniform consistency, weak convergence, and bootstrap validity for Λ̂kl and
F̂kl through the use of empirical process theories and the functional Delta method.

25.4 Association analysis

The association analysis of multivariate survival data has been extensively studied in
Hougaard (2000). However, there is relatively limited work on these analyses for multi-
variate competing risks data due to the complication that there may be within-subject
dependence in the latent failure times leading to dependent censoring, in addition to the
cross-subject dependence.

Almost all existing work on the association analysis with competing risks data concerns
bivariate data with the exception of Cheng et al. (2010). Bandeen-Roche and Liang (2002)
proposed to use Oakes (1989) cross-hazard ratio to assess cause-specific association among
clustered times-to-disease-onset with bivariate competing risks data. The cause-specific haz-
ard ratio is defined as

θCS(s, t; k, l) =
S(s, t)f(s, t; k, l)

{
∫∞
t

∑K
h=1 f(s, v, k, h)dv}{

∫∞
s

∑K
h=1 f(u, t;h, l)du}

,

where

f(s, t, k, l) = lim
(h1,h2)↓0

Pr(T1 ∈ [s, s+ h1], T2 ∈ [t, t+ h2], , ε1 = k, ε2 = l)/(h1h2)

is the cause-specific bivariate density and

S(x, y) =

∫ ∞

x

∫ ∞

y

K∑
k=1

K∑
l=1

f(u, v, k, l)dudv

is the absolutely continuous joint survival function. Intuitively, when two events (T1, ε1 = k)
and (T2, ε2 = l) are independent, θCS(s, t; k, l) = 1 at all (s, t). In general, positive (negative)
associations occur when θCS(s, t; k, l) > (<)1. Bandeen-Roche and Liang (2002) developed
a family of parametric models for θCS . A nonparametric method using ranks that localize
Kendall’s tau for the estimation of θCS was further developed by Bandeen-Roche and Ning
(2008).

Cheng and Fine (2008) proposed an alternative representation of the cause-specific cross-
hazard ratio for bivariate competing risks data by using bivariate hazard functions. Define

λk0(s, t) = lim
h1↓0

Pr(T1 ∈ [s, s+ h1], ε1 = k|T1 ≥ s, T2 ≥ t)/h1,

λ0l(s, t) = lim
h2↓0

Pr(T2 ∈ [t, t+ h2], ε2 = l|T1 ≥ s, T2 ≥ t)/h2.

Cheng and Fine (2008) then defined a cause-specific association measure using these bivari-
ate hazard functions

ξ(s, t; k, l) =
λkl(s, t)

λk0(s, t)λ0l(s, t)
.

The above cause-specific association measure has appealing and intuitive interpretations.
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The independence of two events (T1, ε1 = k) and (T2, ε2 = l)will lead to ξ(s, t; 1, 1) = 1
for all s and t, whereas positive and negative associations occur when ξ(s, t; 1, 1) > 1
and 0 < ξ(s, t; 1, 1) < 1, respectively. Furthermore, Cheng and Fine (2008) showed that
the above association measure is identical to the cause-specific cross-hazard ratio θCS of
Bandeen-Roche and Liang (2002).

The representation of the cause-specific association measure of Cheng and Fine (2008)
leads to a simple nonparametric plug-in estimator. The basic idea to estimate ξ(s, t; k, l) to
replace the population parameters by their empirical counterparts. From the definition of
ξ(s, t; k, l), one can show that

ENkl(ds, dt)EY (s, t) = ξ(s, t; k, l)ENk0(ds, t)EN0l(s, dt),

where Nkl(s, t) = I(X1 ≤ s, ε1Δ1 = k,X2 ≤ t, ε2Δ2 = l), Nk0(s, t) = I(X1 ≤ s, ε1Δ1 =
k,X2 ≥ t), N0l(s, t) = I(X1 ≥ s,X2 ≤ t, ε2Δ2 = l), and Y (s, t) = I(X1 ≥ s,X2 ≥ t). By
assuming that ξ(s, t; k, l) is a constant over a pre-defined region Ω, i.e., ξ(s, t; k, l) ≡ ξΩ for
all (s, t) ∈ Ω, the parameter ξΩ is a solution of∫ ∫

Ω

w(s, t){ENkl(ds, dt)EY (s, t)− ξΩENk0(ds, t)EN0l(s, dt)} = 0,

where w(s, t) is a known weight function satisfying∫ ∫
Ω

w(s, t)dsdt = 1.

Plugging in the corresponding empirical processes into the above estimating equation, one
can derive the following nonparametric estimator of ξΩ

ξ̂Ω =

∫ ∫
Ω
ŵ(s, t)EnNkl(ds, dt)EnY (s, t)∫ ∫

Ω
ŵ(s, t)EnNk0(ds, t)EnN0l(s, dt)

,

where ŵ(s, t) is an estimator of w(s, t) that satisfies∫ ∫
Ω

ŵ(s, t) = 1, ||ŵ − w||∞ → 0,
√
n(ŵ − w) = Op(1).

Various choices of w(s, t) can be considered in the estimation. The choice of Ω can be
governed, in part, by scientific interest and in part by feasibility of estimation. A particular
choice of w(s, t) = {EY (s, t)}−2 leads to

ξΩ =

{∫ ∫
Ω

λkl(u, v)dudv

}{∫ ∫
Ω

λk0(u, v)λ0l(u, v)dudv

}−1

,

the merits of which without competing risks are discussed by Fan et al. (2000).

The consistency and asymptotic normality of ξ̂Ω can be proved by applying the empirical
process theories (van der Vaart and Wellner, 2000) and functional Delta method. When
ξ(s, t; k, l) is not constant in Ω, one can define a summary measure in Ω

ξΩ =

∫ ∫
Ω
w(s, t)ENkl(ds, dt)EY (s, t)∫ ∫

Ω
w(s, t)ENk0(ds, t)EN0l(s, dt)

.

The consistency and asymptotic normality of ξ̂Ω as an estimator of ξΩ continue to hold.
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Alternatively, Cheng et al. (2007) considered association measure derived from bivariate
cause-specific hazard function Λkl

φ(s, t; k, l) = Λkl(s, t){Λ(k)
1 (s)Λ

(l)
2 (t)}−1,

where Λ
(k)
j is the univariate cause-specific cumulative hazard for cause k for subject j.

Similarly, one can define the association measure based on the bivariate cumulative incidence
function Fkl

ψ(s, t; k, l) = Fkl(s, t){F (k)
1 (s)F

(l)
2 (t)}−1,

where F
(k)
j is the marginal cumulative incidence function for cause k for subject j. Both

association measures φ and ψ can be estimated by plugging the nonparametric estimators
of population parameters described in Section 25.3. When (T1, ε1 = k) and (T2, ε2 = l) are
independent, both φ and ψ are equal to 1. However, it is worth to note that the independence
for the cause-specific hazard function does not imply the independence for the corresponding
cumulative incidence function and vice versa, because the cumulative incidence function
involves cause-specific hazards for other causes.

Testing of association can be accomplished by Wald-type test statistics for testing
whether the aforementioned measures of association are equal to 1. Functional Delta method
and/or bootstrapping method can be used to estimate the variance of the test statistic.

All the aforementioned measures of association are defined for bivariate competing risks
data. Cheng et al. (2010) extended the cause-specific association measure of Bandeen-Roche
and Liang (2002) to accommodate more general competing risks family data with ni ≥ 2
and allow exchangeability among siblings. Cheng et al. (2010) derived the rank correlation
estimator similar to that of Bandeen-Roche and Liang (2002) and established the large
sample properties through the use of U -statistic theories.

25.5 Regression analysis

There are two main approaches in the regression analysis of clustered competing risks data,
namely the conditional approach and the marginal approach. When the focus is on the
covariate effects on the cause-specific hazards for a particular cause, techniques for standard
clustered survival data can be applied by treating failures from other causes as censored
observations. However, special treatments are needed for assessing the covariate effects on
cumulative incidence functions.

25.5.1 Fine and Gray model

The most commonly used model for relating covariates and cumulative incidence function
pertains to the so-called Fine and Gray model (Fine and Gray, 1999). The Fine and Gray
model postulates the following proportional hazards expression for the subdistribution of a
competing risk

λ1(t|Z) = λ1(t) exp(β
TZ),

where λ1(t|Z) is the conditional subdistribution hazard for cause 1 given covariates Z as
defined in Section 25.3, λ1(t) is the completely unspecified baseline subdistribution hazard
function and β is a p×1 vector of unknown regression parameters. The Fine and Gray model
allows one to model the covariate effects on the cumulative incidence function directly.

Given n i.i.d. observations {Xi ≡ min(Ti, Ci), εiΔi,Zi}, Fine and Gray (1999) proposed
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to estimate the regression parameters by maximizing a variation of the partial log-likelihood
for standard survival data by adapting inverse probability of censoring weighting techniques
(Robins and Rotnitzky, 1992)

n∑
i=1

I(εiΔi = 1)

⎧⎨⎩βTZi − log

⎛⎝ n∑
j=1

wj(Xi) exp(β
TZj)

⎞⎠⎫⎬⎭ ,

where wi(t) = I(Xi ≥ t ∪ εiΔi > 1)Ĝ(t)/Ĝ(Xi ∧ t) is the weight for subject i at time t,

and Ĝ is the Kaplan-Meier estimate of the survival function of the censoring time. Similar
to the Breslow estimator for the baseline hazard function with standard survival data, the
baseline cumulative subdistribution hazard can be estimated by

Λ̂1(t) =
1

n

n∑
i=1

∫ t

0

1

Ŝ(0)(β̂, u)
wi(u)dNi(u),

where Ni(u) = I(Ti ≤ u, εi = 1), Ŝ(0)(β, u) = 1
n

∑n
i=1 wi(u)Yi(u) exp(β

TZi), and Yi(u) =
1−Ni(u−).

One key feature of the above partial log-likelihood is that subjects with failure from
other causes remain in the risk at time t as long as Ci > t. If there is only a single cause
of failure, the above partial likelihood reduces to the typical partial likelihood for the Cox
model.

It is worth to note that although the Fine and Gray model is the standard model,
it is somewhat difficult to interpret the regression coefficients within the context of the
proportional hazard model for the subdistribution hazard function (Fine and Gray, 1999;
Andersen and Keiding, 2012). In addition, there is no direct relationship between the effect
of a covariate on the cause-specific hazard function and cumulative incidence function; see
Fine and Gray (1999), Katsahian et al. (2006), and Beyersmann and Schumacher (2008).

25.5.2 Conditional approach using Fine and Gray model

To accommodate clustered competing risks data, Katsahian et al. (2006) extended Fine
and Gray’s model by including random effects or frailties in the subdistribution hazard.
Specifically, the conditional subdistribution hazard of subject j in the ith cluster given the
cluster-specific random effect ui takes the form

λ1(t|Zij , ui) = λ1(t) exp(β
TZij + ui).

The random effects ui’s are assumed to be Gaussian with mean 0 and variance θ. The mean
of the frailties is fixed at 0 to ensure the identifiability of the model. A zero value of the
variance parameter θ corresponds to the case that there is no within-cluster dependence.
The conditional partial log-likelihood given the frailties is then expressed as

n∑
i=1

ni∑
j=1

I(εijΔij = 1)

{
βTZij + ui

− log

( n∑
i′=1

ni∑
j′=1

wi′j′(Xij) exp(β
TZi′j′ + ui′)

)}
,

where wij(t) = I(Xij ≥ t ∪ εijΔij > 1)Ĝ(t)/Ĝ(Yij ∧ t). To obtain the estimators of the
regression parameters, one can maximize the marginal partial likelihood by integrating out
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the frailties from the conditional partial likelihood. However, there is no closed-form solution
for the marginal partial likelihood and numerical approximation is needed to calculate the
marginal likelihood function. Katsahian et al. (2006) used the residual maximum likelihood
approach to estimate the regression parameters. Alternatively, Katsahian and Boudreau
(2011) proposed to use the penalized partial log-likelihood (PPLL) approach and used a
Laplace approximation (Ripatti and Palmgren, 2000; Therneau et al., 2003) to the marginal
partial likelihood. One advantage of the PPLL approach is that the maximization can be
accomplished using existing statistical software for Gaussian frailty models. To test the
presence of center effects, i.e., H0 : θ = 0 versus H1 : θ > 0, one can use the likelihood
ratio test statistic, which asymptotically follows a 50:50 mixture of χ2 with 1 d.f. and
a degenerated random variable with mass at 0. Note that one can obtain the parameter
estimates under H0 by fitting the Fine and Gray model to the data directly.

The random effects model of Katsahian et al. (2006) allows subject-specific regression
effects. However, as pointed by Scheike et al. (2010), the frailty parameter can only be
identified from the marginal models and the marginal models depend on the distribution of
the cluster-specific random effects.

25.5.3 Marginal approach using Fine and Gray model

The conditional approach of Katsahian et al. (2006) and Katsahian and Boudreau (2011)
enables the assessment of both covariate effects and within-cluster associations. However,
the conditional approach involves explicit distribution assumption of the frailties and com-
putation can be intensive as in general there is no closed form for the marginal partial
likelihood function and numerical approximation is required. Furthermore, the random ef-
fects model induces a restrictive positive correlation structure among failure times within a
cluster, which may not always be true in practice.

Alternatively, Zhou et al. (2012) proposed a population average regression model to as-
sess the marginal effects of covariates on the cumulative incidence function accounting for
dependence across individuals within a cluster. In particular, they extended the Fine-Gray
proportional hazards model for the subdistribution to the clustered competing risks setting.
Under an independence working assumption, one can obtain the estimate of the cumulative
incidence function and the covariate effects by following the Fine and Gray methodology de-
scribed in Subsection 25.5.1 treating subjects within a cluster as independent observations.
Zhou et al. (2012) then proposed to use Sandwich-type variance estimators to account for
the correlation within clusters. In particular, the proposed variance estimators account for
both correlations among failure times and correlations among censoring times within a clus-
ter. The estimator of the cumulative incidence function can be obtained by plugging in the
estimators of the regression parameters and the baseline cumulative subdistribution hazard
in the expression of the cumulative incidence function. While one can derive the asymp-
totic properties of the estimator of the cumulative incidence function using functional Delta
method, the variance is complicated and bootstrapping technique can be applied in practice
(Zhou et al., 2012).

25.5.4 Mixture model with random effects

Naskar et al. (2005) proposed a semiparametric mixture model for analyzing clustered com-
peting risks data. First, the cause of failure is assumed to have a multinomial distribution
assuming a logistic model given by

Pr(εij = l|Zij) =
βT
l Zij∑K

k=1 exp(β
T
kZij)

,
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where βl is the set of regression parameters corresponding to the l type of failure. Condi-
tional on the failure from cause l and cluster-specific frailty uil for the lth cause, the hazard
function for the lth cause is modeled as

λijl(t|Zij) = λ0l(t)uil exp(γ
T
l Zij),

where λ0l is the unspecified baseline hazard function corresponding to the failure from
cause l. Note that one may use different sets of covariates in the logistic model and the
hazard model. To accommodate multimodality for the distribution of the frailties, Dirichlet
process is used to model the unknown frailty distribution nonparametrically. Monte Carlo
ECM algorithm is used to obtain the estimates of the parameters that assess the extent of
the effects of the causal factors for failures of a certain type.

25.5.5 Alternative approaches

Scheike et al. (2008) and Scheike and Zhang (2008) studied a general semiparametric model
for the cumulative incidence function, under which some covariates have time-varying effects
and others have constant effects. This work was further extended by Scheike et al. (2010)
to deal with clusters by providing robust standard errors through the standard GEE type
approach. The approach of Scheike et al. (2010) also extended the work by Chen et al.
(2008) that considered the k-sample case.

To overcome the drawback of the approach of Katsahian et al. (2006) that the marginal
models depend on the distribution of the frailties, Scheike et al. (2010) considered an al-
ternative random effects model, under which the marginal cumulative incidence functions
follow a generalized semiparametric additive model that is independent of the frailty pa-
rameters. Furthermore, the frailities in this model reflect solely the amount of variation
due to clusters as the frailties account only for correlations between competing risks failure
times within clusters. Scheike et al. (2010) introduced the concept of cross-odds ratio to
measure the degree of association between two cause-specific failure times within the same
cluster. A two-stage estimation procedure was developed, where the marginal models are
estimated in the first stage and the dependence parameters are estimated in the second
stage. This approach has been implemented in the functions random.cif and cor.cif in the
mets R package.

25.6 Example

Data are taken from the R package crrSC in which a random subsample of 400 patients were
selected from the multicenter Bone Marrow transplantation data as described in Zhou et al.
(2012). In this example, 400 patients were from 153 centers with center sizes ranging from
1 to 10. The event of interest was the time from transplantation to the occurrence of either
acute or chronic Graft-versus-host disease (GvHD). Death and relapse free of GvHD are
competing risks. Of the 400 patients, 194 patients experienced GvHD, 74 patients had re-
lapse or died without GvHD, and 132 patients were censored. We considered two covariates,
the source of stem cells and female donor to male recipient match was available. For the
jth patient in the ith center, we define Zij1 = I(source of stem cells is peripheral blood)
and Zij2 = I(female donor to male recipient). After excluding 17 patients with missing in-
formation on female donor to male recipient match, the final dataset contains 383 patients,
of which 71 patients were female donor to male recipients and the source of stem cells for
206 patients were peripheral blood.
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TABLE 25.1
Analysis of bone marrow transplantation data.

Covariate β̂ exp(β̂) se(β̂) p-value

Zhou et al. (2012)

Female donor to male recipients vs. others 0.289 1.346 0.148 0.050

Peripheral blood vs. BMT -0.225 0.799 0.138 0.104

Scheike et al. (2010)

Female donor to male recipients vs. others 0.361 1.435 0.170 0.034

Peripheral blood vs. BMT -0.192 0.825 0.142 0.176

We analyzed the data using both the approach of Zhou et al. (2012) and the approach of
Scheike et al. (2010). In particular, we assume both covariates have constant effects under
the random effects model of Scheike et al. (2010). Table 25.1 presents the estimates for
regression coefficients and the corresponding standard error estimates under both models.
It appears that the gender match has a marginally significant effect on the cumulative
incidence of GvHD with p-values of 0.05 and 0.034 under the approach of Zhou et al. (2012)
and the approach of Scheike et al. (2010), respectively, whereas no significant effect of source
of stem cell was detected. The estimated effects of female donor to male recipient match
are 0.289 and 0.361 with the standard errors of 0.148 and 0.170 under the two approaches,
respectively. The female donor to male recipients appeared to be at a higher risk of GvHD
with the subdistribution hazard ratio of 1.34 and 95% confidence interval (1.00, 1.78) under
the approach of Zhou et al. (2012) and the subdistribution hazard ratio of 1.435 and 95%
confidence interval (1.02, 2.00) under the approach of Scheike et al. (2010). The frailty
variance under the model of Scheike et al. (2010) was estimated at 0.407 with the standard
error of 0.447 and the log-cross odds ratio was estimated at 0.334 with the standard error of
0.313, both suggesting non-significant within-cluster association between two cause-specific
failure times.

25.7 Discussion and future research

In this section, we provide an overview of clustered competing risks data focusing on (1)
estimation of multivariate CSHs and CIFs; (2) association analysis; and (3) regression anal-
ysis. Because of the page limit, it is not feasible to cover all important work in literature in
this chapter, such as Shih and Albert (2010), Gorfine and Hsu (2011), Dixon et al. (2011),
Logan et al. (2011), Dixon et al. (2012), Scheike and Sun (2012), Cheng and Fine (2012),
among others. Particularly, Scheike and Sun (2012) studied the parametric regression mod-
eling of the cross-odds ratio for multivariate competing risks data, which is a measure of
association between the correlated cause-specific failure times within a cluster.

Future research directions may include (1) model diagnostics; (2) exploration of alterna-
tive survival models such as the proportional odds model, semiparametric transformation
model, and cure rate models; (3) development of methods for more complicated family
structures; and (4) development of user-friendly software.
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26.1 Introduction

In biomedical research, along with censored time-to-event data and baseline covariates,
repeated measurements of biomarkers are also collected at a number of time points. A
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well-known example of this is HIV research (Wang and Taylor, 2001; Pawitan and Self,
1993), in which the biomarker CD4 lymphocyte count is measured at regularly scheduled
intervals. In these studies patients are followed until an event, such as progression to AIDS or
death. In addition to biomarker data, other covariates, such as treatment and demographic
information, are recorded at baseline. In order to understand the natural history of the
disease and to search for a “surrogate marker” for the time to AIDS or death, investigators
are often interested in both modeling the progression of the CD4 count and estimating the
relative risk of progressing to AIDS associated with different CD4 count levels. Data such
as this are important for other studies including those of prostate cancer in which research
interest lies in the association between level or rate of change of prostate specific antigen
(PSA) and time to cancer recurrence (Ye et al., 2008b), as well as studies of cognitive aging
(Proust et al., 2006) which investigate the relationship between cognitive functioning decline
and time to dementia.

To illustrate the basic concept of joint modeling of longitudinal and time-to-event data,
consider a sample of N subjects. For the ith subject, let T ∗i and Ci be the event and censoring
times, respectively. Rather than observing T ∗i , we observe only Ti = min(T ∗i , Ci) along with
an indicator δi that equals 1 if T ∗i ≤ Ci and 0 otherwise. Let Ȳ ∗i (Ti) ≡ {Y ∗i (u); 0 ≤ u ≤
Ti} be the trajectory of a time-dependent covariate Y ∗i . Instead of observing the entire
true history of the time-dependent covariate, only intermittent measurements with possible
measurement error are observed on subject i, at ni time points tij(j = 1, ..., ni):

Yi(tij) = Y ∗i (tij) + ei(tij) (26.1)

Here ei(tij) represents the measurement error.
As shown in the above examples, research interests often lie in both capturing change

in patterns in the longitudinal data, including relationship between such change and rel-
evant baseline factors E{Y ∗i (t)|Zi}, and elucidating the association structure between the
longitudinal data and event times through modeling the hazard function of T ∗ as

lim
dt→0

Pr{t ≤ T ∗i < t+ dt|Ti ≥ t, Ȳ ∗i (u), Zi}/dt. (26.2)

where Ȳ ∗i (u) = {Y ∗i (s); 0 ≤ s ≤ u} denotes the history of the true and unobserved longi-
tudinal process up to time point u, and Zi is a vector of fully observed time-independent
covariates.

Both objectives in such studies pose difficulties. For instance, in HIV studies, subjects
with sharper rates of CD4 decline may have more serious disease and higher risk of develop-
ing AIDS or death, and in turn are more likely to develop AIDS or die earlier and have fewer
CD4 count measurements. This is known as “nonignorable” missing data (Little and Rubin,
2002). Attempts to make inferences for the longitudinal CD4 count process using ordinary
longitudinal models can lead to biased estimates. To study the association between CD4
count and time to AIDS or death, if the true CD4 count trajectory Ȳ ∗i (Ti) were known, the
time to AIDS or death could be described by the proportional hazards model (Cox, 1972),
with the CD4 count as a time-dependent covariate. However, there are two additional chal-
lenges. First, the CD4 count is typically subject to substantial measurement error due to
both laboratory error and short-term biological variability (e.g., the coefficient of variation
was approximately 50%, according to Tsiatis et al. (1995)). A commonly used näıve method
substitutes the observed time-dependent covariate for the true covariate values in the pro-
portional hazard model. Rabout (1991) argued that this method leads to biased estimates
of the relative risk parameters, and the extent of the bias is proportional to the variance of
the measurement error (Prentice, 1982). Second, the CD4 count is usually only measured
intermittently, and thus may not be collected at the time when a failure event occurs for
members in the corresponding risk set. To solve this problem, in early AIDS studies the
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“Last Value Carried Forward (LVCF)” method was often used. It simply pulls forward the
nearest preceding value of the marker and treats it as if it were the current value of the
marker at the failure time. This näıve method not only ignores the measurement error, but
also ignores the possible trend of the marker, yielding very poor imputes for the missing
marker values and leading to poor estimates of relative risk parameters.

To eliminate the bias due to measurements error, two-stage analysis (Tsiatis et al.,
1995; Bycott and Taylor, 1998; Dafni and Tsiatis, 1998; Ye et al., 2008b) using smoothing
techniques is the earliest approach. The idea is to first use regression calibration to capture
the underlying trend of the covariate over time and impute the missing covariate values for
subjects in all risk sets, and then use these imputes in the disease risk model as if they were
appropriate Y ∗i (t) at the time of each failure. Although two-stage approaches can easily be
implemented using standard software for mixed effects and proportional Cox models, under
many circumstances, they produced biased results and underestimate the uncertainty of
the risk parameters associated with the repeated measures, especially when the collected
longitudinal data are relatively sparse.

To better model the longitudinal and time-to-event data, in the past two decades a class
of statistical models known as joint models has been developed. In this chapter, we introduce
the joint modeling framework. The idea of jointly modeling longitudinal measurements and
time-to-event data can be traced back to Little’s pattern-mixture models (Little, 1993) for
multivariate incomplete data. Also relevant work is by Wu and Carroll (1988) developed a
joint likelihood-ratio test on the basis of a latent variable model whereby they described
longitudinal data with linear random effect and the right censoring with a probit model.
Although their primary interest is to analyze the incomplete longitudinal data, this idea has
been adopted and extended by other researchers to assess the dependence of failure time
on a time-dependent covariate process.

Faucett and Thomas (1996) and Wulfsohn and Tsiatis (1997) laid the standard and
basic framework for joint modeling of longitudinal and time-to-event data. Following their
pioneer work, this area of research has received remarkable attention in the methodological
literature over the past decade. By jointly maximizing a likelihood [Ti, Yi|Zi] from both
the covariate process and time-to-event data, information from both sources can be used
to obtain parameter estimates for the two processes simultaneously. By doing so, the infor-
mative drop-out can be adjusted by borrowing information from the survival model, and,
conversely, unbiased information from the longitudinal covariate can be incorporated to the
survival model. This process allows the dependence of the failure time on the longitudinal
marker to be correctly assessed. In addition to correcting biases, joint modeling can improve
the efficiency of parameter estimates in either part of the model, because extra information
is being used (Tsiatis and Davidian, 2004; Wu et al., 2012).

This chapter describes how joint modeling can be used to make appropriate inferences
about the effect of a longitudinal process on survival. The models discussed in this chapter
can also be used for modeling the longitudinal data with informative dropouts. For more
information on this, interested readers can refer to Chapter IV in Fitzmaurice et al. (2008).

26.2 The basic joint model

Three broad classes of joint models have been discussed in the literature: selection mod-
els, pattern-mixture models and latent variable models (Xu and Zeger, 2001). In selection
models, which is useful in predicting the survival time T ∗i , the likelihood is formulated as
[Ti|Yi, Zi][Yi|Zi] (Henderson et al., 2000). In pattern-mixture models (Little, 1993; Hogan
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and Laird, 1997a,b; Pawitan and Self, 1993), the decomposition [Yi|Ti, Zi][Ti|Zi] is used.
Pattern-mixture models are employed to facilitate inference for the longitudinal process
Y ∗(u).

Here we focus on latent variable models, also known as “shared parameter models,”
which are the mostly widely used and are good for inference for both marker and survival
processes. The central feature of latent variable models is to introduce some unobserved
latent variables ηi and assume that the marker process and failure times are conditionally
independent given ηi and other baseline covariates Zi. In latent variable models, likelihood
is formulated in terms of

[Ti, Yi|Zi] =

∫
[Ti, Yi|ηi, Zi]d[ηi|Zi] =

∫
[Ti|ηi, Zi][Yi|ηi, Zi]d[ηi|Zi] (26.3)

To specify a latent variable joint model, we need to first specify a longitudinal submodel
[Yi|ηi, Zi], a survival submodel [Ti|ηi, Zi], and the latent variables ηi, which describe the
association between the two submodels.

26.2.1 Survival submodel

The standard approach for the survival submodel is the proportional hazard model (Cox,
1972)

λi(t) = λ0(t)exp{αT q(t, ηi) + γTZi} (26.4)

where λ0(t) denotes the baseline risk function, and q(·, ·) is a vector function of time and
the latent variables ηi. γ

T are a vector of regression coefficients associated with baseline
covariates Zi. The form of q(·, ·) used in the vast majority of joint models is Y ∗i (t), which
postulates that the risk of event at time t depends only on the current value of the longitu-
dinal process.

Several options for specifying the baseline hazard function λ0(t) have been proposed in
the literature, including leaving λ0(t) completely unspecified as in standard survival analysis
(Chapter 1), using risk function corresponding to a known parametric distribution (e.g., the
Weibull, the log-normal, the Gompertz, and the Gamma distributions), or using parametric
but flexible specifications such as the piecewise-constant and regression spline approach
(Rosenberg, 1995).

26.2.2 Longitudinal submodel

A standard approach to modeling repeated measures is to characterize the unobserved true
marker process Y ∗i (t) using a vector of subject specific random effects bi:

Y ∗i (t) = bT
i fi(t); bi|Zi ∼ N (µb,Σ) (26.5)

where fi(t) is a vector function of time t with q elements. This equation and (26.1) specify

a standard linear mixed effect model (Laird and Ware, 1982) where ε(tij)
iid∼ N (0, σ2

ε) are
independent of bi. In their pioneer work, Faucett and Thomas (1996) and Wulfsohn and
Tsiatis (1997) considered a simple linear random effects model for fi(t) to capture true CD4
trajectories.

Y ∗i (t) = b0i + b1it (26.6)

where b0i and b1i are the subject-specific random intercept and slope, respectively. To cap-
ture nonlinear subject-specific longitudinal profiles, more flexible forms of fi(t), such as
polynomials and splines, have also been considered (Rizopoulos et al., 2009; Brown et al.,
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2005; Ding and Wang, 2008; Dimitris and Pulak, 2011). In this type of models, the random
effects bi can be viewed as the latent variables ηi in (26.3) that are time-invariant and de-
termine the complete smoothing trajectory of the evolution of the subject-specific marker
process.

An alternative approach to modeling repeated measures is to use stochastic models
(Taylor et al., 1994; Lavalley and De Gruttola, 1996; Wang and Taylor, 2001; Henderson
et al., 2000)

Y ∗i (t) = bi
T fi(t) + Ui(t) (26.7)

where bT
i fi(t) is defined similarly as in (26.5), and Ui(t) is a stochastic process (e.g., in-

tegrated Ornstein-Uhlenbeck (IOU) in Wang and Taylor (2001) and Brownian motion in
Henderson et al. (2000)) capturing additional serial correlation between measurements not
captured by random effects. This model can also be used to capture highly nonlinear shapes
of subject-specific trajectories. Tsiatis and Davidian (2004) pointed out that the choice be-
tween (26.7) and (26.5) is to some extent a philosophical issue and often relies on the mod-
eler’s belief about the underlying biological mechanism (For more complete understanding,
see their insightful discussion in Tsiatis and Davidian (2004)).

26.2.3 Joint likelihood formulation and assumptions

The joint likelihood can be formulated using (26.3). For ease of exposition, we consider the
joint model defined by (26.4) with q(t, ηi) = Y ∗i (t), (26.5) and (26.1). Under this setup the
complete data log-likelihood conditional on baseline covariates Zi is

lc =

N∑
i=1

log

⎡⎣h(Ti, δi|bi, λ0, α, γ, Zi)
{ ni∏
j=1

h(Yij |bi, σ
2)
}
h(b|µb,Σ, Zi)

⎤⎦ (26.8)

where h(Yij |bi, σ
2) = (2πσ2)−1/2 exp{−(Yij − bT

i fi(tij))
2/2σ2} is the density of Yij at

time tij , h(bi|µb,Σ) = (2π|Σ|)−1/2q exp{−(bi − µb)
TΣ−1(bi − µb)/2} is the density of the

random effects bi, and h(Ti, δi|bi, λ0, α, γ, Zi) is the density for the survival data and can
be written as[

λ0(Ti) exp{αbifi(Ti) + γTZi}
]δi

exp

[
−
∫ Ti

0

λ0(u) exp{αbifi(u) + γTZi}du
]

Since random effects bi are latent and not observed, the log-likelihood for the observed
data is

�o =
N∑
i=1

log

⎡⎣∫ h(Ti, δi|bi, λ0, α, γ, Zi)

{ ni∏
j=1

h(Yij |bi, σ
2)

}
h(bi|b,Σ, Zi)dbi

⎤⎦ (26.9)

To justify the validity of inference based on (26.9) the following assumptions are typically
used in the literature:

1. The observed marker measurement Yi(t) only depends on the observed history
{Yi1, ...Yik}(where tik < t) and latent random effects bi but not additionally on the
unobserved future event time Ti.

2. Given the observed marker history {Yi1, ...Yik}(where tik < t) and covariates Zi, the
risk of being censored and chance of observing the error-prone marker process Yi(t) at
time t do not depend on the latent marker process Y ∗i (t)(which can be summarized by
bi) and the unobserved future event time T ∗i .
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Practically speaking, the first assumption implies that given the latent subject character-
istics associated with prognosis, measurement errors do not provide additional information
on the risk of event. The second assumption implies that decisions on whether a subject
withdraws from the study or appears at the clinic for a longitudinal measurement depend on
the observed past history (longitudinal measurements and baseline covariates), but there
is no additional dependence on underlying, latent subject characteristics associated with
prognosis or the risk of event. For details on formal elucidation of these assumptions refer
to Tsiatis and Davidian (2004).

26.2.4 Estimation

The two most commonly used methods for estimation in the joint analysis of longitudinal
and time-to-event data are maximum likelihood estimation (MLE) and Bayesian-Markov
chain Monte Carlo (MCMC).

26.2.4.1 Maximum likelihood estimation

Maximization of the observed log-likelihood function (26.9) with respect to model parame-
ters can be achieved using standard algorithms such as the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) or the Newton-Raphson algorithm (Press et al., 1992).

Viewing the unobserved latent variables bi as missing data, it is natural to consider using
the EM algorithm to maximize function (26.9). For simplicity, we combine all parameters
into one vector θ. The intuition underlying the EM algorithm is that the log-likelihood
corresponding to the complete data (26.8), often in closed form, is typically much easier
to maximize. To take advantage of this feature the EM algorithm iterates between two
steps, the Expectation (E) step and the Maximization (M) step. The E step yields the
conditional expectation of each function of bi appearing in the complete data log-likelihood
function lc (26.8), given the observed data (Yi, Zi, Ti, δi), and using the current estimates of
θ, namely E(g(bi)|Yi, Zi, Ti, δi,θ

m−1) in the mth iteration. In the M step, each function of
bi appearing in Equation (26.8) is replaced by its conditional expectation, and maximized
to update θ.

The M step is straightforward, even when a nonparametric baseline function is used
in survival submodel (26.4). In the E step, the main computation involves finding the
conditional expectation of each function of bi. In the literature these expectations are
routinely evaluated using the numerical integration technique of Gaussian quadrature (Press
et al., 1992; Wulfsohn and Tsiatis, 1997; Henderson et al., 2000; Ratcliffe et al., 2004) and
Monte Carlo method (Law et al., 2002).

However, when the dimensionality of the random effects bi increases (e.g., when spline
functions are used in the longitudinal submodel (26.5) to capture nonlinear subject specific
trajectories) the computation of the E-step can become highly demanding and thus becomes
a computational bottleneck for fitting joint models. For this reason, inspired by numerical
techniques proposed for approximating the integrated log-likelihood in generalized non-
linear mixed models (Pinheiro et al., 1995), some authors turned to the Newton-Raphson
algorithm using Laplace approximations (Ye et al., 2008a; Rizopoulos et al., 2009; Guo and
Carlin, 2004; Vonesh et al., 2006). Ye et al. (2008a) and Rizopoulos et al. (2009) showed
that their methods are computationally more efficient compared to the EM algorithm us-
ing Gaussian quadrature or Monte Carlo. To further decrease the computational burden,
Rizopoulos (2012a) proposed the use of pseudo-adaptive quadrature where posterior distri-
bution of the random effects obtained from separate fit of the longitudinal model is used to
appropriately re-scale the subject-specific integrand. However, note that the order of stan-
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dard Laplace approximation error is O(n−1
i ), which cannot be made arbitrarily accurate,

which means that the approximation might not work well when ni is small.

26.2.4.2 Bayesian methods

The Bayes approach has also been proposed for parameter estimation for joint models
(Faucett and Thomas, 1996; Wang and Taylor, 2001; Brown and Ibrahim, 2003a,b; Ibrahim
et al., 2004; Guo and Carlin, 2004; Yu et al., 2004; Brown et al., 2005; Chi and Ibrahim,
2006).

Denote h(θ|θ0) the prior distribution of θ, given some known hyperparameters θ0. The
idea is to estimate the joint posterior distribution of all unknown parameters and latent
random effects

h(θ,bi|Yi, Zi, Ti, δi; i = 1, . . . , N) (26.10)

∝
N∏
i=1

⎡⎣h(Ti, δi|bi, λ0, α, γ, Zi)

{ ni∏
j=1

h(Yij |bi, σ
2)

}
h(bi|b,Σ, Zi)

⎤⎦h(θ|θ0)
using a Markov chain Monte Carlo algorithm, often the Gibbs sampler (Gelfand and Smith,
1990). The Gibbs sampler involves iteratively sampling from the full conditional distribution
of each parameter given the current assignment of all other parameters and data. When the
process converges, the results can be described in terms of means, medians and variance of
the Gibbs samples, and graphs of the empirical distributions.

A main challenge in the maximum likelihood approach for joint models is the complex
numerical integration and maximization of the likelihood over a large number of parameters,
especially when the dimension of the random effects is not small or when the submodels are
expanded to nonlinear or non-normal forms (Section 26.3). In some situations, such as when
the convergence of the EM is an issue and using MLE method is impossible, Bayesian meth-
ods are effective for fitting the joint model. Two other advantages also motivate investigation
of a Bayesian alternative. First, Bayesian methods can borrow additional information from
similar studies or from experts and incorporate this information in the current analysis, in
the forms of prior distributions for the current model parameters. Second, Bayesian meth-
ods also permit full and exact posterior inference for any parameter or predictive quantity
of interest.

26.2.5 Asymptotic inference for MLEs

When parameteric functions are used to model baseline hazard λ0(t) in the survival sub-
model, it is straightforward that parameter estimates obtained by maximizing the observed
joint log-likelihood (26.9) have asymptotic properties of MLEs (consistency, asymptotic nor-
mality, and efficiency), and the standard likelihood inference tests, i.e., the Wald, score, and
likelihood ratio tests are directly available. The covariance matrix of parameter estimates
can be calculated as the negative of the inverse of the Hessian matrix which is calculated
as the second derivative of �o (26.9) with respect to θ. In practice, numerical derivative
routines such as the forward or the central difference approximations (Press et al., 1992)
are often used.

When an unspecified baseline risk function is defined for λ0(t) in the survival submodel,
calculation of the likelihood is based on nonparameteric maximum likelihood arguments in
which the unspecified cumulative incidence function Λ0(t) =

∫ t

0
(λ0(s)ds is replaced by a

step function with jumps at the unique event times (van der Vaart, 1998). Zeng and Cai
(2005) rigorously proved the consistency and efficiency of the nonparameteric maximum
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likelihood estimators (NPMLEs) proposed in the literature (Wulfsohn and Tsiatis, 1997;
Henderson et al., 2000) and derived their asymptotic distribution.

An argument similar to that of Parner (1998) can be used to show that the inverse of the

observed information matrix is a consistent estimator of the covariance of the NPMLEs θ̂.
To obtain the observed information matrix, a few methods have been proposed in the liter-
ature. Law et al. (2002) applied the formula from Louis (1982) and calculated the observed
data information matrix by extracting the information for the missing data (unobserved la-
tent random effects under joint modeling framework) from the information for the complete
data. Alternatively, Lin et al. (2002b) considered the formula in McLachlan and Krishnan
(1997) and approximated the observed information matrix by the observed empirical in-

formation matrix I(θ̂) =
∑N

i=1 s(Yi, Zi, Ti, δi; θ̂)s
T (Yi, Zi, Ti, δi; θ̂), where s(Yi, Zi, Ti, δi; θ̂)

is the observed score which equals the conditional expectation of the complete-data score
s(Yi, Zi, Ti, δi; θ̂) = E[ ∂

∂θT {�c(θ)}|Yi, Zi, Ti, δi]|θ=θ̂. In practice the observed information
matrix is typically of very high dimension due to the large number of sub-parameters in the
unspecified λ0(t). As such, the calculation of the inverse of the matrix may be intimidating
and often unfeasible.

To overcome the above limitation of using the observed information matrix of NPLMEs,
variance estimation methods using profile likelihood have been proposed. In particular,
since inferences for the baseline hazard function λ0(t) are of less interest in most applica-

tions, obtaining standard errors for the remaining parameter estimates θ̂−λ = (α, γ, σ2,Σ)
are often the main focus. One profile likelihood approach is proposed by Wulfsohn and
Tsiatis (1997) and adopted by others (Song et al., 2002; Henderson et al., 2002; Ratcliffe

et al., 2004). This method obtains the variance-covariance matrix of θ̂−λ by inverting the

information matrix of a profile log-likelihood p�c(θ̂−λ, λ̂0(θ̂−λ)) based on the complete data
log-likelihood lc (26.8) in the M step of EM algorithm, in which each function of bi is re-
placed by its conditional expectations to simplify computation. However, Hsieh et al. (2006)
showed both theoretically and empirically that such replacement may lead to underestima-
tion of the standard error of the parameter estimate for risk coefficients. Alternatively, Zeng
and Cai (2005) showed that by treating λ0(t) as nuisance parameters, a profile likelihood

function p�o(θ̂−λ, λ̂0(θ̂−λ)) based on the observed log-likelihood �o (26.9) can be used to
give a consistent estimator for the asymptotic variance of the regression coefficients. The
profile likelihood approach based on the complete likelihood is computationally more con-
venient because the related information matrix can be readily derived from the complete
data score function in the M-step. In contrast, the profile likelihood approach using the
observed likelihood requires calculating the negative second-order difference of p�o(θ̂−λ) at

θ = θ̂ numerically, and thus is computationally more intensive.

26.2.6 Example: an AIDS clinical trial

We use an AIDS study (Abrams et al., 1994) to illustrate the idea of joint modeling and
demonstrate its properties. The data used for analysis in this chapter is available in the R
joint model package JM (Rizopoulos (2012b); for more detail see Section 26.6). Interested
readers can play with this data to get hands on experience with joint models.

This study was a multi-center, open-label, randomized clinical trial designed to compare
two antiviral treatments, didanosine (ddI) and zalcitabine (ddC), in 467 HIV patients in
whom zidovudine treatment had failed or intolerance of the drug had developed. After
randomization, these patients were followed until the time of death or the end of the study,
and their absolute CD4 cell counts were scheduled to be measured at baseline, 2, 6, 12,
and 18 months. The primary goal of this study was to determine whether ddI or ddC was
a better treatment in these patients using time-to-death as the primary endpoint. After
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FIGURE 26.1
Left panel: Kaplan-Meier estimate of the survival function for time-to-death in the AIDS
trial. The dashed lines correspond to 95% pointwise confidence intervals. Right panel: Lon-
gitudinal trajectories for square root CD4 counts for 50 randomly selected patients in the
AIDS study. Dashed lines represent patients who died during the study and solid lines
indicate censored patients. (Reprinted with permission from Rizopoulos (2012b).)

a median of follow-up of 16 months, 188 (40.3%) patients had died. For demonstration
purposes, our focus here examines how CD4 count was associated with the risk of death in
these advanced HIV patients.

Figure 26.1 shows the Kaplan-Meier estimate of the survival function for time to death
and the longitudinal trajectories of the square root of the CD4 cell count for a randomly
selected sample of 50 patients. Among the longitudinal trajectories, the red lines represent
patients who had died during the study while black lines indicate patients whose death
time was censored, suggesting subjects with lower CD4 counts tended to have higher risk
of death.

For the AIDS trial data, we assume the following submodels. For the longitudinal sub-
model, we assume a linear mixed effects model

Y ∗i (t) = b0i + b1it

b0i = β00 + r0i

b1i = β10 + β11ddIi + r1i

(r0i, r1i) ∼ N (0,Σ)

where ddIi is an indicator which equals 1 for a subject who received ddI treatment, and
equals 0 otherwise. For the time-to-death submodel, we assume the hazard of death at time
t is a function of treatment and the true CD4 value at time t.

λi(t) = λ0(t)exp{αY ∗(t) + γT ddIi}



532 Handbook of Survival Analysis

TABLE 26.1
Results of analysis on the AIDS clinical trial data.

LVCF Two-stage Joint Model

Parameter Estimates(SE) Estimates(SE) Estimates(SE)

Longitudinal Submodel

β00 7.19(0.22) 7.22(0.22)

β10 -0.16(0.02) -0.19(0.02)

β11 0.028(0.030) 0.012(0.030)

Survival Submodel

α -0.193(0.024) -0.242(0.029) -0.288(0.036)

γ 0.309(0.147) 0.344(0.147) 0.335(0.157)

We illustrate the virtue of the joint modeling approach by comparing it to two other meth-
ods, the LVCF method and the two-stage approach.

Results are presented in Table 26.1. The parameter α measures the association between
the CD4 counts and risk of death. Estimates obtained from fitting the joint model shows a
exp(−α) = 1.33 (95%CI: 1.24: 1.43) fold increase in risk of death associated with one unit
of decrease in square root of CD4 level. In contrast, estimates obtained from the LVCF and
two-stage methods show a exp(−α) = 1.21 (95%CI: 1.16: 1.27) fold and a exp(−α) = 1.27
(95%CI: 1.20: 1.35) fold increase in risk of death associated with one unit of decrease in
square root of CD4 level, respectively. This is consistent with results of simulation studies
reported in the joint modeling literature such as Tsiatis and Davidian (2004) and Wu et al.
(2012). Although the results from LVCF and two-stage methods are often attenuated and
biased, joint model approach typically gives unbiased results and larger estimate of the risk
coefficient. In addition, simulation studies in the above two articles also showed that joint
models are more efficient than the LVCF and two-stage method for estimating the risk
coefficients related to the longitudinal biomarkers.

26.3 Joint model extension

26.3.1 Extension of survival submodel

26.3.1.1 Competing risks

Standard methods for joint modeling of longitudinal and survival data allow for one event
with a single mode of failure and an assumption of independent censoring. When several
reasons can explain the occurrence of an event or some informative censoring occurs, this is
known as “competing risks.” For example, Williamson et al. (2008) investigated the effect
of titration on the relative effects of two anti-epileptic drugs on treatment failure. In this
study, during the course of treatment, patients may have experienced one of the two types
of treatment failures, switching to an alternative drug because of inadequate seizure control
or withdrawal from a treatment because of an unacceptable adverse effect.

Consider a general scenario under which each subject may experience one of K distinct
failure types or could be right censored during follow-up. For such situations two types of
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general approaches have been proposed for the survival submodel (Elashoff et al., 2007;
Williamson et al., 2008; Li et al., 2009; Yu and Ghosh, 2010; Li et al., 2010), namely cause-
specific hazards model and mixture model as discussed in Chapter 6. The estimation of
the joint model is based on the same principle introduced in Section 26.2.3 and Section
26.2.4, except that the construction of the survival model part of the likelihood function is
different.

When the research interest focuses on the covariate effects on the marginal probability of
the competing risk, the mixture model approach is appropriate. When the research interest
is in the stochastic behavior of the competing risks process, it is natural to consider the
cause-specific hazards models. Joint models with competing risk can also be used to account
for informative censoring by treating it as one of the K types of failures.

26.3.1.2 Recurrent event data

Recurrent event data arise when study subjects experience multiple events during follow-up.
For example, HIV patients may experience multiple episodes of infections and patients with
chronic disease may be hospitalized multiple times. The observation of the events can be
censored administratively or by a terminal (different type of) event such as death. Given
data of this type, we observe Tik, k = 1, 2, . . . , ni events from subject i, together with a
sequence of longitudinal data. Assume that the observation process is stopped by Ci. This
censoring time Ci can be a planned study stop time or lost to follow up time. When Ci is
the dropout or death time, it may create dependent censoring, especially there are reasons
to suspect that unmeasured confounding variables other than the baseline covariates and
longitudinal data collected from the study may influence dropout or death. In this case, it is
important to account for the dependent censoring. One such attempt has been made by Liu
and Huang (2009) and Liu et al. (2008) where death, recurrent events, and longitudinal data
are jointly modeled using frailty terms. This work has been extended by Kim et al. (2012)
to more general survival models. Han et al. (2007) used an intensity-based formulation of
the recurrent event and introduced a parametric latent class joint model.

26.3.1.3 Nonproportional hazards model

Tseng et al. (2005) considered the accelerated failure time (AFT) model for the survival
data. The AFT model takes the form

λ(t) = λ0

[∫ t

0

exp{βY ∗(s)}ds
]
exp{βY ∗(s)},

where λ0(·) is a baseline hazard function. The functional form of λ0(·) is unknown, similar
to the Cox model. Thus if we let U be a random variable with λ0(·) as its hazard function,

then we can write the above AFT model as U =
∫ T

0
exp{βY ∗(s)}ds, which is the AFT

model with time-dependent covariate Y ∗(s).
Inference in the above model is based on an EM algorithm. In the Cox model, the

time points for the nonparametric estimates of the baseline hazard depends on unknown
parameters. Handling the AFT structure in the joint modeling setting is more difficult than
for the Cox model because the baseline hazard is nonseparable with other parameters. To
deal with this issue, Tseng et al. (2005) used a step function to model the baseline hazard.

Transformation models include the Cox model as a special case, but also other nonpro-
portional hazards models such as the proportional odds model (Cheng et al., 1995; Murphy
et al., 1997). Zeng and Lin (2007) considered transformation models in joint modeling set-
ting and use the EM algorithm for inference.

Yet another popular extension for the survival data is the cure model as described in
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Chapter 29, which assumes that a proportion of subjects may be cured and thus are not
subject to risks of failure. Two types of cure models are commonly used. The mixture cure
model (Kuk and Chen, 1992) assumes that there is a latent variable D for cure status.
Only when D = 1, is the subject susceptible to disease and his/her time to event follows a
survival model. The cure status D is usually assumed to follow a logistic regression model
that can depend on baseline covariates (Yu et al., 2004, 2008). Another formulation of the
cure model involves improper distribution functions (Chen et al., 2004; Brown and Ibrahim,
2003a). Due to the complexity of these cure models, Bayesian approaches were adopted.

26.3.2 Extension of longitudinal submodel

26.3.2.1 Joint models with discrete longitudinal outcomes

Standard joint models of longitudinal and time-to-event data focus on continuous longitudi-
nal outcomes. However, discrete outcomes are also often encountered in medical studies. For
example, in a randomized clinical trial on pain relief medication after wisdom teeth extrac-
tion (Pulkstenis et al., 1998), the response is a binary variable indicating a lack of reduction
in pain relative to baseline. The extension of the basic joint model to handle discrete longi-
tudinal response is straightforward by substituting the longitudinal submodel described in
Section 26.2.2 with generalized linear mixed models (GLMM) (Breslow and Clayton, 1993).
Assuming the ni repeated outcome measures Yi for subject i are independent with densities
from the exponential family of distributions given a subject-specific random effect bi, the
longitudinal submodel is formulated as

p(Yi|bi) = exp

⎛⎝ ni∑
j=1

[Yijψij(bi)− c{ψij(bi)}] /a(ϕ)− d(Yij , ϕ)

⎞⎠
E(Yij |bi) =

∂c{ψij(bi)}
∂ψij(bi)

= g−1{bT
i fi(t)}

bi|Zi ∼ N (µb,Σ)

where ψij(bi) and ϕ denote the natural and dispersion parameters in the exponential family,
respectively, and a(·), c(·), and d(·) are known functions specifying the member of the expo-
nential family. Several authors have studied such extensions (Faucett et al., 1998; Pulkstenis
et al., 1998; Ten Have et al., 2000, 2002; Yao, 2008; Li et al., 2010). The survival submodel
can be formulated similarly as Function (26.4) or extended appropriately as described in
Section 26.3.1.

26.3.2.2 Joint models with multiple longitudinal biomarkers

Often in clinical longitudinal studies, several characteristics of a set of study participants
are measured repeatedly over time. For example, in AIDS studies, both CD4 counts (im-
munologic measure) and viral loads (virologic measure) are considered to be important
biomarkers and are measured simultaneously throughout the follow-up period.

To extend the longitudinal submodel to the multivariate case, let p be the number
of longitudinal outcomes. For ease of exposition, consider the case where all longitudinal
response outcomes are continuous. Let Yik(tij) be an assessment of the kth outcome for the
ith subject at time tij and Y ∗ik(tij) be the corresponding trajectory function representing
its true value, where k = 1, ..., p, j = 1, ..., ni. The longitudinal multivariate model can be
specified as

Yik(tij) = Y ∗ik(tij) + eijk

Y ∗ik(t) = bT
ikfik(t),
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where bT
ik is a 1 × rk vector of random effects associated with the kth outcome, and fik

is a vector of functions of time t with rk elements. To account for correlations within

and between the p longitudinal outcomes, one approach is to assume eijk
iid∼ N (0, σ2

k) and
bi = (bTi1, b

T
i2, ..., b

T
ip)

T ∼ Nr(µb, G) with dimension r = r1 + r2 + ... + rp (Xu and Zeger,
2001; Lin et al., 2002a). The same general form of the linear predictor of the relative risk
model for the survival process defined in (26.4) can be used, in which bi is ηi.

The main difficulties encountered in practice when fitting joint longitudinal models with
multiple longitudinal outcomes are the estimation of the large number of parameters for
the unstructured covariance matrix G and the requirement for numerical integration re-
spective to a large number of random effects. To ease the computational burden, Chi and

Ibrahim (2006) and Brown et al. (2005) assumed eij·
iid∼ Np(0, V ) and bik

ind∼ Nrk(µbk
, Gk)

for k = 1, ...,K, but this approach only partially eases the computational burden. Fieuws
et al. (2008) further proposed a pairwise modeling strategy, where all possible pairs of bi-
variate mixed models are fitted and used to obtain parameter estimates for the multivariate
longitudinal submodel.

When the research interest is to study the association between these multiple longitu-
dinal biomarkers and the risk of a certain event, a joint analysis of all relevant longitudinal
biomarkers simultaneously with survival data is attractive in several respects. As shown
by Fieuws et al. (2008), joint analysis of many markers substantially improved predictions
compared to separate analysis of each marker. In addition, joint models accommodating
multiple markers can be used to evaluate whether multiple biomarkers are a better substi-
tute for the clinical endpoint than a single marker is Xu and Zeger (2001). In the literature,
attempts have also been made to accommodate multivariate discrete longitudinal outcomes
(Ten Have et al., 2002) and different types of longitudinal outcomes (Tsonaka et al., 2006;
Fieuws et al., 2008) in a joint modeling framework.

Several authors have also considered nonlinear mixed effects models (NLMM) for mod-
eling longitudinal data in joint models (Wu, 2002; Yu et al., 2004; Fieuws et al., 2008; Guedj
et al., 2011). The linear mixed effects models defined in Section 26.2.2 and the GLMM mod-
els defined in Section 26.3.2.1 are empirical models. Unlike these models, NLMM models are
often mechanistic models based on biological knowledge of longitudinal biomarkers. This
type of model often has the advantage of meaningful interpretation for model parameters,
but presents computational challenges.

26.3.3 Variations of the link between survival and longitudinal
submodels

In Section 26.2.1 we stated that Y ∗i (t) is the most commonly used form of function q(t, ηi),
which governs the form of association between the longitudinal biomarker and the event
of interest. This means that the risk of event at time t depends only on the current true
level of the marker. Although this parametrization is easy to interpret, it might be in-
sufficient to capture the true association. To address this issue three different types of
extension/variation for q(t, ηi) have been explored in literature.

The first type of function represents features of the longitudinal trajectory at only a

single time point. Besides current level of biomarker, the rate of change of biomarker
∂Y ∗

i (t)
∂t

has also been considered in many cases. One example is a study on association between
prostate specific antigen (PSA) and the risk of prostate cancer recurrence (Ye et al., 2008b),
in which the current rate of change in PSA level has shown to be a significant risk predictor
independent of the current value of PSA. Yet in some other cases the true level of biomarker
at a certain time ahead, Y (t− c) (c is a positive constant) is preferred to the current level
of biomarker (Cavender et al., 1992).
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The second type of association function involves only random effects and no time func-
tion is involved. This type of association function is frequently used in the missing data
framework (Follmann and Wu, 1995; Pulkstenis et al., 1998; Ten Have et al., 1998; Vonesh
et al., 2006). In such models, the hazard function can directly depend on random effects in
the longitudinal submodel λi(t) = λ0(t) exp(α

Tbi + γTZi) (Pulkstenis et al., 1998; Pauler
and Finkelstein, 2002). A slightly different but related approach is to allow a frailty term
Wi in the hazard function λi(t) = λ0(t) exp(Wi+γTZi), and model the association between
the longitudinal submodel and the survival model through a stochastic relationship between
Wi and bi (Henderson et al., 2000). Because this type of association is time-independent
and thus often leads to closed-form solutions in the integral of the survival function (26.9),
the computation is often simplified. The simpler structure also enables some manageable
theoretical development (Tsiatis and Davidian, 2001; Rizopoulos et al., 2008; Huang et al.,
2009). In addition, when parametric models such as piecewise exponential models are used
for the survival submodel, the likelihood can be marginalized with respect to the random
effects using Gaussian quadrature (Liu and Huang, 2009) or Laplace approximation (Vonesh
et al., 2006). However, this type of models can impose quite restrictive correlation structure
among the outcomes (Verbeke and Davidian, 2008). A further limitation is that interpreting
the dependence of the risk of event on longitudinal marker is difficult when there are more
random effects in the longitudinal submodel, participially when splines are used to capture
the nonlinear trajectory of the longitudinal biomarker.

The third type of association was considered by Gao et al. (2011) to assess the im-
pact of biomarker variability on the risk of developing a clinical outcome. Their model
was motivated by a study on ocular hypertension treatment, in which intraocular pressure
fluctuation was posited to impact the risk of primary open-angle glaucoma. They modeled
the trajectory of intraocular pressure with a linear mixed effects model that incorporates
subject-specific variance (Lyles et al., 1999), and allowed the hazard to be a function of
subject-specific intercept, subject-specific slope, and subject-specific variance.

26.3.4 Joint latent class models

The extended joint models given in Sections 26.3.1, 26.3.2, and 26.3.3 all belong to the
large category of shared random-effect models, which assume a homogeneous population
with a single average trajectory of longitudinal submodel, and a continuous relationship
between the biomarker and the risk of an event. An alternative approach for joint modeling
of longitudinal and time-to-event data is to use joint latent class models (Lin et al., 2002b;
Proust-Lima et al., 2007, 2009, 2012). This method considers the population of subjects as
heterogeneous and assumes that the original population of N subjects can be divided into
G homogeneous subpopulations that share the same marker trajectory and the baseline
hazard function.

Let ci be the variable indicating class membership for subject i, which equals g if subject
i belongs to latent class g (g = 1, ..., G). Assuming that given ci the longitudinal and survival
processes are independent, a general joint latent class model can be specified as

λi(t|ci = g) = λg0(t)exp{γT
g Z

(s)
gi } (26.11)

Yi(tij) = Y ∗i (tij) + eij , ε(tij)
iid∼ N (0, σ2

ε) (26.12)

Y ∗i (t|ci = g) = bT
igfig(t), big|Z(l)

g i ∼ N (µbg
,Σg) (26.13)

Pr(ci = g) = exp(λT
g Zci)/

G∑
l=1

exp(αT
l Z

(c)
i ) (26.14)
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where γg is the risk coefficients associated with a vector of covariates Z
(s)
gi for the gth

subpopulation. big are the random effects in the longitudinal submodel for the gth sub-
population and follow a multivariate normal distribution with mean related to a vector

of covariates Z
(l)
gi . The latent class membership ci is specified by a multinomial submodel

(26.14) with α1 = 0 for identifiability.
In joint latent class models, the survival submodel (26.12) does not involve any time-

dependent component and random effects bi are involved only in the longitudinal submodel
(26.13 and 26.14). Therefore, the log-likelihood under these models often has closed form
and is more tractable. However, like other latent class models, the log-likelihood function of
joint latent class models may have multiple local maxima, which requires multiple fittings
of the model with different sets of initial values to find the global maxima.

Since joint latent class models do not model the association between the survival and
longitudinal submodel directly through biomarker level, they are not suitable for evaluating
specific assumptions regarding the link between longitudinal markers and the risk of event.
Despite this disadvantage, they offer a flexible framework to model the joint distribution of
the longitudinal marker and the time-to-event, and may be particularly useful for prediction
problems (Proust-Lima et al., 2012).

26.4 Prediction in joint models

One important application of joint model is for prediction. Because the longitudinal profile
is in some sense unique to its corresponding subject, prediction of the time-to-event outcome
for censored or future patients utilizing observed longitudinal data provides an individu-
alized prognosis. We consider two types of predictions here. One is for future longitudinal
outcomes and the other is for the probability distribution of a future event.

26.4.1 Prediction of future longitudinal outcome

For a subject who is followed until time ti with no event (δi = 0) and with observed
longitudinal data, yi1, . . . , yik, his/her longitudinal outcome at time u > ti has a predic-
tive distribution h{Y ∗(u)|T > ti, Y (ti1) = yi1, . . . , Y (tik) = yik, Zi}. This distribution is
obtained by decomposing

h{Y ∗(u)|T > ti, Y (ti1) = yi1, . . . , Y (tik) = yik, Zi}

=

∫
h{Y ∗(u)|bi,θ, Zi}h{bi,θ|T > ti, Y (ti1) = yi1, . . . , Y (tik) = yik, Zi}dbidθ

where θ represents all fixed-effects parameters, including those from the survival submodel.
When inferences are based on the Bayesian approach, draws of the posterior distribution

of bi and θ in the above integrand are obtained, and predictive distribution of Y ∗(u) is

easily evaluated by averaging over h{Y ∗(u)|b(m)
i ,θ(m), Zi} for the draws m = 1, . . . ,M .

The posterior predictive mode, mean, and credible intervals can be obtained accordingly.
For example, if the mean of Y ∗(u) is the quantity of interest, then it can be estimated as∑M

m=1 b
(m)
i fi(u) from Model (26.5).

When inferences are based on a non-Bayesian approach such as the MLE, the mean of
Y ∗(u) may be estimated by E{Y ∗(u) | b̂i, θ̂, Zi} = b̂ifi(u) + θ̂fi(u) where b̂i predicts bi

and θ̂ estimates θ. In this approach the variations in both b̂i and θ̂ need to be accounted
when calculating a confidence interval of the prediction. Usually these variations are hard to
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estimate, leading to the introduction of approximations. In particular, Rizopoulos (2012b)
considered a resampling-based approach which has a strong Bayesian flavor.

26.4.2 Prediction of survival distribution

For a subject who is followed until time ti with no event (δi = 0) and with observed
longitudinal data, yi1, . . . , yik, his/her chance of surviving u > ti can be expressed as

P{T > u|T > ti, yi1, . . . , yik, Zi}

=

∫
P{T > u|T > tibi,θ, Zi}h{bi,θ|T > ti, yi1, . . . , yik, Zi}dbidθ

=

∫
P{T > u|bi,θ, Zi}
P{T > ti|bi,θ, Zi}

h{bi,θ|T > ti, yi1, . . . , yik, Zi}dbidθ

Similar to the prediction of longitudinal outcomes, the Bayesian approach leads to straight-
forward calculation of the posterior predictive mode, mean, and credible intervals. Non-
Bayesian approaches usually need to rely on resampling techniques due to the complexity
of the above formula.

26.4.3 Performance of prediction accuracy

Performance of prediction accuracy is typically evaluated in two ways: discrimination and
calibration. Discrimination refers to the ability of a model to correctly distinguish outcomes.
With binary outcomes, outcomes are clearly defined as cases and controls. For time-to-
event outcomes, due to censoring, controls are not well defined. Also it may be necessary
to distinguish early failures from late failures. In the literature, several definitions of cases
and controls have been given. The cumulative sensitivity and dynamic specificity approach
defines cases at each time point t as those with T ∗ ≤ t and controls as those with T ∗ > t
(Heagerty and Zheng, 2005), which means that late failures may serve as controls for early
failures. The incident sensitivity approach considers only failures at the given time t as
cases (Heagerty and Zheng, 2005). Static specificity considers only those with T ∗ > t̃ for
some fixed and large t̃ as controls. In general, assume that the disease status D(t) such
that D(t) = 1, 0 indicates cases and controls, respectively. Then a monotonic rule based
on observed longitudinal marker Y can be constructed. Denote this rule as R(t, Ȳ (t)) for
any given time t. The prediction for positive diagnosis occurs when R(t, Ȳ (t)) ≥ c for
a given c. Accordingly the sensitivity is P (R(t, Ȳ (t)) ≥ c|D(t) = 1) and specificity is
P (R(t, Ȳ (t)) < c|D(t) = 0); see Heagerty et al. (2000). Time-dependent receiver operating
characteristic (ROC) curves can be constructed with a varying c (Zheng and Heagerty,
2007; Heagerty and Zheng, 2005). A subject who is censored is never a case, but may have
missing status due to censoring. Nevertherless, they still contribute to estimation of both
sensitivity and specificity. Estimation under the joint modeling framework is considered
in Rizopoulos (2011). A model with good discrimination ability should produce higher
predicted probabilities to subjects who had events than subjects who did not have events.
The area under the ROC curve is a popular measure for evaluating model discrimination
(Hanley and McNeil, 1982).

Calibration describes how closely the predicted probabilities agree numerically with the
actual outcomes. A model is well calibrated when predicted and observed values agree for
any reasonable grouping of the observation, ordered by increasing predicted values. The
calibration of a model can be compared with sample frequencies, especially for validation
data. For example, categories may be assigned according to predicted event-free probabilities
and then compared with the number of observed events for agreement (Yu et al., 2008).



Joint Models of Longitudinal and Survival Data 539

Although a model with a good calibration will tend to have good discrimination and vice
versa, a given model may be good on one measure but weak on another. Harrell et al. (1996)
recommended that good discrimination is always to be preferred to good calibration since
a model with a good discrimination can always be recalibrated, but the rank orderings of
the probabilities cannot be changed to improve discrimination.

26.5 Joint model diagnostics

The research on joint model diagnostics is relatively scant. Recently Jacqmin-Gadda et al.
(2010) considered a score test in a joint latent class model setting. The null hypothesis
is independence between the marker and the outcome given the latent classes, and the
alternative hypothesis is that the risk of event depends on one or several random effects
from the mixed effets model in addition to the latent classes.

Recently, reports of residual based analysis for joint modeling have appeared in the liter-
ature based on longitudinal data. Two types of residuals can be defined (Nobre and Singer,
2007). Marginal residuals use Yi(t)− µ̂bfi(t) based on the longitudinal Submodel (26.5) to
predict the marginal errors where only fixed effects estimates µ̂b are used. Conditional resid-
uals use Yi(t)− b̂ifi(t) to predict the conditional errors where the random effects estimates

b̂i are used, which involve implicitly the fixed effects estimates µ̂b. The random effects esti-
mates can be based on procedures such as best linear unbiased prediction (BLUP) or draws
from Bayesian approaches (Nobre and Singer, 2007). Dobson and Henderson (2003) consid-
ered joint modeling for longitudinal data and dropout time. They developed graphical tools
based on conditional distributions of longitudinal marginal residuals on the dropout pattern
when the time points for longitudinal data collected are fixed. The focus was on accounting
for the effect of informative dropout on longitudinal residuals. In particular they showed
that after fitting a joint model residuals between observed and expected responses can be
markedly affected by knowledge of the dropout time and type. A multiple imputation-based
approach has also been implemented to examine longitudinal marginal and subject-specific
residuals in joint modeling setting (Rizopoulos et al., 2010). The approach imputes missed
longitudinal data due to censoring from the survival event. Imputation is based on both
fixed time and random time schemes for longitudinal data. For the fixed-time scheme, the
imputation is based on posterior distribution of missed longitudinal data conditioning on
both observed longitudinal data and survival data. The evaluation of the posterior distri-
bution involves both fixed and random effects parameters. For the random time scheme, it
is necessary to model the visiting times to facilitate the imputation. The visiting process is
modeled with gamma frailty and Weibull baseline hazard. The visiting times are then built
into the imputation procedure for missed longitudinal data.

It has been observed that the shared parameter joint models enjoy a certain robustness
property. Hsieh et al. (2006) demonstrated robustness of the MLE to random effect model
specification when there is enough information from the longitudinal data. Rizopoulos et al.
(2008) observed a similar phenomenon and showed that for survival models with finite
dimensional parameter space that the score vector under the misspecified model is close to
the correct score vector when the number of repeated measurements per subject is large
enough. Huang et al. (2009) provided an alternative explanation and showed that when the
longitudinal data information is rich enough, the random effects can be well estimated by
their ordinary least square estimates so that it is as if the random effects were observed
like fixed effects instead of being latent quantities. The near sufficiency of the least square
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estimates for the random effects as the longitudinal information increases then ensures
robustness of the survival parameters too.

In order to take advantage of this robustness feature of shared parameter joint models,
it is important to know when the available longitudinal information in a particular dataset
is rich enough to yield such robustness. To this end, Huang et al. (2009) proposed a di-
agnostic tool based on the well-known Simulation Extrapolation (SIMEX). In particular,
the procedure artificially introduced perturbations on the longitudinal data indexed by a
perturbation parameter ζ such that larger ζ indicates more perturbation whereas ζ = 0
corresponds to the no perturbation. The resulting SIMEX plot is then used to assess the
survival parameter estimates sensitivity to the perturbations. In particular, a curve rela-
tively flat at the origin, ζ = 0, indicates robustness. In a Bayesian framework, Zhu et al.
(2012) developed a variety of influence measures for carrying out sensitivity analysis to
joint models. In particular, they considered perturbation models for individual and global
sensitivity for all components of the joint models, including the data points, the prior distri-
bution, and the sampling distribution. Local influence measures were proposed to quantify
the degree of these perturbations. The proposed methods also allow the detection of out-
liers or influential observations and the assessment of the sensitivity of inferences to various
unverifiable assumptions on the Bayesian analysis of joint models.

26.6 Joint model software

Although joint modeling research has received considerable attention in the methodological
literature in the past two decades, its applications in clinical studies are scarce. The largest
hurdle of using joint modeling in practice has been lack of software. Recently, however, some
progress has been made to solve this critical issue. Two general packages are now available
in R and Stata. In addition, codes for a few special models in SAS, Winbug, and Fortune
have also been published.

An R package called JM developed by Rizopoulos (2012b) allows fitting joint models
with a single continuous longitudinal outcome and time-to-event data using the maximum
likelihood approach. This package has some excellent features that make it by far the most
comprehensive joint modeling software. First, various options for modeling the baseline
hazard function are available in JM (e.g., unspecified nonparametric function, piecewise
exponential, hazard function corresponding to commonly used parametric survival models).
Second, modelers can choose among a list of forms of association between longitudinal
and survival submodels (e.g., effect of the current biomarker value, effect of the rate of
change of the biomarker value, etc.). In addition, JM can be used to fit joint models with
several types of extended survival submodels, including AFT models and competing risk
models. Lastly, JM provides diagnostic and predictions tools. To learn more about JM , see
Rizopoulos (2012b). Yet another R package developed by Proust-Lima and associates called
lcmm provides the Jointlcmm function that fits joint latent class mixed models (JLCM)
using a maximum likelihood method.

In Stata, Crowther et al. (2012) developed a user written command, stjm, for fitting
the basic joint models (one continuous longitudinal response and one time-to-event out-
come). This development allows four choices for the survival submodel and several forms
of association between the survival and longitudinal submodels as well as provides some
basic diagnostic and prediction tools. A special feature of stjm is its flexibility in modeling
the longitudinal trajectory through the use of fixed and/or random fractional polynomials
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of time. One drawback, however, is that the current version of stjm cannot handle any
extension in either survival or longitudinal submodel.

Both Guo and Carlin (2004) and Vonesh et al. (2006) provided SAS code for fitting joint
models using SAS PROC NLMIXED. Guo and Carlin (2004) also showed how to fit joint
models in a Bayesian framework using R and Winbug code.
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27.1 Overview

In many ways, familial studies simply are special cases of sampling designs in which multi-
variate failure times arise; however, they also have special emphases and features which are
the topic of this chapter. To assist in exemplifying these, we shall carry the following exam-
ple throughout this chapter: the study of dementia in the Cache County Study on Memory
in Aging. Initiated in 1995, this investigation was designed to examine the prevalence of
various dementias (Breitner et al., 1999). Its study design targeted the entire 65-year and
older population of Cache County, Utah, U.S.A., thus provides a unique opportunity for the
investigation of familial factors underlying dementia. In brief, a population-based sample
of study participants was ascertained and assessed for specific dementias, as well as many
other characteristics and outcomes. Then, for each participant, information was collected
from all first-degree relatives, and dementia diagnoses also made on these. In all, the study
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provides information on dementia occurrence, age at onset among those experiencing the
disease, and either current age or age at death for more than 5,000 family clusters.

Among the various applications of multivariate failure-time analysis, familial studies
are distinguished as follows: Associations among family members’ failure times often are
of at least equal interest as the relationships of individuals’ failure times to risk factors.
Such associations may reflect disease heritability, congenital frailty or robustness, influences
on health of a shared home environment, and other such constructs that are difficult to
ascertain otherwise than by a family study. This is not to say that familial studies do not
find usefulness in methods to account for clustering in making inferences on relationships of
individuals’ failure times to risk factors, but only that the study of association frequently
is of interest and not merely a nuisance to be handled.

Once one addresses these primary features of failure-time analyses in family studies-
handling, characterizing, and interpreting within-family associations, a second feature fre-
quently comes into play: that the failure event of primary interest may be subject to com-
petition from the occurrence of one or more other events. This is universally the case in
familial studies of disease onset, where death free of disease precludes the possibility of fu-
ture disease onset: a truly significant issue in studies of older adults and persons with serious
comorbid disease. Competing risks pose all the issues for multivariate failure time analysis
as they do for the analysis of univariate failure times, and then additionally challenge not
only the analysis of within-family associations but the definition of these.

Following a brief review of analysis primarily aiming to characterize relationships of in-
dividuals’ failure times to potential determinants in familial settings, this article proceeds
to review methodology focused on the characterization of associations and analysis in the
presence of competing risks. Three well-studied frameworks for estimating failure time asso-
ciations are considered along with methods for estimating these: simple empirical measures,
frailty models, and copulas. Models specifically directed to familial settings are considered.
Wherever models are applied, methods to evaluate their fitness for describing analytic data
are needed. A good number of these have been developed for models of failure time asso-
ciation in familial data. The article concludes with a survey of methods to accommodate
competing risks in the study of failure-time association.

27.2 Notation

Let us consider a sample of families i = 1, . . . , n with the ith family represented in the
sample by mi members. Per family the idealized outcomes to be studied are times to an
event of interest, say ages at dementia onset, Ti1, . . . , Timi with associated survival func-
tion Si(ti1, . . . , timi

), cumulative distribution function Fi(ti1, . . . , timi
) and, for absolutely

continuous F , density function fi(ti1, . . . , tim) and hazard function λi(ti1, . . . , tim). Corre-
sponding marginals for each jth family member are Sij(tij), Fij(tij), and so on. Frequently
we suppress the i subscript in the succeeding text. As is usually the case for failure time
analysis, outcomes are observed as the occurrence of the event itself or of a censoring event
such that data collection ceases before the event of interest occurs. Then, the observable
data are times (Yi1, . . . , Yim) to occurrence of either the target or censoring event and in-
dicators δij = 1 if one observes the event of interest for member j of family i and is 0
otherwise, for j = 1, . . . ,mi; i = 1, . . . , n.
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27.3 Analyses aimed exclusively at determining relationships of
individuals’ failure times to predictor variables

If the primary goal is to explicate the relationship of individuals’ event timings to risk
factors or other determinants, and within-family associations are considered as nuisance
features that must be accommodated for the sake of making correct inferences but are not
otherwise of interest, then marginal models provide a reasonable way to proceed. These
describe the population distribution of individual failure times Tij , conditional possibly on
covariates Xij = (Xij1, . . . , Xijp) but not on unobservable factors through which family
members’ failure times may otherwise be inter-related j = 1, . . . ,mi; i = 1, . . . , n.

Arguably the most widely implemented method for accomplishing such analysis is the
marginal Cox modeling approach as introduced by Lee, Wei & Amato (1992) and elaborated
by Lin (1994) and Spiekerman & Lin (1998). Of interest are the person-wise marginal hazard
functions: for each jth member of each ith family,

λj(t;Xij) = λoj(t)e
β′Xij(t), (27.1)

where λoj(t) are baseline hazard functions and the notation Xij(t) highlights that the
covariates may be time-varying. Frequently in familial studies it makes sense to assume
λoj(t) = λo(t) for all j, and indeed (27.1) makes clearest sense in cases of equal cluster sizes
with fixed family relationships such as a sample of mother-father-eldest-child trios. Anal-
ysis then proceeds by standard Cox modeling with a robust estimator variance correction
akin to generalized estimating equations methodology (Liang & Zeger, 1986). Specifically,
one obtains regression coefficient estimators via the standard partial likelihood approach,
imposing an independence working covariance model. Then, the variance estimator is ob-
tained as the sandwich product I−1V I−1, where I−1 is the inverse of the observed partial
likelihood information matrix (divided by n)-the usual variance estimate, and V is the em-
pirical variance of the partial score function; see for example, Spiekerman and Lin (1998),
Section 2.5. Increasingly many software packages fit the needed robust variance correction
as a matter of course; for example, the book by Therneau and Grambsch (2000) elucidates
code for Splus and SAS.

Two streams of work have augmented the set of tools available for marginal model-
ing of failure times in familial studies. The first has addressed distributional specifications
other than the Cox proportional hazards model. Alternatives addressed include a class
of linear transformation generalizations to the proportional hazards model (Cai, Wei &
Wilcox, 2000), the accelerated failure time model (Lee, Wei & Ying, 1993), discrete-time
proportional hazards models (Guo & Lin, 1994; Ross & Moore, 1999) and quantile regres-
sion models (Yin & Cai, 2005). The second stream is motivated in that the independence
working model approach is convenient but may lose efficiency relative to an analysis that
leverages the association structure underlying the data. Cai & Prentice (1995; 1997) and
Clegg, Cai & Sen (1999) addressed this issue by incorporating weights into partial like-
lihood score equations otherwise like those utilized by the methodologies of the previous
paragraph. With appropriately selected weight matrices, considerable efficiency gains are
possible, particularly when within-family failure time associations are strong and censoring
is light. The work of Clegg, Cai & Sen (1999) extended the applicability of the marginal
approach to compromises between family member-specific baseline hazards as in (27.1) and
a single baseline hazard applicable to all family members, in which some members share
baseline hazards and others do not. Gray & Li (2002) extended the work of Cai and Prentice
to provide optimal weights; only quite small efficiency gains were obtained except under ex-
tremely strong dependence. Alternative approaches addressing the marginal hazards (27.1)
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but requiring full specification of the association structure have also been developed (e.g.,
Glidden & Self, 1999; Pipper & Martinussen, 2003).

27.4 Characterizing familial associations

Liang et al. (1995) provided an early review of multivariate failure-time analysis; the review
herein adapts considerably from this article to the familial setting. For convenience of nota-
tion, development is primarily in the bivariate setting, but in most cases the methodology
is applicable to larger and to variably sized clusters.

27.4.1 Summary measures of dependence

Within-family failure time correlations and Kendall’s tau coefficients are two common mea-
sures of dependence that have been applied to study dependence among failure times clus-
tered within families. Estimation of each is challenged when censoring is present. MacLean
et al. (1990) outlined a method for correcting the Pearson correlation for censoring through
inverse-weighting by the estimated joint survival function to account for disproportionate
loss of later onset cases. Prentice & Cai (1992) alternatively proposed evaluation of corre-
lations between cumulative hazard-transformed failure times as less sensitive to influencing
by disparate shapes of the marginal failure time distributions and developed methods to
rigorously estimate this quantity. However, as we outline below, Kendall’s tau has particu-
larly nice connections to models and measures of association that have come to predominate
in multivariate failure time analysis, and so its appearance in the multivariate failure time
literature has outstripped that of correlation as a summary measure of association. Recall
that Kendall’s tau estimates the difference in probabilities that two randomly selected, say,
failure time pairs are “concordant” (both individuals of the second pair experience later
dementia onset, or both earlier onset, than the members of the first pair) versus “discor-
dant” (one member of the second pair experiences an earlier onset than, and the other later
than, the individuals of the first pair). Then its appeal for failure time analysis is clear:
between-pair concordance and discordance may be adjudicated in some cases in which some
failure times are censored.

Still, censoring may render complete adjudication of concordance and discordance impos-
sible, and so methods to accommodate it in estimating tau are needed in failure time studies.
For years the most common accommodation for censoring was the method introduced by
Brown et al. (1974), in which pairings whose concordance adjudication is inconclusive are
discarded in the same way that the Kendall “tau-b” coefficient discards ties. However, the
resulting estimator is not consistent when tau is non-null (Wang & Wells, 2000a); there are
various alternative measures which achieve improved accuracy, for example, one proposed
by Wang & Wells (2000b) exploiting that tau = 4

∫∞
0

∫∞
0

F (x, y)dF (x, y) − 1 and then
plugging in empirical estimators of F . Additionally one summary measure of association
tailored specifically to the failure time context has gained particularly widespread atten-
tion: the so-called “cross-ratio” or “conditional hazard ratio” function θ(t1, t2). Introduced
in time-invariant form by Clayton (1978) and elucidated more generally by Oakes (1989),
this measure is defined by

θ(t) =
S(t1, t2)/f(t1, t2)

∂
∂s1

S(s1, t2)|s1=t1
∂

∂s2
S(t1, s2)|s2=t2

=
λj(tj |Tj′ = tj′)

λj(tj |Tj′ > tj′)
(27.2)

invariantly for j = 1, 2 and j′ = 2, 1. In the dementia example, θ(t1, t2) is the factor by
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which one’s risk of dementia onset at age t1 is increased if his familial relative is known to
have been diagnosed with dementia versus remain dementia free as of age t2 and vice versa.

The widespread usage of the conditional hazard ratio owes at least in part to its di-
rect, natural parameterization, shortly to be described, within the two model classes most
frequently employed for the analysis of clustered failure time associations, frailty models
and copula models. It may also owe to the fact that {θ(t)− 1}/{θ(t)+ 1} equals a localized
Kendall’s tau computed from all time pairings with pairwise minimum = t. Hence Kendall’s
tau estimates can be used to estimate θ, as outlined by Oakes (1989) and described in more
detail by Viswanathan & Manatunga (2001) and Chen & Bandeen-Roche (2005).

27.4.2 Association through frailty modeling

The frailty model is a random effects formulation for within-cluster association among
times-to-events. In their univariate form, frailties are cluster-specific factors that multiply
the hazard of each cluster member to be higher or lower than for typical persons other-
wise like them. Though first proposed for characterizing subject-specific heterogeneity in
demographic models (Vaupel et al., 1979), these provide a natural conceptualization in the
familial context where they may conveniently be thought of as summarizing the contribu-
tions of shared genetic and environmental factors to longevity, age-at-disease-onset, and the
like. In an early paper elucidating application of frailty models to family data, Thomas et
al. (1990) likened these to liabilities in genetics and susceptibility in epidemiology.

According to the univariate frailty model, association is generated through non-negative
random effects, denoted by Ai, carried by families i = 1, . . . , n and distributed identically
and independently with distribution G typically having mean = 1. We now suppress the i
notation: conditional on A, a family’s, say, ages at dementia onset are assumed to be in-
dependent with survival functions {S∗j (t)}A corresponding to hazard functions Aλ∗j (t), for
some continuous survival functions S∗j and family members j = 1, . . . ,m. Thus, a family hav-
ing strong genetic risk for dementia might share onset hazard λ(t|A) = Aλ∗(t) with A >>1.
Then the marginal survival functions Sj(t) =

∫
{S∗j (t)}adG(a). Many choices of distribution

G have been studied; among the most commonly used are Gamma (Clayton, 1978), positive
stable (Hougaard, 1986), lognormal (McGilchrist & Aisbett, 1991), and Gumbel (Johnson &
Kotz, 1981). In particular taking G as gamma with mean= 1 and variance= θ− 1 results in
familial failure times with conditional hazard ratio= θ, such that a family member’s event
risk at t1 is increased θ-fold if his relative is known to have experienced the event versus
not yet experienced it by t2 invariantly over (t1, t2).

27.4.3 Association through copula modeling and relation to frailty mod-
eling

As natural as it is to conceptualize familial failure time associations as arising through a
shared frailty induced by genetics and/or shared environment, there have been at least two
drawbacks to data analysis using frailty models. The first arises because studies frequently
aim to study relationships of individuals’ failure times to predictor variables and not only
familial failure time associations. Then, frailty models are specified in terms of individual
hazard functions conditional on the familial frailty, λ∗ij , whereas interest may be in the
marginal hazards λij . For only one frailty distribution, proportional hazards form can be
maintained for both of these: the positive stable (Hougaard, 1986). The second drawback
arises if, additionally, one seeks a semiparametric specification of the individual survival
functions, such as a Cox proportional hazards model. Maximum and profile likelihood pro-
cedures to fit such models appeared relatively early in the history of frailty modeling (Klein,
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1992; Nielsen et al, 1992), but fitting proved slow (Therneau & Grambsch, 2000, p. 232) and
sampling distribution development proved complex (e.g., Murphy, 1995). In fact the shared
frailty model of the last section can be fit for common frailty distributions such as normal
and gamma quite conveniently (e.g., Therneau & Grambsch, 2000, pp. 232-238; Fine et al.,
2003), but in the meantime the alternative approach of copula modeling proliferated.

Copulas (Schweizer & Sklar, 1983) are multivariate distributions with marginals that
are uniform on the unit interval. These offer a clear device for constructing multivariate
survival distributions with easily specifiable marginal components: if C(u1, . . . , uJ) is the
copula, then under mild regularity conditions C(Si1, . . . , SiJ) is a legitimate multivariate
survival function with jth margin = Sij .

The Archimedean copula family (Genest & MacKay, 1986) has attracted particularly
active attention for the modeling of failure time associations because certain ones parame-
terize easily in terms of Kendall’s tau and the conditional hazard ratio and can be derived
as frailty models (Oakes, 1989). Consider a frailty model

S(t1, . . . , tJ) =

∫ J∏
j=1

{S∗j (tj)}adG(a) (27.3)

with p(x) = E[exp(−xA)] equal to the Laplace transform of the frailty distribution, G. The
familial survival function is then an Archimedean copula as follows:

S(t1, . . . , tJ) =

∫
a

J∑
j=1

log{S∗j (tj)}dG(a)

= p[−
J∑

j=1

log{S∗j (tj)}] = p[

J∑
j=1

q{Sj(tj)}] (27.4)

where q is the inverse function of p and the final equation reflects that Sj(t) =
p[− log{S∗j (t)}]. Equation (27.4) so elegantly nests the marginal models within the model for
association as to evoke a two-stage strategy to analyzing both relationships of individuals
failure times to predictor variables and familial failure time associations:

1. Analyze the individual failure distributions using approaches as in Section 27.3

2. Analyze the familial associations using pseudo-maximum likelihood (Gong & Samaniego,
1981) plugging in survival function estimates from step 1 into (27.4) as if they were
known and then correct the likelihood-based estimates of variability to account for the
uncertainty of estimation from the first step.

Shih & Louis (1995b) and Genest, Ghoudi & Rivest (1995) independently elucidated this
approach for i.i.d. survival functions (within component), in which the plug-ins from Step
1 to Step 2 are the component-wise Kaplan-Meier estimators. Glidden (2000) extended it
to accommodate marginal Cox modeling in the first step.

As a nice by-product, the conditional hazard ratio measure of familial association follows
directly as a functional of models of form (27.4) as the symmetric and uniquely defined
quantity

θ(t1, t2) = {vq′′(v)q′(v)}|v=S(t1,t2). (27.5)

As a result the conditional hazard ratio function may be directly or nearly directly pa-
rameterized in (27.4) for a number of the commonly used defining distributions; for exam-
ple, for the Clayton (1978) model characterized by constant hazard ratio θ(t1, t2) = θ
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corresponds to gamma frailty with p(u) = (1 + u)1/(1−θ) resulting in S(t1, . . . , tj) =

[
∑J

j=1{Sj(tj)}1−θ − J + 1]
1

1−θ .
By way of an example, Bandeen-Roche and Liang (2002) applied a gamma copula model

and the two-stage estimating approach just described (componentwise i.i.d. case) to a subset
of the Cache County data comprising eldest children and their mothers. They obtained
a conditional hazard ratio estimator θ̂=2.44 with bootstrap confidence interval 1.78 to
3.33. The point estimate corresponds to a nearly two-and-a-half-fold increase in the hazard
of dementia onset at each age for eldest children of mothers diagnosed with dementia as
compared to those with mothers remaining dementia free as of a given age, invariantly over
the choice of maternal index age (and vice versa).

27.4.4 Association modeling specific to familial data: Simple random
family sampling

Failure time analysis explicitly tailored to accommodating associations in families goes back
at least to a 1974 paper addressing survival analyses in twin studies (Holt and Prentice,
1974). That paper elucidated stratified Cox modeling with marginal likelihood inference,
with families as strata. Restricted models they considered essentially were frailty models
with frailties as fixed effects. Most modeling for family data has occurred in the context of
either frailty or copula models, and so we restrict our attention to these cases.

Both univariate frailty and Archimedean copula models have natural generalizations
that are particularly well suited to familial data. Beginning with frailty models, consider
partitioning the overall cluster of the family into K subclusters I1, . . . , IK such as all siblings
versus each parent (K = 3). Then, a multivariate survival function for the family is readily
defined through a multivariate frailty A = (A1, . . . , Ak) as

S(t1, . . . , tm) =

∫ K∏
k=1

∏
jεIk

{S∗j (tj)}akdG(a1, . . . , ak), (27.6)

Equation (27.6) permits individual family members to carry different, possibly dependent
random effects. Far too many authors to enumerate have proposed models akin to (27.6)
to characterize failure times in families. As one example in a substantial body of work by
the primary author, Yashin and colleagues used correlated frailties to estimate heritability
by distinguishing monozygotic and dizygotic twins (Yashin et al, 1995). Xue & Brookmeyer
(1996) proposed a bivariate lognormal version of (27.6). Petersen (1998) parameterized a
variety of family models (e.g., genetic versus adoption) by building individuals’ frailties
from overlapping sums over independent subfrailties. Two properties of the formulation
(27.6) have motivated the development of alternative, copula-based models for multi-tiered
familial data. First, whereas the survival function for members of any single subcluster
(e.g., siblings) has the univariate frailty form of Equation (27.3), the survival function for
members j, j′ of distinct subclusters Ik, Ik′ (e.g., a child and mother) takes a more general,
complex form. Therefore, for convenient multivariate frailty distribution choices, between-
and within-subcluster associations may differ substantially both in time dependence and
complexity of form. Secondly, the continuing development of multivariate frailty distribu-
tions notwithstanding, the diversity and computational tractability of existing univariate
frailty distributions remains appealing.

The basic idea of copula-based family models, introduced by Joe (1993) and generalized
by Bandeen-Roche and Liang (1996), is to build the model up recursively from the closest
familial relationships to more distant ones. Subclusters I1, . . . , IK provide the base level of
this process; then, at each “level” of familial closeness, subclusters are aggregated from the
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previous level. Increasing levels then correspond to increasingly dissociated subclusters. For
example, a family cluster of two sets of siblings who all share a grandfather would have
siblings as the first level and first cousins as the second. The idea can then be elucidated
by considering an example with five family members split as I1 = {1, 2} and I2 = {3, 4, 5}
two sets of siblings who between them are cousins. Then, the proposed model is

S(t) = p2

⎡⎣q2
⎧⎨⎩p1

⎛⎝ 2∑
j=1

q1Sj(tj)

⎞⎠⎫⎬⎭+ q2

⎧⎨⎩p1

⎛⎝ 5∑
j=3

q1Sj(tj)

⎞⎠⎫⎬⎭
⎤⎦ , (27.7)

where p1 is the Laplace transform of the sibling association-defining distribution and p2
is the Laplace transform of the cousin association-defining distribution. Each bivariate
marginal of (27.7) follows the Archimedean copula structure and has associated condi-
tional hazard ratio functions as defined by (27.5) above, so that the form of all the bivariate
associations can be defined by the researcher. Equation (27.7) and its generalizations in-
corporate a meaningful constraint: roughly, that the higher-level (e.g., cousin) associations
be no stronger than the lower-level (e.g., sibling) associations. In some cases this con-
straint is reasonable, while in others it may be considered overly restrictive. Partly with
this consideration in mind, Andersen (2004) proposed an alternative two-stage method for
estimating these models than pseudo-maximum likelihood, which one might think of as
pseudo-composite-likelihood. In a first step, the marginal survival functions are estimated
just as in the pseudo-maximum likelihood approach. In a second step, each copula rep-
resented in Equation (27.7) is estimated through a composite log-likelihood function con-
structed as sums of bivariate log likelihood contributions for all pairs of individuals relevant
to the copula being estimated (e.g., pairs of siblings versus pairs of cousins in separate sums)
specifically:

logL∗(θ, β) =
n∑

i=1

∑
(j,h)εMi

wjh logLjh(θ, β)

where (j, h) are two family members, wjh are positive weights, θ and β respectively represent
the association and marginal parameters, the second sum is taken over the various types of
relationships of interest (e.g., siblings and cousins), and Ljh is the likelihood corresponding
to the bivariate copula hypothesized for the relationship type targeted by the inner term.
One chooses weights to account for differences in family size, solves score functions resulting
after fixing β at estimates from the first step, and makes inferences accounting for the
variability in both steps as described by Andersen (2004). Whereas the copula approach to
modeling of multi-tiered failure time associations in families has had occasional application
(e.g., Li & Huang, 1998), a literature scan suggests that the frailty approach has been
considerably more commonly applied. This having been said, it is arguable that neither
approach has had the extent of application one might expect. Matthews et al. (2007) cite
as barriers that estimation remains nontrivial and requires specialized software, the models
do not easily accommodate complex ascertainment such as proband-based sampling, the
conditional hazard ratio measure is non-intuitive for health investigators, covariate modeling
of the strength of association is not easily accommodated, and tests for association are
formulated in terms of a null parameter that lies on the boundary of the parameter space.
They propose discretizing time and then modeling marginal relationships and intra-familial
associations via second-order generalized estimating equations akin to those developed by
Heagerty & Zeger (1996). If the failure times are fully observed, the models can be fit
by standard second-order GEE software. Otherwise, because association is described by
explicitly conditioning on other family members outcomes, an additional step to marginalize
over the potential outcomes of family members who become censored is required.
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27.4.5 Association modeling specific to familial data: Case-control de-
signs

Frequently in familial studies, sampling does not aim to achieve representativeness of families
in a target population as achieved, for example, in the Cache County study. Rather, sampling
may be indexed on cases and controls or a proband through whom other family members
are identified, or is otherwise complex. We exemplify the issues through the simplest version
of the case-control proband design.

In this design, cases and controls are ascertained as probands, and one relative is iden-
tified for each proband. For example, such a design could have arisen in the Cache County
study if sampling had identified a set of prevalent dementia cases and a second set of in-
dividuals free of dementia, and then ascertained dementia for one first-degree relative of
each sampled individual. In this special scenario, the conditional hazard ratio equals the
risk ratio for dementia onset at age t comparing relatives with case probands to those with
control probands, conditional on X0: = the proband’s age at dementia onset or age at sam-
pling into the study for case and control probands, respectively. As elucidated by Hsu et al.
(1999), this can be seen as

θ(t,X0) =
λ(t|X0, δ0 = 1)

λ(t|X0, δ0 = 0)
,

where δ0 = 1 denotes that the proband is a case (and his/her age at dementia onset equals
X0) and δ0 = 0 denotes that the proband is a control (and he/she is dementia-free as of
X0). If one is willing to parameterize this quantity as exp{α(t,X0)} for some parametric
function α(t,X0), then the conditional hazard ratio becomes estimable via Cox proportional
hazards regression of relatives’ failure times on probands’ times and an indicator of whether
one’s proband is a case or control. Appealingly, additional covariates Z may be included
as predictors of risk, and the α-function can be parameterized to model dependence of the
familial association on time.

A drawback of the strategy just described is reliance on a parametric function to cap-
ture the potentially complicated variation of λ(t|X0, δ) with the ascertainment time. Ac-
cordingly Hsu et al. (1999) considered a matched case-control design in which baseline
hazards could be stratified by matches h = 1, . . . , H, resulting in λhj(t|Xho, δjho, Zhj) =
λoh(t) exp{Z ′hjβ+δhjoα(t|Xho, θ)}. They proposed estimation by a pseudo-partial likelihood
equation constructed as if individuals within families and matches were independent but
equipped with a sandwich-type covariance estimator to assure valid inferences in the same
way as is accomplished by GEE. In cases of no covariates Z, and bivariate family data, it
was noted that a simple ratio of concordance and discordance counts within bins could be
used; a localized Kendall’s tau like that is proposed by Oakes (1989) and detailed in Section
27.5.1. below.

Methodology has also been developed for analyses including not only the relative data
as outcomes but the proband data in the design just described. To this end, Li, Yang &
Schwartz (1998) proposed a likelihood combining conditional likelihood contributions for the
probands, as one would have in a standard matched case-control failure time analysis (Pren-
tice & Breslow, 1978), with gamma Archimedean copula contributions for the case relatives
and the control relatives. Estimation by maximum likelihood was proposed. This approach
requires that the baseline hazard function λoh(t) be invariant over matches and follow a para-
metric or step-function form. Subsequently it was generalized to allow for non-parametric
specification of λoh(t) (Shih & Chatterjee, 2002). This was accomplished through sequential
two-stage fitting iterating between nonparametric estimation of the baseline hazard func-
tion and pseudo-maximum likelihood estimation of Li et al. (1998) estimating function with
baseline hazard estimates fixed from the prior step.
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27.5 Age- and time-dependence of failure time associations

Much of the literature on the modeling of familial failure time association has relied on the
gamma shared frailty/copula model, which imposes a conditional hazard ratio for pairwise
association that is constant in all time dimensions. In fact, considerably many investiga-
tions of familial association have in mind explicitly a time varying association function. For
example, an important question for the field of cognitive aging is whether early-onset de-
mentia is more strongly heritable than late-onset dementia (Silverman et al., 2005). Shared
frailty/copula distributions other than gamma do indeed generate time-varying conditional
hazard ratio functions, as per Equation (27.5). For example, positive stable frailty imposes
association that is strongest early on and declines progressively as time goes along, with a
conditional hazard ratio function asymptoting to infinity as the bivariate survival function
approaches one and to unity (no association) as the bivariate survival function approaches
0. There is a considerable literature on methods to diagnose and test the fit of various
copula choices to clustered failure times, which we now summarize. We then proceed to
outline nonparametric approaches to directly describing conditional hazard ratio function
dependence on time. All of these are easiest to describe for bivariate failure times (e.g., sib
pairs).

27.5.1 Checking the fit of parametric copula models for association

A hallmark has been to identify a function that has a signature shape for a given choice
of Archimedean copula (AC) family, estimate it empirically, and then assess whether
the given AC choice is consistent with the data. Genest & Rivest (1993) implemented
this idea through the bivariate probability integral transformation distribution K(v) =
pr[C{F1(T1), F2(T2)} ≤ v]. K(v) has a signature shape as a function of v for each given AC
family, and for fully observed data, its empirical counterpart Kn(v) is easily estimable as
the empirical distribution function of the number of pairs (Th1, Th2) with which an index
pair (Ti1, Ti2) is concordant, taken over index pairs i = 1, . . . , n. Genest and Rivest provided
experiment-wise confidence bands for v−Kn(v) which could then be plotted together with
the signature functions v − K(v), versus v, over a variety of AC choices. Later Wang &
Wells (2000b) extended this idea to allow for censored failure times albeit without confi-
dence bands; instead they proposed comparison of empirical and hypothesized versions of
K(v) by L2-norm distance.

In contrast, Viswanathan & Manatunga (2001) and Chen & Bandeen-Roche (2005)
both developed diagnostic displays exploiting that {θ(t)− 1}/{θ(t) + 1} equals a localized

Kendall’s tau, so that θ(t) can be estimated as θ̂(t) equal to the ratio of the number of con-
cordances to the number of discordances among all inter-familial comparisons with pairwise
minimum failure times = t. This idea has the disadvantage of having to deal with sparse-
ness: for an absolutely continuous survival function, we expect at most one comparison with
pairwise minimum failure time = t. The situation is helped a little when S(t1, t2) has AC
form. In this case, θ(t) relates to t only through S(t1, t2) hence varies only univariately
rather than bivariately, but in any case some form of smoothing is needed. Viswanathan
& Manatunga (2001) proposed to smooth the plot of θ̂(t) versus the Dabrowska (1988)
nonparametric survival function estimator. They then evaluated the slope in a plot of the
resulting smooth for each survival function estimate v versus −1/ log(v) so as to explicitly
compare positive stable (positive slope) versus gamma (flat) copulas. Chen & Bandeen-
Roche (2005) proposed to bin the bivariate survival distribution domain and then compute
the ratio of the number of concordances to the number of discordances among all inter-
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familial comparisons with pairwise minimum failure times in each bin. They then compared
the step function resulting by plotting these ratios versus the Dabrowska (1988) estimator of
the bivariate survival function domain to the signature curve of θ(t) versus S(t) determined
by various AC choices visually and in L2-norm. Their idea has the advantage of visualizing
the conditional hazard ratio, hence both the strength and time dependence of association.

In addition, a number of methodologies have been developed to assess the fit of bivariate
survival data to specific AC models, primarily, gamma. Shih & Louis (1995b) proposed
a graphical method for checking the adequacy of a gamma AC assumption, which was
subsequently augmented by Glidden (1999) to include numerical techniques. Shih (1998)
proposed an alternative test for gamma AC form, which employed the concordance counting
strategy we outlined above, and she derived the asymptotic distribution of the test statistic.
Manatunga & Oakes (1996) suggested a diagnostic procedure for the goodness-of-fit of
uncensored data to positive stable frailty choice.

27.5.2 Nonparametric estimation of the conditional hazard ratio as a
function of time

Rather than to fit a parametric model for the conditional hazard ratio and assess its ade-
quacy in describing the data, one might prefer to describe the conditional hazard ratio as a
function of time directly and nonparametrically. There have been essentially two approaches
to this task. The first is the binning approach employed by Chen & Bandeen-Roche (2005)
or its more general application in two dimensions (Bandeen-Roche & Ning, 2008). The lat-
ter approach was primarily developed in the context of competing risks data; we defer its
discussion to the respective section of this article.

A second approach first plugs into the general formulation of the conditional hazard
ratio function (27.2), or a function thereof, nonparametric estimators of the multivariate
survival function or cumulative hazard function (Fan, Hsu & Prentice, 2000; Fan, Prentice
& Hsu, 2000). Taken literally this approach encounters the same sparseness difficulties as
highlighted for the local Kendall’s tau in the previous section; to address this, Fan and
colleagues proposed to integrate with respect to the bivariate failure time density over finite
failure time regions [0, t1]x[0, t2]. Time dependence can then be explored by varying (t1, t2).
The work spanned a variety of association measures including the conditional hazard ratio,
its inverse, and Kendall’s tau.

Consideration of time-variation in the conditional hazard ratio may be exemplified by
application of the binning approach of Chen & Bandeen-Roche (2005) to the Cache County
data on mothers and their eldest children, as reported by Bandeen-Roche & Liang (2002).
Conditional hazard ratios were estimated by quintiles of bivariate survival (dementia-free)
probability. These indicated stronger familial association in dementia onset by far in the
quintile of earliest failure (θ̂ = 8.86 for t: S(t) >0.8) than later (θ̂ = 2.58, 2.20, 2.92, 2.39
for S(t) decreasing through the subsequent quintiles).

27.6 Competing risks

Competing risks are frequent in familial studies of age-to-disease onset, where after all any
disease may be censored by the semi-competing risk of death prior to disease onset. Yet up to
2000 or so, there had been virtually no consideration of competing risks in the multivariate
failure time literature. To ignore censoring as competing may be reasonable if the main
goal is to describe the individual failure hazards as in Section 27.3; then the cause-specific
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quantities that are characterized by such analyses (Prentice et al., 1978) may be scientifically
interpretable and useful. In contrast, incomplete observation due to a competing risk poses
serious conceptual challenges for determining associations.

Bandeen-Roche & Liang (2002) elucidated the challenges as follows. The description
is taken in large part from that article, with only minor changes. Consider the simplest
setting of onset of a disease such as dementia with death as a semi-competing risk. Then,
the failure quantities to be analyzed for a given person are (a) the failure time, T , to
the first event among dementia onset or death, and (b) a code, K, for cause of failure,
say, 1 if onset of dementia is observed and 2 if death is observed prior to dementia onset.
The primary approaches to describing failure time associations—copula and shared frailty
models—employ a joint survival function defined in terms of survival and density functions
that marginalize over causes other than the target cause. For a failure type that is not
inherently subject to competition, such as death, such marginalized functions are well de-
fined and unambiguous. Specifically, it is sensible to define a death time TD that equals
the targeted failure time T if the failure type is death K = 2, and is distinct otherwise.
Then, pr{TD > t} = pr{TD > t|K = 2}pr{K = 2}+ pr{TD > t|K = 1}pr{K = 1}, where
pr{TD > t|K = 1} describes the death time distribution given disease onset prior to death,
and pr{TD > t|K = 2} equals the cause-conditional survival function pr{TD > t|K = 2}.
In contrast, suppose that TO defines a dementia onset time that equals T if K = 1. Because
onset of dementia cannot occur after death, it could be argued that:

A. pr{TO > t|K = 2} = 1 for all t; e.g., dementia onset never occurs if death occurs first.

B. pr{TO > t|K = 2} = 0 for all t; e.g., the probability of dementia onset is 0 if death occurs
first. This equates the marginal and cause-specific dementia onset time distributions.

C. The marginal and cause-conditional dementia onset distributions are equivalent; e.g.,
dementia onset time is only well defined on a support conditioned on K = 1.

D. pr{TO > t|K = 2} follows some form other than those already specified; e.g., TO is
latent everywhere other than the support conditioned on K = 1 (e.g., Zheng & Klein,
1995).

Whereas none of the above is uniformly correct, the approach one selects must be targeted
clearly to the scientific question and goals. In the years since 2000, the study of multivariate
failure time associations in the face of competing risks has become among the most active
areas of research in multivariate failure time analysis.

27.6.1 Approaches generalizing the conditional hazard ratio function

In Section 12.6 of his volume on the analysis of multivariate survival data, Hougaard (2000)
suggested that the univariate cause-specific hazard function could be adapted to extend the
conditional hazard ratio to competing risks data. Bandeen-Roche & Liang (2002) proposed
such a measure, terming it the conditional cause-specific hazard ratio (CCSHR):

θCS(t; k1, k2) =
λ1,k1

(t1|T2 = t2,K2 = k2)

λ1,k(t1|T2 < t2)
(27.8)

=
S(t1, t2)/f(t1, t2, k1, k2){∫∞

t2

∑M
k=1 f(t1, t, k1, k)dt

}{∫∞
t1

∑M
k=1 f(t, t2, k, k2)dt

}
where f is the bivariate cause-specific incidence function defined by f(t, k)

= lim
(Δt1,Δt2)↓0

pr(t ≤ T ≤ t+Δt,K = k)/

(
2∏

m=1

Δtm

)
, (27.9)
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where T and K denote vector quantities and M denotes the number of competing causes.
The CCSHR is the factor by which an individual’s risk of failure at t1 due to cause k1 is
increased if a specific cluster partner is known to have failed at t2 due to cause k2 versus not
yet failed at all by t2. Bandeen-Roche & Liang preferred it (27.8) to an obvious competitor,
a cause-conditional CHR = λ1(t1, k1|T2 = t2,K2 = k2)/λ1(t1, k1|T2 > t2,K2 = k2), for
being defined in terms of quantities that are unambiguous and empirically identifiable. The
Cache County study “conditional hazard ratios” reported in Section 27.5.2 in fact were
CCSHRs—factors by which an eldest child’s hazard of dementia onset at age t1 is increased
if his mother was diagnosed with, versus living without, dementia at age t2.

Bandeen-Roche & Liang (2002) proceeded to propose an Archimedean copula-like model
built up from two frailties: a scalar frailty to modify the (overall) risk of first failure among
the competing causes, and an M -variate shape process to induce familial heterogeneity in
the tendency to fail from one as opposed to the other of the M causes. Their formulation
inherited many of the desirable features of AC models, for instance, a direct connection
to the CCSHR very much like Equation (27.5) for the conditional hazard ratio in the
noncompeting setting. However straightforward implementations of the modeling framework
proved highly sensitive to mis-specification. Shih & Albert (2010) also proposed partitioning
of the CCSHR into factors representing association of times to first failure and associations
among failure types but did so through direct modeling of the conditional hazard ratio
for times to first failure followed by estimation of the odds ratio for association of failure
due to one versus the other cause with the failure cause of one’s relative, conditional on
the pairs’ first failure times. Their proposed estimation strategy was nonparametric; we
outline it two paragraphs below. Gorfine & Hsu (2011) proposed a formulation in which
each cause-specific hazard was multiplied by its own frailty process and the M processes
per family may be inter-correlated. It includes the model of Bandeen-Roche & Liang (2002)
as a special case but also a more general class appealingly including the time-invariant M -
variate normal. Cox-like regression modeling of the individual hazards was also incorporated.
Both parametric and non-parametric maximum likelihood implementations exhibited solid
performance and robustness to mis-specification.

Much of the work subsequent to that of Bandeen-Roche & Liang (2002) has relied on
non- or semiparametric estimation of the association function. A particularly straightfor-
ward nonparametric method of CCSHR estimation was proposed by Bandeen-Roche &
Ning (2008). These authors exploited the close relationship of the conditional hazard ratio
to Kendall’s tau as suggested by Oakes (1989) and developed in detail by Viswanathan &
Manatunga (2001) and Chen & Bandeen-Roche (2005), whereby θ(t) can be estimated as
the ratio of the number of concordances to the number of discordances among all inter-
familial comparisons with pairwise minimum failure times = t. They noticed, and proved
using U-statistic theory, that if one further filters the inter-familial comparison to not only
have pairwise minimum failure times equal to t but also to have desired causes k1, k2 asso-
ciated with those times, one has a quantity that consistently estimates the CCSHR under
certain conditions. To accomplish the smoothing whose need was outlined in Section 27.5.1,
they proposed to bin much as in the paper by Chen & Bandeen-Roche (2005), but in two
dimensions.

Shih & Albert (2010) also employed binning for the modeling and estimation of their
CCSHR factorization described in the previous paragraph. However, they proposed a quite
different estimation strategy in which all failure types are pooled to estimate a conditional
hazard ratio for first failure time, and odds ratios for association of failure types are com-
puted empirically among pairs with both failures observed within a given bin. Conditional
hazard ratio modeling was proposed by a sequential two-stage strategy in which an esti-
mator of the bivariate survival function, hence the conditional hazard ratio, can be built
recursively across bins as per Nan et al. (2006).
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Cheng & Fine (2008) alternatively proposed an empirical process plug-in estima-
tor of the CCSHR. This can be seen as feasible upon considering an equivalent for-
mulation for the CCSHR derived by these authors: a ratio of the bivariate cause-
specific hazard to the product of the respective marginal quantities, θCS(t1, t2; k1, k2) =
λ(t1, t2, k1, k2)/{λ1(t1, k1)λ2(t2, k2)}. The method exhibits similar accuracy and precision
as that proposed by Bandeen-Roche & Ning (2008) but enjoys a considerable advantage in
computing time to derive inferences due to its provision of a valid plug-in standard error.

The work described in the preceding paragraphs made no meaningful attempt to extend
applicability beyond bivariate clustering to larger and variably sized clusters, a crucial
capability if the methodology is to have broad applicability to family data. The extension
for the estimator of Bandeen-Roche & Ning (2008) was provided by Cheng, Fine & Bandeen-
Roche (2010), together with an easily implemented test for constancy of association over
different time regions.

Many of the estimators just described have been exemplified using the Cache County
data. Both the Bandeen-Roche & Ning (“BRN”; 2008) and Cheng & Fine (“CF”; 2008)
estimators were applied to obtain time-invariant CCSHRs for association in ages of dementia
onset between eldest children and their mothers. The two methods agreed closely, with BRN
estimate (95% confidence interval) of 2.98 (1.98, 4.30) (Bandeen-Roche & Liang, 2002) and
CF estimate (95% confidence interval) of 2.90 (1.72, 4.08) (Cheng & Fine, 2008). Bandeen-
Roche & Ning (2008) proceeded to obtain CCSHRs age-varying by quadrants defined by
eldest child 75 years of age or less versus older than 75 and mother 80 years of age or
less versus older than 80. To their surprise, they found these to be actually less for shared
early onset (θ̂ = 3.81) than for shared later onset (θ̂ = 5.89), although confidence intervals
overlapped. Cheng, Fine & Bandeen-Roche (2010) addressed this inconsistency with the
bulk of existing literature through the estimation of sibling associations (“CFBR-A”) and
sibling-mother associations (“CFBR-B”) in analyses including all siblings, and not only the

eldest. Here the estimates of CCSHR for shared early onset (θ̂ = 3.45 and 3.55 for CFBR-A

and CFBR-B) did exceed those for shared later onset (θ̂ = 2.16 and 2.90 for CFBR-A and
CFBR-B). The comparison argues the utility of the broader inclusion of data the more fully
multivariate methodology of Cheng, Fine & Bandeen-Roche (2010) allows.

27.6.2 Alternative approaches to describing and estimating failure time
associations subject to competing risks

Cheng, Fine & Kosorok (2007) proposed two alternative measures: one comparing bivari-
ate cumulative cause-specific hazards to the product of the marginal counterparts, and
the second doing likewise for the cumulative incidence function (i.e., the bivariate inte-
gral through (t1, t2) of Equation 27.9). Specifically the measures are the cumulative haz-
ards ratio Λ(t1, t2, k1, k2)/{Λ1(t1, k1)Λ2(t2, k2)} and the cumulative incidence function ratio
F (t1, t2, k1, k2)/{F1(t1, k1)F2(t2, k2)}, each a ratio of a bivariate quantity to the product of
its respective marginals. These measures have the appealing property of being easily es-
timable, and their inferential properties then characterized, by replacing the population
distributional quantities with nonparametrically estimated plug-ins. Cheng and colleagues
delineated this approach.

The methodology was subsequently extended to accommodate clusters of more than
two exchangeable individuals (Cheng, Fine & Kosorok, 2010). Ultimately, Cheng & Fine
(2012) developed an Archimedean copula framework for modeling the bivariate cumulative
incidence function in terms of its marginals and equipped it with two-stage fitting strategies,
inference procedures, and goodness-of-fit testing. Shih & Albert (2010) also applied their
two-component modeling strategy outlined in the previous section to bivariate cumulative
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incidence function estimation. Scheike and colleagues (2010) proposed association analysis
for cause-specific failure times through a cross-odds ratio-type measure, stated here for
members j and h of family i with respect to cause “1”: πj|h(t) =

pr(Tij ≤ t1,Kij = 1|Tih ≤ t,Kih = 1)/pr{Tij ≤ t,Kij = 1)c|Tih ≤ t,Kih = 1}
pr(Tij ≤ t,Kij = 1)/pr{(Tij ≤ t,Kij = 1)c}

where Ac denotes the complement to event “A”. They originally specified this quan-
tity through a model multiplying cumulative incidence functions by frailties thusly as
to yield a semiparametric generalized additive model for the marginal cumulative inci-
dence functions, −log{1 − Fk(t|xijZij)} = η(t)Txij + (Y T zij)t. Equivalently, their for-
mulation is an Archimedean copula model for the joint cause-specific survival function,
pr{(Tij ≤ t,Kij = 1, Tih ≤ s,Kih = 1)C |xij , zij , xih, zih}. Estimation was proposed by a
two-stage approach. In the first, marginal cumulative incidence regression is carried out via
an estimating equations approach as proposed by Scheike et al. (2008). The association pa-
rameters are estimated in a subsequent stage by a plug-in estimating equation. Because the
joint cumulative incidence function can be expressed as a function of the marginal cumula-
tive incidence functions and the cross-odds ratio, estimation for the cross-odds ratio then
follows. In a subsequent paper, Scheike & Sun (2012) developed an estimating equations
approach to estimate the cross-ratio directly, possibly as a function of covariates. The work
was motivated by familial data from the Danish Twin Registry. A model similar to the
frailty-based formulation of Scheike et al. (2010) was proposed by Katsahian et al. (2006),
except with cumulative incidence regression given conditionally on the frailty rather than
marginally and Cox-like proportional hazards form for the subdistribution hazard instead
of semiparametric additive for the cumulative incidence function itself. This work general-
izes the competing risk subdistribution regression methodology of Fine & Gray (1999) from
the univariate to the multivariate setting. Dixon et al. (2011) later extended this work to
show, in the case of gamma frailty, that the conditional regression of the subdistribution
hazard at issue can be stated simply in terms of the parameters of a Fine & Gray (1999)
marginal subdistribution hazard regression. Following on this insight, the authors proposed
estimation by a three-step procedure generalizing an idea of Pipper & Martinussen (2003)
to the competing risks setting. The procedure iterates amongst prediction of the family-wise
frailties, nonparametric estimation of the cumulative subdistribution hazard function, and
a plug-in estimator for the parametric part of the model, the regression and gamma frailty
variance terms.
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Part VI looks at three topics in survival analysis useful in the design and analysis of
clinical trials where the outcome is the time to some event. Clinical trials where the time
to event is the primary endpoint are difficult to design since one needs to wait for the
primary event to occur all the while entering new patients who may not be needed to draw
a conclusion. Sequential clinical trials are especially difficult since decisions on enrolment
of new patients must be made in many cases before the outcome of the previous batch of
patients can be ascertained.

Typically in a survival time clinical trial an accrual time for patients is set. In this
accrual period, patients become available for study and randomly assigned to treatment.
The accrual period is followed by an observation period in which patients are followed for
the endpoint of interest and no new patients are enrolled. The sample size depends on the
length of the accrual and observational windows, the rate of entry into the study, and the
censoring fraction as well as the usual power and detectable difference parameters.

In Chapter 28 Ohneberg and Schumacher examine sample size calculations for survival
clinical trials. They look at a number of sampling situations including the no censoring case,
censored survival comparing survival at a fixed point and nonparametric and parametric
tests comparing the entire survival curve. Extensions of these basic sample size calcula-
tions to multi-arm tests, non-inferiority tests, non-randomized tests and adjustments for
prognostic factors, left-truncated data and cluster randomized trials are also surveyed.

In Chapter 29 Jennison and Turnbull survey results on group sequential clinical trials.
Here patients are analyzed at a series calendar times during the course of the study. A
decision to stop the study concluding that either the null or alternative hypothesis is true
can be made at any of these times if there is sufficient evidence in favor of one of the
hypotheses. At the interim analysis time some patients may be censored if they are still
alive or if they were lost to follow-up prior to this time. Patients are allowed to enter the
study between interim analysis points. Given α and the number of interim analysis, k, one
needs to find (ak, bk) where null hypothesis is accepted if a test statistic is in {−∞, ak} or
rejected if {bk,∞} and one continues testing otherwise. This is considered for the one-sided
test for superiority. The authors also examine the sequential log rank test for the testing
equality of two survival curves using a grouped sequential design.

The final chapter, Chapter 30, by Le-Rademacher and Brazauskas looks at paired sur-
vival data. Here we have survival time on two matched pairs of survival times. Matching
can be on two highly correlated individuals such as brothers, two organs within the person
such as eyes or on two individuals retrospectively matched on a set of risk factors. The
two responses are survival times with possibly right-censored data. The censoring time can
be the same for both units or there can be different censoring times for each individual.
When there is no censoring, paired data is handled by paired t-tests, sign or sign rank
tests. With censored data, some modification is needed such as tests using a generalized
rank in place of the raw data, tests using differences in survival times, tests based on a
weighted difference in Kaplan-Meier estimates with an appropriately adjusted variance es-
timator, marginal and/or stratified Cox models to adjust for covariates and frailty models
to account for correlations between observations. Pseudo-value regression models can be
adapted to account for association between survival times when testing equality at a fixed
time point.
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28.1 Clinical trials and time-to-event data

In clinical research, investigators are often interested in the occurrence of certain events
such as disease progression, relapse or death. One objective may be to evaluate the effect
of a new treatment or a new drug on the prevention or reduction of such undesired events.
The time to the occurrence of an event is referred to as “time-to-event.” When the event is
death, the time-to-event is the patient’s survival time, hence analysis of time-to-event data is
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referred to as “survival analysis.” Statistical methods for analysis of time-to-event data are
different from those used for continuous outcomes, e.g., comparing means or proportions, as
time-to-event is usually subject to censoring. In the presence of censoring for some patients
the exact event time is not known, but only that the event time is larger than an observed
censoring time. Furthermore normality assumptions of standard statistical methods such as
the t-test usually do not hold for time-to-event data.

In clinical trials, patients are often followed for a specified length of time in order to
record whether or not the event of interest occurred. A first insight in the data is provided
by the analysis of the proportion of patients on whom the event was observed, that is
analyzing dichotomous responses, which was essentially the only analysis prior to the 1950s
(Peace, 2009). Essential drawback of this approach is that the time at which the event
was observed as well as information on patients censored prior to the end of the study is
not incorporated in the analysis. These criticisms have been overcome by survival analysis,
prompted decisively by Kaplan and Meier (1958) and Cox (1972) in particular. Instead
of analyzing dichotomous responses, simply indicating whether a subject has experienced
an event or not, survival analysis requires careful definition of the event time, censored
observations, the accrual and follow-up period and whether one deals with independent or
noninformative censoring.

Sample size calculation plays an important role in planning clinical trials, as it ensures
the validity of studies and guarantees that the intended trial will have a desired power for
correctly detecting a clinically meaningful difference if such a difference between treatments
or drugs truly exists. Purpose of sample size calculation is to estimate the required number
of patients who have to be enrolled into the study in order to achieve a prespecified power
at a given level of significance.

This chapter aims at deriving sample size formulas for analyzing time-to-event data. In a
first step the binomial sample size formula is used in order to gain an idea of the approximate
number of patients required by treating outcome data not as survival or censoring times,
but as dichotomous responses, simply indicating whether a subject has experienced an event
or not. In the case of noncensored time-to-event endpoints a sample size formula for log-
transformed event times is briefly mentioned, using the t-test for two independent samples.
In the presence of censoring sample size calculation actually consists of two steps: first, one
determines the total number of events required for the trial; this quantity is often called the
“effective sample size.” After that the total number of subjects that have to be enrolled to get
the necessary number of observed events in a given time frame is determined. Schoenfeld’s
formula, named after its first publication by Schoenfeld (1981), for sample size computation
within the log rank test as well as under a proportional hazards model will be given. An
alternative formula was proposed by Freedman (1982) and is the basis of a comprehensive
analysis of sample sizes for clinical studies published by Machin et al. (2008). The framework
is then extended to the situation of competing risks. A concrete clinical study is used to
explain all necessary considerations in a step-by-step manner. Finally we summarize various
extensions with reference to the corresponding publications.

28.1.1 Binomial sample size formula

Regarding initial trial planning, Peace (2009) proposed to gain an idea of the approximate
number of patients required by treating the outcomes data not as survival or censoring
times, but as dichotomous responses, simply indicating whether a subject has experienced
an event or not. Assume two groups: an experimental, indicated by i = 1, and a control
group indicated by i = 0. Let Yi, i ∈ {0, 1} be independent binomial random variables,
Yi = 1 identifying an event in group i. Denote P (Yi = 1) = πi, that is π0 = P (Y0 = 1)
possibility of an event in the control group 0 and π1 = P (Y1 = 1) the possibility of an event
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in the treatment group 1. Assume equal sample sizes in both groups. Then the hypothesis
testing situation is as follows:

H0 : π0 = π1 =: π vs. H1 : π0 �= π1, say π0 − π1 =: δ

Finally the binomial sample size formula to determine the total number of patients required
for a two-tailed test is given by

n =

(
u1−α/2

√
2π(1− π) + u1−β

√
π0(1− π0) + π1(1− π1)

)2
(π0 − π1)2

,

where uγ denotes the γ-quantile of the standard normal distribution. This formula can
provide a first insight into the sample size required for the trial, but it relies on identical
event probabilities in both groups. This is only fulfilled if the follow-up periods for all
patients is the same; thus it is inappropriate to dwell on the binomial formula in general if
the intent were indeed to use survival methods.

28.1.2 Noncensored time-to-event endpoints

Peace (2009) proposed sample size calculation for noncensored time-to-event data using
the t-test. Aim is to test the null hypothesis of equal means of the time-to-event for the
control and experimental group, respectively. The t-test based on the normality assumption
uses a logarithmic transformation of the event times so that the transformed data will be
closer to the normal distribution. A sample size formula can be derived in order to achieve
a power of 1 − β at significance level α in testing the difference between means based on
log-transformed data. This formula resembles Schoenfeld’s formula (28.3), given later in
this chapter, with the anticipated treatment effect expressed in terms of difference between
means of the log-transformed time-to-event endpoints.

28.1.3 Exponential model

In certain circumstances it is possible to postulate a distributional form for the survival
distribution. As the simplest case we assume constant hazard rates for both groups, that is
the hazard rate within group i ∈ {0, 1} does not change over time, λi(t) ≡ λi. The survival
function then follows an exponential distribution:

Si(t) = exp(−λit), t ≥ 0

The exponential model constitutes a simple parametric model for time-to-event data. The
hypothesis to be tested is

H0 : λ0 = λ1 vs. H1 : λ0 �= λ1 say
λ1

λ0
=: θ �= 1

The sample estimate of the log hazard rate log(λ̂) asymptotically follows a normal distribu-

tion. Lachin (2000) uses the test statistic T = log(λ̂1/λ̂0) and derives with its expectation
and variance under H0 and H1, respectively, the equation for the sample size depending on
the prespecified power. Assume patients are randomized to receive one of two treatments,
then the total number of events required to give a test with significance α and power 1− β
is approximately

d =
(u1−α/2 + u1−β)

2

p (1− p) (log θ)2
(28.1)



574 Handbook of Survival Analysis

with p the proportion allocated to the control group and θ = λ1

λ0
the anticipated value of

the hazard ratio which is of interest to detect (Lachin, 2000; Machin and Campbell, 1997).
Therefore for equal allocation, that is patients are randomized to the treatment groups

in the ratio 1 : 1 resulting in p = 1
2 , the total number of events is approximated by

d =
4(u1−α/2 + u1−β)

2

(log θ)2
(28.2)

Equation (28.2) is derived by George and Desu (1974) based on the fact that the loga-
rithm of a sum of independent, identically distributed exponential random variables has an
approximately normal distribution.

The other way around, in case one is interested in the power 1− β of a trial for a given
number of observed events d, Equation (28.1) is inverted and results in

u1−β =
√
p (1− p) d log θ − u1−α/2

which yields 1− β = Φ
(√

p (1− p) d log θ − u1−α/2

)
for the power with Φ the cumulative distribution function of the standard normal distribu-
tion.

28.2 Basic formulas

Schoenfeld (1981) studied the asymptotic properties of nonparametric tests for comparing
survival distributions and derived a sample size formula for the log rank test. Later on,
Schoenfeld (1983) showed that this sample size formula is valid also for the proportional
hazards regression model. The log rank test is a nonparametric test of the hypothesis that
two groups have the same survival distributions. This is equivalent to the fact that the
corresponding hazard functions are identical.

In the following we will give a brief introduction to the basic quantities of survival analy-
sis. A classical attempt within survival analysis is to investigate the time from randomization
to a specific treatment until death occurs. Let (Xt)t≥0 denote whether the individual is alive
or dead over the course of time, namely for t ≥ 0

Xt =

{
0 if alive at time t,

1 if dead at time t.

The failure time or event time T then is specified as T := inf{t : Xt �= 0} and is therefore
a nonnegative random variable with distribution which can be characterized by the hazard
function, the instantaneous failure rate among those at risk:

λ(t) = lim
dt↘0

P (T ∈ [t, t+ dt)|T ≥ t)

dt
.

Another characterization of the distribution of T is given by the survival function, which
represents the probability of surviving beyond time t:

S(t) := P (T > t) = exp

(
−
∫ t

0

λ(s)ds

)
.
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Suppose the aim is to test the equality of two survival distributions in a randomized
clinical trial with a heterogeneous patient population. The characteristics of the patients are
taken into account by adjusting for covariates X such as gender or age. The two groups can
then be compared using Cox proportional hazards model, the standard regression model
for time-to-event data. Let λ(t|Z) denote the hazard rate at time t given covariate value Z.
For comparing two different treatments assume Z to be binary with Z = 0 indicating the
control versus Z = 1 the new treatment. Then Cox proportional hazards model is given by

λ(t|Z,X) = λ(t|0) exp (βZ + γX)

The proportional hazards model specifies that the ratio of the hazard function for a patient
given the new treatment to the same patient given the control treatment will be a constant,
namely

λ(t|Z = 1, X)

λ(t|Z = 0, X)
= exp(β) =: θ

i.e., the regression coefficient β is in line with the log-hazard ratio. In addition, randomiza-
tion ensures that covariates X are orthogonal to the treatment indicator Z.

28.2.1 Schoenfeld’s formula

Determining the sample size when the outcome is time-to-event in the presence of censoring
is really a two-step process. One has to calculate

• firstly the total number of events required

• and in a second step the total number of subjects who must be followed to obtain the
required number of events.

Assume constant hazard rates λ0, λ1 within the control and the treatment group, respec-
tively. Then Schoenfeld’s formula, named after its first publication by Schoenfeld (1981),
for the number of events needed in a two-group trial for a two-sided log rank test to detect
a hazard ratio of λ1

λ0
=: θ at the α level of significance and power 1− β is given by

d(θ, α, β, p) :=
(u1−α/2 + u1−β)

2

p (1− p) (log θ)2
(28.3)

with p the proportion of subjects allocated to the control group. Note that the formula is
the same as under the assumption of an exponential model; see Section 28.1.3. The total
number of observed events d is called “effective sample size” and turns out to be minimal
under equal allocation, i.e., p = 0.5, and the formula is simplified to

d(θ, α, β, 0.5) =
4 (u1−α/2 + u1−β)

2

(log θ)2
.

In a second step, we have to take censoring into account. The effective sample size d
has to be adjusted by an estimate of the overall probability of an uncensored observation
by the end of the study, denoted by Ψ, to get the total number of subjects who have to be
enrolled into the trial:

n =
d

Ψ
=

(u1−α/2 + u1−β)
2

p (1− p) (log θ)2 Ψ
. (28.4)

The determination of Ψ will be described in Section 28.3. Obviously in the case of complete
time-to-event data, that is neither administrative censoring (subjects without an event by



576 Handbook of Survival Analysis

TABLE 28.1
Some values of the factor (u1−α/2 + u1−β)

2 depending on α and β.

β = 20% β = 10% β = 5%

α = 5% 7.849 10.507 12.995

α = 1% 11.679 14.879 17.814

the end of the study) nor loss-to-follow-up (only the minimum time a patient has been
without an event is known, afterwards the contact is disrupted, for whatever reason), the
overall probability of an uncensored observation by the end of the study is Ψ = 1 and the
effective sample size equally represents the total sample size.

Schoenfeld (1983) points out that the sample size formula assuming a proportional haz-
ards model and using a test based on the partial likelihood is the same as when the log rank
test is used to compare treatments with proportional hazards without covariates.

28.2.2 Alternative formula by Freedman

Freedman (1982) provided tables of the number of patients required in clinical trials using
the log rank test to compare survival times of two treatment groups. Assume patients are
randomized to one of two treatments, then the total number of events needed to be observed
in order to detect a hazard ratio of θ is

d =
(u1−α/2 + u1−β)

2

p(1− p)

(
p+ (1− p)θ

1− θ

)2

(28.5)

with p the proportion allocated to the control group. For a 1:1 randomization, that is equal
allocation with p = 1

2 , the formula is simplified to

d = (u1−α/2 + u1−β)
2

(
1 + θ

1− θ

)2

. (28.6)

Machin et al. (2008) use Freedman’s formula in order to derive sample sizes for comparing
survival curves in clinical studies using the log rank test. Their work offers different examples
and describes the use of the given sample size tables.

Peace (2009) points out that Schoenfeld’s formula (28.3) tends to slightly underestimate
the required number of events. When a 1:1 randomization is used, both methods yield
approximately the same number of events required with Freedman’s approximation being
slightly greater than Schoenfeld’s.

Hsieh (1992) compares different sample size formulas for the log rank test, including the
formula provided by Schoenfeld and Freedman, and describes their differences on optimal
allocation of sample sizes. In order to get more experience with an experimental treatment,
some investigators prefer an unbalanced design with more patients allocated to the new
treatment. Since the inequality between both groups will reduce the power of the test, it
is advisable to take a ratio of 2:1 or 3:2 for experimental versus control treatment. To
achieve the power of the test with unequal allocation, the sample size has to be increased
accordingly. The optimal design leading to a minimal number of events required with respect
to Schoenfeld’s formula is given by p = 1

2 , whereas Freedman’s formula implies p = θ
1+θ .

Hsieh uses Monte Carlo simulations to compare the powers of equal sample size designs
with equal event designs.
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28.3 Sample size

In many clinical trials it is not possible to wait until every patient has experienced an
event, especially in cancer trials when the event of interest is relapse, some patients will
stay without relapse, hence for them no event time will be observed. These patients are
subject to so-called “administrative censoring,” i.e., no event occurred by the end of the
trial. As a result one has to estimate the number of patients n to be recruited corresponding
to the required number of events d.

The number of patients needed to enroll into the study in order to get the required
number of events depends on:

• length of the accrual period t1

• length of the additional follow-up period t2

• distribution of entry times

• distribution of survival times

A �
0

accrual period

t1

additional follow-up

t1 + t2 calendar time

B

�

�
1

0
0 t2 t1 + t2 study time

�
�
�
�
�
�
�
��

FIGURE 28.1
Accrual and additional follow-up period in calendar time (A) and resulting probability of
being uncensored in study time (B) assuming no loss-to-follow-up.

28.3.1 Parametric estimation

We consider the simple case where patients enter the study uniformly during an accrual
period [0, t1]; this results in administrative censoring as shown in Figure 28.1, when there is
no loss-to-follow-up. Assume survival times are exponentially distributed with hazard rates
λ0 and λ1 for the control and the experimental group, respectively. Then the probability of
observing an event until the end of the follow-up is given by

Ψ(λ) = 1− exp(−λt2)− exp(−λ(t1 + t2))

λt1
. (28.7)

This probability has to be computed for control and the experimental group separately and
then combined to get the overall probability of observing an event

Ψ = pΨ(λ0) + (1− p)Ψ(λ1)
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with p the proportion allocated to the control group. For equal allocation, that is p = 0.5,
the formula yields

Ψ =
1

2
(Ψ(λ0) + Ψ(λ1)).

Finally the number of patients n that have to be enrolled into the trial in order to get the
required number of events d to detect a pre-specified treatment effect θ at the α level of
significance with a power of 1− β is given by

n =
d

Ψ
,

by ignoring further variability due to the randomness of d given n and Ψ. Abel et al. (2012)
point out that the power of a trial with given sample size need not be fully correct as its
calculation depends on two random elements, namely the random length of accrual as well
as the number of observed events. Additional censoring due to loss-to-follow-up could be
accounted for by assuming yet another independent exponential distribution.

Instead of a uniform distribution of the entry times, Chow et al. (2008) assumed that each
patient enters the trial independently with entry time following a more flexible distribution.
As shown in Figure 28.1 suppose that the accrual period is of length t1 and the additional
follow-up period of length t2 so the total length of the trial is t1 + t2 =: t̃. Chow et al.
assume that the entry times follow a continuous distribution with density function given by

g(t) :=

{
γ exp(−γt)

1−exp(−γt1)
, 0 ≤ t ≤ t1 for γ �= 0,

1
t1
, 0 ≤ t ≤ t1 for γ = 0,

with γ describing the patient’s accrual pattern, namely

• γ < 0 lagging patient entry (L)

• γ = 0 for uniform patient entry (U)

• γ > 0 fast patient entry at beginning (F).

Explicit formulas assuming an exponential model for the survival time are given by
Chow et al. (2008).

28.3.2 Nonparametric approximation

Schoenfeld (1983) proposed to use Simpson’s rule in order to estimate the overall probability
of observing an event Ψ. Use an estimate of the survival function for the control group Ŝ0(t),
e.g., the Kaplan–Meier estimator, to approximate the survival function under a proportional
hazards model for the experimental group as

Ŝ1(t) = Ŝ0(t)
θ.

Subjects are assumed to be recruited uniformly during the accrual period t1 and then are
followed for an additional time period t2. Simpsons’s rule to estimate the overall probability
of observing an event by the end of the study, i.e., after a time period of t1 + t2, then is
given by

Ψ0 = 1− 1

6
[Ŝ0(t2) + 4Ŝ0(0.5t1 + t2) + Ŝ0(t1 + t2)].
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FIGURE 28.2
Patient’s accrual pattern (Chow et al. (2008)).

for the control group. For the experimental group Ψ1 is calculated separately by using
Ŝ1(t) = Ŝ0(t)

θ resulting in

Ψ1 = 1− 1

6
[Ŝ1(t2) + 4Ŝ1(0.5t1 + t2) + Ŝ1(t1 + t2)].

Freedman (1982) simplifies the calculation of Ψ by taking into account only one time
point, say 0.5t1 + t2, which leads to

Ψ0 = 1− Ŝ0(0.5t1 + t2) and Ψ1 = 1− Ŝ1(0.5t1 + t2)

for the control and experimental group, respectively. Finally the overall probability of an
uncensored observation is given by

Ψ = pΨ0 + (1− p)Ψ1.

28.3.3 Competing risks

In clinical trials it is often the case that observation of the event of interest is precluded by
the incidence of another event, the so-called “competing event.” For example, if interest is
in death of a cardiovascular cause, death of any other cause constitutes a competing event.
A competing risks process is displayed in Figure 28.3 with cause-specific hazard rate λI(t)
for the event of interest I and λC(t) for the competing event C.

Denote λ0I(t) the hazard for the event of interest I in the control group 0 and λ1I(t)
the hazard for the event of interest I in the experimental group 1. Correspondingly
λ0C(t), λ1C(t) the hazard for the competing event c in the control 0 and in the experi-
mental group 1.

The assumed treatment effect on the event of interest then is expressed in terms of
cause-specific hazard rates as

θ =
λ1I(t)

λ0I(t)
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FIGURE 28.3
Competing risks process.

Note that as before a proportional hazards model for the event of interest is assumed,
equivalent to a constant hazard ratio between both treatment groups.

The total number of events of the primary endpoint required to detect a clinically
relevant treatment effect of magnitude θ with power 1− β at two-sided level α is given by
Schoenfeld’s formula (28.3) as

d =
(u1−α/2 + u1−β)

2

p(1− p)(log θ)2

equivalent as for the classical survival model.

Actually the presence of competing risks affects the second step of sample size calcu-
lation, namely determination of Ψ, the overall probability of observing a primary event of
interest.

As in the simple survival model Ψ has to be computed separately for the control and
the treatment group. Assume constant cause-specific hazard rates λ0I , λ0C for the control
and λ1I , λ1C for the experimental group, respectively. An equivalent of Formula (28.7) in
the presence of competing risks then is given for the control group as

Ψ(λ0I) =
λ0I

λ0

[
1− exp(−λ0t2)− exp(−λ0(t1 + t2))

λ0t1

]
; λ0 = λ0I + λ0C

and analogous for the experimental group as

Ψ(λ1I) =
λ1I

λ1

[
1− exp(−λ1t2)− exp(−λ1(t1 + t2))

λ1t1

]
; λ1 = λ1I + λ1C .

These calculations are valid under the assumption that the treatment has no effect on the
hazard of the competing risk; see Schulgen et al. (2005).

Finally Ψ(λI) is given by

Ψ(λI) = pΨ(λ0I) + (1− p)Ψ(λ1I)

with p the proportion allocated to the control group 0.
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28.4 Data example

28.4.1 4D trial

The 4D trial (Die Deutsche Diabetes Dialysis Studies) enrolled patients with type 2 diabetes
on hemodialysis to evaluate the efficacy of antihyperlipidemic treatment with atorvastatin,
a HMG-CoA reductase inhibitor, in reducing death of cardiovascular cause and the fre-
quency of non-fatal myocardial infarction in the presence of competing other causes of
death (Schulgen et al., 2005; Wanner et al., 2005).

The aim of this section is executing sample size determination, in a first step simply
assuming a two-state model with death of any cause as outcome variable, in a second step
considering a multistate model explicitly taking into account competing events.

28.4.1.1 Two-state model

Initially consider the classic survival model, where interest is in time to event, for the 4D
trial time until death of any cause as illustrated in Figure 28.4.

0initial state � 1 death of any cause
λ(t)

FIGURE 28.4
Two-state model for the 4D trial.

Assume patients enter the study uniformly during an accrual period of length t1 which
is followed by a follow-up period of length t2, so the whole trial is of length t1 + t2 = t̃.

The 4D trial aimed at testing whether the experimental treatment, i.e., antihyperlipi-
demic treatment with atorvastatin, is superior compared to a control treatment, in this case
placebo.

The hypothesis for the two-sided test is formulated as:

H0 : λ0(t) = λ1(t) for all 0 < t < t̃ vs.

H1 : λ0(t) �= λ1(t) for at least some 0 < t < t̃

where λ0(t), λ1(t) denote the hazard functions for the control and the experimental group,
respectively.

For sample size determination one has to specify a clinically relevant treatment effect
one wishes to detect within the study. Therefore, if available results from previous studies
are taken into account. Schulgen et al. (2005) relied on a historical cohort study of 412
diabetic patients treated in 35 dialysis centers in Germany in the time period from 1985
to 1994 to collect information about the survival pattern of the trial population associated
with the reference treatment.

Table 28.2 of hazard rates under control and experimental treatment is adopted from
the work of Schulgen et al. (2005) assuming a time-homogeneous Markov process, that is
constant cause-specific hazard rates.

For analysis of time to death of any cause, the hazard rates of lines 2 and 3 have to be
combined, resulting in λ0 = 0.21+0.14 = 0.35 for the control and λ1 = 0.15+0.14 = 0.29 for
the experimental group. Patients experiencing a non-fatal myocardial infarction are treated
as censored observations. The expected hazard ratio between both groups then is given by

θ =
λ1

λ0
=

0.29

0.35
= 0.83.
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TABLE 28.2
Hazard rates under control and experimental treatment.

control group experimental group

non-fatal myocardial infarction 0.05 0.04

death of cardiovascular cause 0.21 0.15

death of other causes 0.14 0.14

FIGURE 28.5
Theoretical survival function for the control group S0(t) with λ0 = 0.35 and the experimen-
tal group S1(t) with λ1 = 0.29.

Schoenfeld’s formula (28.3) is used to derive the effective sample size to achieve a power
of 90% at a two-sided level of significance 5% to detect a clinically relevant treatment effect
of θ = 0.83:

d =
4(u0.975 + u0.9)

2

(log 0.83)2
= 1211

Note that equal allocation between both treatment groups is assumed.
Taken the formula provided by Freedman (28.6) the effective sample size is given by

d =
(u0.975 + u0.9)

2(1 + 0.83)2

(1− 0.83)2
= 1218,

that is 1,218 events of the primary endpoint have to be observed to detect a hazard ratio
of θ = 0.83 at the α = 5% level of significance with power 1− β = 90%.

To derive the total number of patients needed for the trial, one has to estimate the
probability of observing an event Ψ. Because constant hazard rates are assumed, Ψ can be
calculated assuming exponentially distributed survival times resulting in
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Ψ(λ) = 1− exp(−λt2)− exp(−λ(t1 + t2))

λt1
.

For the 4D trial an accrual period of t1 = 1.5 years and a follow-up of t2 = 2.5 years are
assumed. Ψ has to be determined separately for the control and the experimental group
using the respective hazard rates for each group:

Ψ(λ0) = 1− exp(−0.35 · 2.5)− exp(−0.35(1.5 + 2.5))

0.35 · 1.5 = 0.676

Ψ(λ1) = 1− exp(−0.29 · 2.5)− exp(−0.29(1.5 + 2.5))

0.29 · 1.5 = 0.607

and finally for equal allocation, that is p = 1
2 ,

Ψ =
1

2
(Ψ(λ0) + Ψ(λ1)) = 0.641

The total number of patients needed for the trial analyzed by a two-state model then is
given by

n =
d

Ψ
=

1211

0.641
= 1890.

Note that under the assumption of a stronger treatment effect, in our example an even
smaller hazard ratio than the one taken so far, the effective sample size d and hence the
sample size n decreases considerably. For example, instead of θ = 0.83 assume θ = 0.73,
then for the same α and β the effective sample size decreases from d = 1211 to d = 424.
In general one gets the maximum sample size when the hazard ratio is close to one. On
the contrary the bigger difference between the hazard for the experimental and the control
group is, the smaller sample size is required.

28.4.1.2 Competing risks analysis

The 4D trial with time-to-event endpoints in the presence of competing risks is best de-
scribed in the framework of multi-state models, as displayed in Figure 28.6. Consider as
event of interest non-fatal myocardial infarction or cardiovascular death, whereas death of
other causes constitutes the competing event. Let λC(t) denote the hazard for the competing
event and λI(t) the hazard for the event of interest. The all-cause-hazard λ(t) = λC(t)+λI(t)
denotes the hazard function for the intensity of moving to any one of the outcome states at
time t.

2

0

1 non-fatal myocardial infarction
or cardiovascular death

death of other causes

�������

�������

λI(t)

λC(t)

FIGURE 28.6
Competing risks model for the 4D trial.
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The hypothesis in the given competing risks setting is formulated as

H0 : λ0I(t) = λ1I(t) for all 0 < t < t̃ vs.

H1 : λ0I(t) �= λ1I(t) for at least some 0 < t < t̃

with λ0I(t) the hazard for the event of interest in the control and λ1I(t) the hazard for the
event of interest in the experimental group.

Following Table 28.2 the hazard rate for the event of interest is given by

λ0I = 0.05 + 0.21 = 0.26 for the control group and

λ1I = 0.04 + 0.15 = 0.19 for the experimental group.

The assumed treatment effect in terms of the hazard ratio for the event of interest then is
given by

θ =
λ1I(t)

λ0I(t)
=

0.19

0.26
= 0.73.

We now briefly introduce some notation with respect to the competing risk framework.
Figure 28.6 represents a competing risk setting with two possible transitions 0 → 1 and
0 → 2. Hence Xt takes value 0 for t < T and at failure time T either moves to state 1 or to
state 2:

Xt =

⎧⎪⎨⎪⎩
0 at risk at time t,

1 event of interest at time t,

2 competing event at time t.

The failure time is given by T = inf{t : Xt �= 0}, but in a competing risk setting additionally
the type of the event XT = j, j ∈ {1, 2} has to be recorded. Cause-specific hazard rates are
defined as

λj(t) := lim
dt↘0

P (T ∈ [t, t+ dt), XT = j|T ≥ t)

dt
, j ∈ {1, 2}.

which represent the hazard from failing from a given cause in the presence of the competing
risks.

The probability of experiencing an event of type j over the course of time is represented
by the cumulative incidence function (CIF)

Fj(t) := P (T ≤ t,XT = j) =

∫ t

0

S(u)λj(u)du

where

S(t) = exp

(
−
∫ t

0

λ·(s)ds
)

is the overall survival with all-cause hazard λ·(t) = λ1(t) + λ2(t) (Andersen et al., 2002;
Beyersmann et al., 2011). In Figure 28.7 the cumulative incidence functions for the event of
interest for both the control and the experimental group are displayed. In the following, let
Z = 0 denote the control and Z = 1 the experimental group, respectively. For the control
group, following Table 28.2, the overall hazard is given by λ0 = 0.05 + 0.21 + 0.14 = 0.4,
hence the overall survival is S0(t) = exp(−0.4t) leading to

F0(t) = P (T ≤ t,XT = 1, Z = 0) =

∫ t

0

S0(u)λ0Idu = 0.65(1− exp(−0.4t)).

For the experimental group, the overall hazard is λ1 = 0.04 + 0.15 + 0.14 = 0.33, the
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FIGURE 28.7
Theoretical cumulative incidence function for the event of interest for the control F0(t) and
the experimental group F1(t), respectively.

overall survival S1(t) = exp(−0.33t), hence the cumulative incidence function for the event
of interest

F1(t) = P (T ≤ t,XT = 1, Z = 1) =

∫ t

0

S1(u)λ1Idu = 0.58(1− exp(−0.33t)).

Back to sample size determination, for equal allocation between the experimental and
the control group, i.e., p = 0.5, the required number of events of the primary endpoint
to detect a hazard ratio of θ = 0.73 at the α = 5% level of significance with a power of
1− β = 90% is given by Schoenfeld’s formula (28.3) as

d =
4(u0.975 + u0.9)

2

(log 0.73)2
= 424.

For comparison, taking the formula provided by Freedman (28.6) the effective sample size
is given by

d =
(u1−α/2 + u1−β)

2(1 + θ)2

(1− θ)2
=

(u0.975 + u0.9)
2(1 + 0.73)2

(1− 0.73)2
= 431,

that is 431 events of the primary endpoint have to be observed to detect a hazard ratio of
θ = 0.73 at the α = 5% level of significance with a power of 1− β = 90%.

The next step is to determine the number of patients n that have to be enrolled into
the study in order to get the anticipated number of events of the primary outcome. The
probability of observing an event of interest Ψ is given by

Ψ(λI , λ) =
λI

λ

[
1− exp(−λt2)− exp(−λ(t1 + t2))

λt1

]
with all-cause hazard λ = λI + λC and an accrual period of t1 = 1.5 years and a follow-up
of t2 = 2.5 years.
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The probability of observing an event of interest in the control group then is given by

Ψ(λ0I , λ0) =
0.26

0.4

[
1− exp(−0.4 · 2.5)− exp(−0.4(1.5 + 2.5))

0.4 · 1.5

]
= 0.47

and within the experimental group by

Ψ(λ1I , λ1) =
0.19

0.33

[
1− exp(−0.33 · 2.5)− exp(−0.33(1.5 + 2.5))

0.33 · 1.5

]
= 0.376

The overall probability of observing an event then is given by

Ψ =
1

2
(Ψ(λ0I , λ0) + Ψ(λ1I , λ1)) = 0.423

for equal allocation between both groups. As mentioned in Section 28.3.3, these calculations
are valid under the assumption of no treatment effect on the hazard of the competing event.
This condition is complied with in the 4D trial, as the hazard rate for the competing event
“death of other causes” is equal to 0.14 for both the control and the experimental group;
see Table 28.2. Finally the total number of patients required for the competing risks setting
is given by

n =
d

Ψ
=

424

0.423
= 1002.

Indeed the trial protocol of the 4D trial assumed to recruit about 1,200 patients, that is
about 20% patients more than the calculated minimum number required. This was to take
into account loss-to-follow-up and to protect against potential incorrect assumptions in
sample size calculation (Schulgen et al., 2005).

28.5 Extensions

28.5.1 Multi-arm survival trials

In some trials more than one experimental treatment should be evaluated against a standard
therapy. Barthel et al. (2006) give an overview on extensions of Schoenfeld’s formula for
multi-arm trials, based on the work of Ahnn and Anderson (1998). Assume n patients
randomized to one of K treatment groups and compare the K treatments globally in terms
of time to failure using a log-rank test. Denote λk(t) the hazard rate in treatment group
k ∈ {1, 2, . . . ,K}, then the null hypothesis of equality of the K survival distributions is
expressed as

H0 : λ1(t) = λ2(t) = · · · = λK(t) vs.

H1 : λk(t) �= λl(t) for at least one k �= l,

that is the global alternative hypothesis, that at least one survival distribution is different
from the others.

Consider the simple case of a log-rank test under proportional hazards, that is the hazard
ratio in group k relative to group 1 is constant over time:

λk(t)

λ1(t)
=: θk.
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Assume equal allocation within the different treatment groups, then the sample size is given
by

n =
Kτ

Ψ
[
K−1
K

∑K
k=2(log θk)

2 − 2
K

∑K
k=2

∑K
k≤q log θk log θq

] (28.8)

with τ the non-centrality parameter obtained for a given power 1− β and significance level
α from tables of the cumulative non-central chi-squared distribution (Barthel et al., 2006).
Ψ denotes the probability of an uncensored observation by the end of the trial; see Section
28.3. For only two treatment groups, that is K = 2, τ = (u1−α/2 + u1−β)

2 and (28.8) is
identical with Schoenfeld’s Formula (28.4) for equal allocation.

28.5.2 Test for non-inferiority/superiority and equivalence

Assume interest is in comparing two treatments, namely one new, in the following referred to
as experimental treatment Z = 1, compared to a control treatment Z = 0. Cox proportional
hazards model is given by

λ(t|Z) = λ(t|Z = 0) exp(βZ)

with λ(t|Z) the hazard rate at time t given covariate value Z ∈ {0, 1}, β the regression
coefficient. The treatment effect then can be expressed in terms of the hazard ratio between
both groups:

λ(t|Z = 1)

λ(t|Z = 0)
= exp(β) =: θ.

Schoenfeld’s Formula (28.4) given in Section 28.2.1 to determine the total number of patients
required for a clinical trial to detect a treatment effect θ at the α level of significance with
power 1− β is given by

n =
(u1−α/2 + u1−β)

2

p (1− p) (log θ)2 Ψ

with p the proportion allocated to the control group and Ψ the overall probability of ob-
serving an event; see Section 28.3.

Actually this formula holds in order to test for equality of two survival curves, given by
the following hypothesis testing situation:

H0 : λ(t|Z = 1) = λ(t|Z = 0) vs. H1 :
λ(t|Z = 1)

λ(t|Z = 0)
=: θ �= 1

Instead of testing for equality, one could be interested in testing for non-inferiority of a new
treatment compared to the standard, expressed by

H0 : log(θ) ≤ δ vs. H1 : log(θ) > δ (28.9)

with δ < 0. Rejection of the null hypothesis then indicates non-inferiority of the experimen-
tal over the control treatment.

The same hypothesis testing situation (28.9) with δ > 0 results in testing superiority,
namely rejection of the null hypothesis indicating superiority of the experimental treatment
over the control treatment.

The two-sided sample size formula with significance level α and power 1 − β assuming
a test for non-inferiority or superiority then is given by

n =
(u1−α/2 + u1−β)

2

p (1− p) (log θ − δ)2 Ψ
(28.10)
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see Chow et al. (2008).
In order to test for equivalence of two treatments, consider the following hypothesis

situation:
H0 : | log(θ)| ≥ δ vs. H1 : | log(θ)| < δ

The sample size needed for the one-sided test for equivalence in order to achieve a power of
1− β at the α level of significance then is given by

n =
(u1−α + u1−β/2)

2

p (1− p) (| log θ| − δ)2 Ψ
. (28.11)

28.5.3 Prognostic factors and/or non-randomized comparisons

Studies on prognostic factors attempt to determine a prediction of the course of the disease
for groups of patients defined by the values of prognostic factors, and to rank the relative
importance of various factors (Schmoor et al., 2000; Crowley and Hoering, 2012).

Consider the situation that the prognostic relevance of a certain factor Z1 should be
studied in the presence of second factor Z2. Let the analysis of the main effects of Z1 and
Z2 be performed with a Cox proportional hazards model given by

λ(t|Z1, Z2) = λ0(t) exp(β1Z1 + β2Z2)

where λ0(t) denotes an unspecified baseline hazard function and β1, β2 are the unknown
regression coefficients representing the effects of Z1 and Z2.

Consider binary covariates with p := P (Z1 = 1) and q := P (Z2 = 1). Assume that the
effect of Z1 is to be tested by an appropriate two-sided test based on the partial likelihood
derived from the Cox model given above with significance level α and power 1−β to detect
an effect which is given by a relative risk of θ1 = exp(β1).

For independent Z1 and Z2 Schoenfeld’s formula for the total number of patients required
(28.4) holds:

n =
(u1−α/2 + u1−β)

2

p (1− p) (log θ1)2Ψ

with p = P (Z1 = 1) the prevalence of Z1 = 1. That is two groups are defined by the value
of Z1 ∈ {0, 1} and p is the proportion allocated to group Z1 = 1. As before Ψ denotes the
overall probability of observing an event; see Section 28.3.

In case that the second factor Z2 is correlated with the interesting prognostic factor Z1,
Schoenfeld’s Formula given above is not valid. Schmoor et al. (2000) give an extension of
Schoenfeld’s Formula (28.4) for the situation when Z1 and Z2 are correlated with correlation
coefficient ρ given by

ρ =
Cov(Z1, Z2)√
p(1− p)q(1− q)

= (p1 − p0)

√
q(1− q)

p(1− p)

with p0 := P (Z1 = 1|Z2 = 0) and p1 := P (Z1 = 1|Z2 = 1). The total number of patients
required then is given by

n =
(u1−α/2 + u1−β)

2

Ψ p (1− p) (log θ1)2

(
1

1− ρ2

)
(28.12)

with 1
1−ρ2 the so-called “variance inflation factor.”

This formula can also be used for a treatment comparison within a non-randomized
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study with all the caveats of such an enterprise. The treatment indicator is then Z1 and
the covariates correlated with treatment allocation are summarized by Z2. The formula
above was derived for two binary covariates by Schmoor et al. (2000) and simultaneously
by Bernardo et al. (2000). An algorithm to calculate power and sample size for correlated
covariates with a multivariate normal distribution was presented by Schoenfeld and Boren-
stein (2005).

In a second step Schmoor et al. (2000) provide an approximate formula for sample size
and power to detect an interaction between the interesting prognostic factor and a second
correlated factor. An interaction between Z1 and Z2 may be analyzed by a Cox model

λ(t|Z1, Z2) = λ0(t) exp(β1Z1 + β2Z2 + β12Z1Z2).

An approximation of the number of patients needed to detect an interaction of size τ =
exp(β12) by a two-sided level α test with power 1− β then is given by

n =
(u1−α/2 + u1−β)

2

Ψ (log τ)2

(
1

p00
+

1

p01
+

1

p10
+

1

p11

)
(28.13)

with pij = P (Z1 = i, Z2 = j) (Schmoor et al., 2000; Peterson and George, 1993). Schmoor
et al. (2000) show that Formula (28.13) is just an extension of Formula (28.12) for indepen-
dent effects.

28.5.4 Left truncation

Xu and Chambers (2011) show that Schoenfeld’s Formula (28.3), although initially derived
for right-censored data, also holds for left-truncated data. They study the effects of drugs
or vaccines on pregnancy outcomes and therefore take spontaneous abortion as endpoint.
In this case often prospective exposure cohort studies are conducted, where women are
recruited after recognizing their pregnancy. Since the exact date of conception is unknown,
such data typically is subject to left truncation. Assume a proportional hazards model
between the experimental and the control group and suppose interest is in detecting a
treatment effect θ. The number of observed events required to detect a treatment effect
θ using a log-rank test which takes into account left truncation is given by Schoenfeld’s
Formula (28.3). This formula initially was derived for right-censored data, yet Xu and
Chambers (2011) use a sequential conditioning argument to show that this formula also
holds for left-truncated data. As they point out, a key point is that the number of events is
asymptotically proportional to the Fisher information while the size of the risk set which is
affected by truncation or censoring, does not enter into the calculation.

28.5.5 Proportional subdistribution modeling

Latouche et al. (2004) present a sample size formula for the proportional hazards modeling
of competing risks subdistribution. In a competing risks setting, the instantaneous risk of a
specific failure type sometimes is of less interest than the overall probability of this specific
failure, called “cumulative incidence function.” The cumulative incidence function is a com-
bined quantity of all cause-specific hazards, hence separate Cox models of all cause-specific
hazards are required. In order to facilitate the interpretation, Fine and Gray (1999) pro-
posed the subdistribution hazard, a hazard “attached” to the cumulative incidence function
as it re-establishes the one-to-one relation between hazard and distribution function known
from conventional survival analysis.

Latouche et al. (2004) provide a sample size formula for the subdistribution hazards
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model to design a two-arm randomized clinical trial with a right-censored competing end-
point. Let F1(t|Z) denote the cumulative incidence function for the event of interest assum-
ing a binary covariate Z ∈ {0, 1}. The subdistribution hazard ratio between the experimen-
tal (Z = 1) and the control group (Z = 0) then is given by

θ =
log(1− F1(t|Z = 0))

log(1− F1(t|Z = 1))

Latouche et al. (2004) derive a sample size formula similar to that proposed by Schoenfeld
(1983)

n =
(u1−α/2 + u1−β)

2

p (1− p) (log θ)2 Ψ
(28.14)

where θ denotes the subdistribution hazard ratio instead of the cause-specific hazard ratio
and Ψ the proportion of failures of the event of interest by the end of the study t̃. In case of
complete data, that is in the absence of censoring, Ψ is given by the cumulative distribution
function for the event of interest by the end of the study F1(t̃).

For completely understanding a competing risks process, all cause-specific hazards have
to be analyzed. Assuming each cause-specific hazard to follow a proportional hazards model,
precludes the assumption of proportional subdistribution hazards. Yet Grambauer et al.
(2010) recommend employing both types of analysis, as even a misspecified proportional
subdistribution hazards analysis offers a summary analysis in terms of a time-averaged effect
on the cumulative event probabilities.

Latouche et al. (2004) also consider correlated covariates when presenting sample size
formulas for the proportional hazards modeling of competing risks subdistribution. The
required sample size to detect a relevant effect in a prognostic study is similar to Formula
(28.12) in Section 28.5.3, with θ the subdistribution hazard ratio instead of the cause-specific
hazard ratio.

28.5.6 Cluster-randomized trials

Jahn-Eimermacher et al. (2013) give an extension of Schoenfeld’s Formula (28.4), account-
ing for a clustered design of a clinical trial. In cluster-randomized trials, treatments are
randomized not to individuals themselves, but to groups of individuals, the so-called “clus-
ters.” These trials are indicated when it is logistically too difficult to administer treatments
to individuals separately. Observations within the same cluster, like patients of the same
hospital, tend to be more similar than observation in different clusters, causing correlations.
Correlation reduces the statistical information in the data and thus the effective sample size.
Hence the clustered design has to be considered when planning the sample size of a trial to
ensure an adequate power to detect intervention effects.

To address the case where observations within the same cluster are correlated, Jahn-
Eimermacher et al. (2013) give a correction of Schoenfeld’s formula. They derive a sample
size formula for clustered time-to-event data with constant marginal baseline hazards and
correlation within clusters induced by a shared frailty term.

Assume a balanced trial with N clusters per group, each of size K. Then Schoenfeld’s
formula, designed for uncorrelated data, yields

N =
2(u1−α/2 + u1−β)

2

K(log θ)2 Ψ

clusters required per group to detect a treatment effect θ at the α level of significance with



Sample Size Calculations for Clinical Trials 591

a power of 1− β. Ψ denotes the overall probability of observing an event, see Section 28.3.
For two groups, that is a control and an experimental group, this yields a total of

n = 2KN =
4(u1−α/2 + u1−β)

2

(log θ)2 Ψ

patients that have to be enrolled into the trial, in accordance with (28.4).
Jahn-Eimermacher et al. (2013) point out that sample size calculation had to account

for the correlation within the data. Hence they use an additional summand to account for
the clustered design resulting in a total of

N =
2(u1−α/2 + u1−β)

2

K(log θ)2 Ψ
+ (u1−α/2 + u1−β)

2ν2
1 + θ2

(1− θ)2

clusters required per group to detect a hazard ratio of θ between both treatment groups.
This correction summand depends on the anticipated hazard ratio and on the coefficient of
variation ν of survival times between clusters within each intervention group. The coefficient
of variation can be calculated using a distributional assumption for the frailty variable, such
as the gamma or log-normal distribution; see Jahn-Eimermacher et al. (2013).

Duchateau and Janssen (2008) give several alternatives for the frailty model that take
into account the clustering of observations, for example a stratified model. They suggest
to use different and unspecified baseline hazards for each of the clusters, that is for each
stratum, and a common regression coefficient.

28.5.7 Cox regression with a time-varying covariate

Austin (2012) describes data-generating processes for the Cox proportional hazards model
in the presence of time-varying covariates. Simulations are used in order to examine the
performance of statistical procedures. Austin points out that in complex settings in which
analytic calculations are either very difficult or not feasible, data-generating processes allow
to select an appropriate sample size to analyze survival data in the presence of both time-
invariant and time-varying covariates.

28.6 Summary

The aim of this chapter was to give an insight and brief overview of sample size calculation
in clinical trials with time-to-event data.

Schoenfeld (1981) presented a sample size formula for comparing survival curves using
a log-rank test and subsequently pointed out that the same formula is also valid assuming
a proportional hazards model (Schoenfeld, 1983). An alternative formula is given by Freed-
man (1982). Hsieh (1992) provides an overview of different sample size formulas especially
accounting for unbalanced allocation using the log-rank test.

We pointed out that determining the sample size when the outcome is time-to-event
in the presence of right censoring is actually a two-step process. First one has to calculate
the total number of events required and in a second step the total number of patients
who have to be enrolled into the study to obtain the required number of observed events.
The total number of observed events required for the trial is called the “effective sample
size.” In order to get the total sample size, the probability of an uncensored observation
has to be determined. Therefore the anticipated length of the accrual and the additional
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follow-up time has to be specified, as well as the distribution of entry and survival times.
We consider the simple case where patients enter the study uniformly and survival times
are exponentially distributed in Section 28.3.1. Chow et al. (2008) assume more flexible
distributions of a patient’s entry time. A nonparametric approximation of the probability
of an uncensored observation is provided by Schoenfeld using Simpson’s rule.

As we pointed out the presence of competing risks does not affect the effective sample
size, but has to be taken into account within the second step, when the total sample size is
determined. We assume constant cause-specific hazards and present formulas assuming that
the treatment has no effect on the hazard of the competing event. An alternative approach
is to fit a proportional subdistribution hazards model as proposed by Fine and Gray (1999).
Latouche et al. (2004) demonstrate that the sample size formula in this case is given by
Schoenfeld’s formula including the anticipated subdistribution hazard ratio instead of the
cause-specific hazard ratio.

Extensions of the simple two-group randomized trial are given, for example if more than
two groups are compared, for sample size calculations in cluster-randomized trials, in case
that prognostic factors are of interest or time-varying covariates are incorporated into the
analysis. It turns out that the corresponding formulas are all more or less modifications of the
formula derived by Schoenfeld (1981). That emphasizes the outstanding role of Schoenfeld’s
formula.

Peace (2009) offers a comprehensive book on design and analysis of clinical trials with
time-to-event endpoints. On sample size calculations in clinical research we also refer to the
book of Chow et al. (2008) as well as the book written by Machin et al. (2008). Lachin
(2000) provides a chapter on the evaluation of sample size and power assuming exponential
survival as well as a Cox proportional hazards model.

For sample size calculations in more complex situations, in which analytic calculation is
either very difficult or not feasible, the use of simulations offers a beneficial alternative. An
example is provided by Austin (2012), who simulates event times assuming a Cox propor-
tional hazards model to estimate the statistical power to detect a statistically significant
effect of different types of binary time-varying covariates. Allignol et al. (2011) propose a
simulation point of view for understanding competing risks. They point out that an em-
pirical simulation approach provides a flexible tool for study planning in the presence of
competing risks.
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29.1 Introduction

Consider an experiment or study where entry of subjects is staggered over time. We are
interested in a survival or “time to event” response, measured from entry into the trial. The
subjects are followed for a certain duration until their event time is observed or censored.
The situation is depicted in Figure 29.1 with the horizontal lines in the diagram representing
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FIGURE 29.1
Accrual and follow-up in a survival study.
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FIGURE 29.2
Interim analyses.

survival times of twelve subjects. A solid circle at the right-hand end designates an exact
observation (subjects 1, 2, 4, 5, 7, 8, 9 and 11), whereas a hollow circle indicates that the
survival time is censored. Note that censoring can occur because of end-of-study (subjects 3,
10 and 12) or for some other reason such as competing risk or loss to follow-up (subject 6).
This situation is common in the conduct of clinical trials. Of course, the situation where
all subjects start together at the beginning is a special case and this is more common in
engineering or product life-testing experiments.

Consider the problem of testing between two hypotheses H0 and H1 concerning some
parameter θ. The data are analysed not just at the planned end of the study, but also
at interim times at calendar time points during the course of the study, with a maximum
of K > 1 analyses. At the interim analyses, the decision can be made to stop the study
concluding either H0 or H1, or to continue on to the next analysis. Figure 29.2 illustrates
the case of three analyses. At an interim analysis, subjects are censored if they are still
known to be alive at this point. Information on such subjects will continue to accrue at
later analyses.

At the first interim analysis, we analyze data on elapsed survival times from randomiza-
tion. These times have a common starting point of zero and “analysis time” censoring occurs
for subjects surviving past the first analysis; see Figure 29.3. Then, at interim analysis 2, we
analyze data on survival from randomization time with “analysis time” censoring occurring
for subjects surviving past the second analysis; see Figure 29.4. This process continues on
through further analyses until the conclusion of the trial.

29.2 Canonical joint distribution of test statistics based on accu-
mulating data

Suppose our main interest is in the parameter θ and let θ̂k denote an estimate of θ based
on data available at analysis k. For survival data, θ could be the hazard ratio between two
survival distributions, assumed constant over time, or the coefficient for a treatment effect
in a Cox (1972) regression model or other type of failure time model.
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The information for θ at analysis k is

Ik = {Var(θ̂k)}−1, k = 1, . . . ,K.

In many situations, θ̂1, . . . , θ̂K are approximately multivariate normal,

θ̂k ∼ N(θ, {Ik}−1), k = 1, . . . ,K,

and
Cov(θ̂k1 , θ̂k2

) = Var(θ̂k2
) = {Ik2

}−1 for k1 < k2.

This is termed the canonical joint distribution. It occurs, for example, when θ̂ is a maximum
likelihood estimate or other consistent asymptotically efficient estimator; see Scharfstein,
Tsiatis and Robins (1997) and Jennison and Turnbull (1997).

For testing H0: θ = 0, the standardized statistic at analysis k is

Zk =
θ̂k√

Var(θ̂k)
= θ̂k

√Ik.

For this statistic, the canonical joint distribution of (θ̂1, . . . , θ̂K) implies that

(Z1, . . . , ZK) is multivariate normal,

Zk ∼ N(θ
√Ik, 1), k = 1, . . . ,K,

Cov(Zk1
, Zk2

) =
√

Ik1
/Ik2

for k1 < k2.

The score statistics, Sk = Zk
√Ik, are also approximately multivariate normal with

Sk ∼ N(θ Ik, Ik), k = 1, . . . ,K.

The score statistics possess the “independent increments” property,

Cov(Sk − Sk−1, Sk′ − Sk′−1) = 0 for k �= k′.

For computation it is useful to recognize the fact that these score statistics behave as
Brownian motion with drift θ observed at times I1, . . . , IK .

In testing the equality of two survival curves, the successive non-standardized log-rank
statistics have, asymptotically, the canonical joint distribution of a sequence of score statis-
tics. Here θ̂ is an estimate of the log hazard ratio θ in a proportional hazards model and
the information I for θ is roughly equal to a quarter of the number of observed events.
The canonical distribution also applies to stratified log-rank statistics; see Jennison and
Turnbull (2000, Sec. 13.6.2).

If a Cox (1972) proportional hazards regression model is fitted by maximum partial
likelihood, the canonical joint distribution holds approximately for successive estimates of a
regression coefficient. Kaplan-Meier (1958) estimates of survival probabilities at a fixed time
point or of a specified quantile (e.g., the median) also follow the canonical joint distribution;
see Section 29.7.
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A group sequential boundary.

29.3 Group sequential boundaries and error spending

Suppose we are interested in testing the null hypothesis H0: θ = 0 versus a one-sided or
two-sided alternative hypothesis H1. At each interim analysis or “stage,” we must decide
whether to continue the study or to terminate, concluding either H0 or H1. At each stage
k, k = 1, . . . ,K, this decision is based on a statistic Zk according to the rule

If Zk ∈ Ck, continue on to stage k + 1,

if Zk ∈ Ak, stop and conclude H0,

if Zk ∈ Bk, stop and conclude H1,

where Ak, Bk and Ck are disjoint and exhaustive subsets of the real line, so Ak ∪Bk ∪ Ck =
(−∞,∞), and we set CK = ∅ in order that the procedure terminates at stage K.

Here, we shall consider the case of one-sided tests for superiority. Results for tests of non-
inferiority, two-sided tests and equivalence tests can be developed analogously; see Jennison
and Turnbull (2000). In a one-sided test where positive θ values are desirable the hypotheses
are H0: θ ≤ 0 and H1: θ > 0. The type 1 error probability constraint is

Pθ=0{Reject H0} = α (29.1)

and the type 2 error probability is specified through the power requirement at effect size δ,

Pθ=δ{Reject H0} = 1− β. (29.2)

In this case, the continuation and stopping regions are Ak = (−∞, ak), Bk = (bk,∞) and
Ck = (ak, bk), where ak ≤ bk for k = 1, . . . ,K − 1, and aK = bK . A typical boundary with
critical values {(ak, bk)} is depicted in Figure 29.5.

The upper boundary, {bk}, is often termed the efficacy boundary and the lower bound-
ary, {ak}, the futility boundary. The role of the futility boundary and whether it will be
used for guidance or as a binding rule affects the construction of the boundaries. With a
binding futility boundary, it is assumed that crossing the lower boundary will definitely
lead to stopping and acceptance of H0, and the type I error probability is calculated as

K∑
k=1

Pθ=0{a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk > bk}.
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A non-binding futility boundary is appropriate if the study may possibly continue after
crossing the lower boundary, so a type I error can still occur. In this case, the type I error
probability is calculated as

K∑
k=1

Pθ=0{Z1 < b1, . . . , Zk−1 < bk−1, Zk > bk}.

In either case the type II error probability is calculated as

K∑
k=1

Pθ=δ{a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1, Zk < ak}.

The Pampallona and Tsiatis (1994) family provides a selection of one-sided group se-
quential tests. The test with index Δ has critical values of the form

bk = C̃1 (Ik/IK)Δ−0.5,

ak = δ
√Ik − C̃2 (Ik/IK)Δ−0.5, k = 1, . . . ,K.

Given a specified pattern of information levels, for example, equally spaced values Ik =
(k/K) IK , k = 1, . . . ,K, and a choice of binding or non-binding futility boundary, constants
IK , C̃1 and C̃2 can be found such that aK = bK and the error probability constraints (29.1)
and (29.2) are satisfied.

However, for survival data statistics such as those mentioned above, it is impractical to
schedule the interim analyses at equal or pre-specified increments of information. Indeed,
the increments in information will be both unequal and unpredictable. For example, the
information for the log-rank statistic (approximately one quarter of the number of observed
events) will only become known at the time of an analysis. Information for a treatment effect
in a Cox (1972) regression model or a survival probability or quantile is similarly unpre-
dictable. Thus we shall need to use the error spending approach of Lan and DeMets (1983) in
which types I and II error probabilities are “spent” as functions of the observed information.

For a one-sided test of H0: θ ≤ 0 against H1: θ > 0, we need two functions to spend

Type I error probability α under θ = 0,

Type II error probability β under θ = δ.

A maximum information design works towards a target information level Imax. The type I
error probability α spending function f(I) rises from zero to α as I increases from zero to
Imax. Similarly, the type II error spending function g(I) rises from zero at I = 0 to β at
I = Imax.

�
IImax

�
f(I)

α

������
��

��
����

�
IImax

�
g(I)

β

������
��

��
����

In implementing this error spending design, boundaries at each interim analysis, k, are con-
structed so that the cumulative type I error probability thus far is f(Ik) and the cumulative
type II error probability is g(Ik). This calculation can be carried out treating the futility
as binding or non-binding, as required.
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At analysis 1:

The observed information is I1.

We reject H0 if Z1 > b1, where

Pθ=0{Z1 > b1} = f(I1)

and we accept H0 if Z1 < a1, where

Pθ=δ{Z1 < a1} = g(I1).

Solving these equations determines the critical values a1 and b1.

�
I1 k

�
Zk

•

•

At analysis 2:

The observed information is I2.

We reject H0 if Z2 > b2 where, for a binding futility boundary,

Pθ=0{a1 < Z1 < b1, Z2 > b2} = f(I2)− f(I1).

or, for a non-binding futility boundary,

Pθ=0{Z1 < b1, Z2 > b2} = f(I2)− f(I1).

We accept H0 if Z2 < a2, where

Pθ=δ{a1 < Z1 < b1, Z2 < a2} = g(I2)− g(I1).

In either case, since a1 and b1 have been fixed at the previous analysis, we can solve
these equations for a2 and b2.

�
I1 I2 k

�
Zk

•

•

•

•

At a general analysis k:

The observed information is Ik.
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We reject H0 if Zk > bk where, for a binding futility boundary,

Pθ=0{a1<Z1<b1, . . . , ak−1<Zk−1<bk−1, Zk > bk} = f(Ik)− f(Ik−1),

or, for a non-binding futility boundary,

Pθ=0{Z1 < b1, . . . , Zk−1 < bk−1, Zk > bk} = f(Ik)− f(Ik−1).

We accept H0 if Zk < ak, where

Pθ=δ{a1<Z1<b1, . . . , ak−1<Zk−1<bk−1, Zk < ak} = g(Ik)− g(Ik−1).

Since a1, . . . , ak−1 and b1, . . . , bk−1 were determined at analysis k − 1, these equations
can be solved for ak and bk.

�
Ik k

�
Zk

•

•

•

•

•

•

•

•

We remark that in the above description, the computation of ak and bk does not depend on
future information levels, Ik+1, Ik+2, . . . . The error spending design is fully determined
once the maximum information, Imax, and the spending functions f(I) and g(I) have
been specified, although the critical values will depend on the information levels actually
observed. One would like the upper and lower boundaries to meet at a single point at the
concluding analysis where f(I) = α and g(I) = β. The maximum information Imax and
functions f(I) and g(I) can be chosen so that this will happen when observed information
levels follow a particular pattern, but it is important to be able to handle other observed
sequences I1, I2, . . . .

A convenient choice of error spending functions is provided by the so-called ρ-family, for
which

f(I) = α min{1, (I/Imax)
ρ} and g(I) = β min{1, (I/Imax)

ρ}.
Values ρ > 0 can be used and common choices are ρ = 1, 2 or 3. Lower values of ρ
correspond to plans with more aggressive early stopping. The value of Imax should be chosen
so that boundaries converge with aK = bK at the final analysis under a typical sequence of
information levels. So, for design purposes we might plan for a maximum of K analyses at
equally spaced information levels, Ik = (k/K) Imax, k = 1, . . . ,K. Then, for each value of ρ
there is an associated Imax that should be used. Barber and Jennison (2002) show that the
resulting ρ-family error spending tests have excellent efficiency properties when compared
with other designs for the same number of analyses K and maximum information Imax.

Once the trial is running, the occurrences of events are unpredictable. Information levels
may not follow the anticipated pattern and it may take more or fewer than K analyses to
reach the target information level Imax. Thus, care is needed at the final analysis of a
one-sided error spending test.

Over-running: If an analysis is reached with IK > Imax, solving the equations for aK
and bK is liable to give aK > bK .
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�×
I1

×
I2

×
I3

×
I4

×
I5

Imax

Information

The value calculated for bK will guarantee that the type I error probability is equal to α.
So, in this case, we can reduce aK to bK and the power attained under θ = δ will be greater
than 1− β.

�
k

�Zk

•
•

• • • bK

◦ aK

•

•

•

•

�� ��

��

��

��
��
........

Reject H0

Accept H0

Even when IK = Imax, over-running may occur if information deviates from the pattern
of, say, equally spaced values used in choosing Imax.

Under-running: A final information level IK < Imax may be imposed as part of the trial
design when a final planned analysis is reached, for example, after a maximum length of
follow-up of subjects’ survival.
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In this situation, values f(IK) = α and g(IK) = β are used in the equations for aK and bK .
Since the information level at this point is lower than Imax, the solutions of these equations
are liable to have aK < bK .
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Again, with bK as calculated, the type I error probability is exactly α. Here, we increase
aK to bK in order to protect the type I error rate and the attained power at θ = δ will be
below the planned 1− β.

There is considerable freedom in implementing error spending group sequential designs.
A series of analyses can be stipulated at fixed calendar times and the attained power will
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vary, depending on the observed information levels. Alternatively, amendments may be
made to the original study plan, such as extending follow-up or adding centres to increase
patient recruitment, in order to reach the target information Imax. One proviso to protect
against any chance of bias in the claimed error probabilities is that such decisions should
be made in response to observed information levels and not estimated treatment effects.

29.4 The group sequential log-rank test

We return to the problem of testing the equality of survival distributions SA(t) and SB(t)
for two treatment arms, A and B, based on accumulating survival data. We denote the
hazard rates on treatments A and B by hA(t) and hB(t), respectively. At each analysis
we observe a failure or censoring time for each subject entered so far, measured from that
subject’s date of entry or randomization as defined in the study protocol. The way the set
of data grows as patients are accrued and follow-up on each patient lengthens was shown
in Figures 29.1 to 29.4.

Let dk, k = 1, . . . ,K, denote the total number of uncensored failures observed across
both treatment arms when analysis k is conducted. Some of these times may be tied and
we suppose that d′k of the dk failure times are distinct, where 1 ≤ d′k ≤ dk. We denote these
distinct failure times by τ1,k < τ2,k < . . . < τd′

k,k
and let riA,k and riB,k be the numbers at

risk on treatment arms A and B, respectively, just before time τi,k. Finally, we denote by
δiA,k and δiB,k the numbers on treatment arms A and B that fail at time τi,k and define
δi,k = δiA,k + δiB,k for i = 1, . . . , d′k. If there are no ties, then δi,k = 1 and either δiA,k = 1
and δiB,k = 0 or δiA,k = 0 and δiB,k = 1 for each pair i and k.

If the survival distributions SA(t) and SB(t) are equal, the conditional distribution of
δiB,k given riA,k, riB,k and δi,k is hypergeometric with expectation

ei,k =
riB,k δi,k

riA,k + riB,k

and variance

vi,k =
riA,k riB,k δi,k (riA,k + riB,k − δi,k)

(riA,k + riB,k − 1) (riA,k + riB,k)2
. (29.3)

The unstandardized log-rank statistic at analysis k is

Sk =

d′
k∑

i=1

(δiB,k − ei,k)

and the standardized log-rank statistic is

Zk =

∑d′
k

i=1 (δiB,k − ei,k)(∑d′
k

i=1 vi,k

)1/2 . (29.4)

The information Ik for the log hazard ratio is

Ik =

d′
k∑

i=1

vi,k. (29.5)

The log-rank test has optimal power properties to detect alternatives when hazard rates
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in the two treatment arms are proportional, so hA(t) = λhB(t). The sequence of log-rank
statistics defined by (29.4) then has, approximately, the canonical joint distribution for a
sequence of Z-statistics, given I1, . . . , IK , with θ = log(λ), the log hazard ratio.

Since the canonical joint distribution holds, the methods described in Section 29.3 can
be used to construct group sequential error spending tests from the sequence of statistics
Zk and information levels Ik. In designing a maximum information trial to meet a given
power requirement, it is necessary to predict the information levels that will arise, especially
that at the final possible analysis. Here, it is helpful to note from (29.3) that each vi,k
is approximately δi,k/4 if riA,k ≈ riB,k and either δi,k = 1 or δi,k is small relative to
riA,k + riB,k. Hence, Ik will be approximately equal to dk/4 and the final information level
will be close to one quarter of the total number of observed failures. The illustrative example
in the next section will show the usefulness of this approximation in planning the sample
size and length of follow-up that may be necessary in a survival study.

29.5 Example: A clinical trial for carcinoma of the oropharynx

We illustrate the methods we have described by applying them to a clinical trial conducted
by the Radiation Therapy Oncology Group in the U.S. to investigate treatments of carci-
noma of the oropharynx. We use the data from six of the larger institutions participating
in this trial as recorded by Kalbfleisch and Prentice (2002, Appendix II). Subjects were
recruited to the study between 1968 and 1972 and randomized to a standard radiotherapy
treatment or an experimental treatment in which the radiotherapy was supplemented by
chemotherapy. The major endpoint was patient survival and patients were followed until
around the end of 1973. Several baseline covariates, thought to have strong prognostic value,
were also recorded.

TABLE 29.1
Summary data for oropharynx cancer clinical trial.

Analysis Number of subjects entered Number of deaths

k Date Treatment A Treatment B Treatment A Treatment B

1 12/69 38 45 13 14

2 12/70 56 70 30 28

3 12/71 81 93 44 47

4 12/72 95 100 63 66

5 12/73 95 100 69 73

The conduct of the study did not follow a group sequential plan but, for purposes
of illustration, we have reconstructed patients’ survival times and their status, dead or
censored, at times 720, 1080, 1440, 1800 and 2160 days from the beginning of 1968. This
“reconstructed” dataset was used by Jennison and Turnbull (2000, Ch. 13). A summary of
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the reconstructed data is given in Table 29.1: we used the precise death or censoring times
in the reconstructed data to compute the statistics and information values in applying
retrospectively a group sequential error spending design. As the central survival records
would not have been updated continuously, our constructed datasets most likely resemble
the information that would have been available at interim analyses conducted a month or
two after these times, and so they are an approximation to the data that could have been
studied by a monitoring committee meeting at dates a little after 2, 3, 4, 5 and 6 years from
the start of the study. The longer waiting period to the first interim analysis is intended
to compensate for the slow initial accrual of survival information while only a few patients
had been entered to the trial.

Since the experimental treatment involved chemotherapy as well as radiotherapy, the
researchers would have been looking for a substantive improvement in survival on this
treatment in return for the additional discomfort and short-term health risks. A one-sided
testing formulation is, therefore, appropriate and we shall conduct our retrospective interim
analyses as a group sequential test of the null hypothesis of no treatment difference against
the one-sided alternative that the new combination therapy is superior to the standard
treatment of radiotherapy alone. For the sake of illustration, we suppose the experiment
was designed to achieve a type I error probability of α = 0.025 and power 1−β = 0.8 when
the log hazard ratio for the experimental treatment versus the standard is equal to 0.5.

We have supposed that at the design stage a maximum of K = 5 interim analyses were
planned with equally spaced information levels. We use ρ-family error spending functions
with index ρ = 2 to create efficacy and futility boundaries. Thus, type I error probability
α and type II error probability β are “spent” in proportion to (I/Imax)

2. With these
specifications we compute the target maximum information, Imax, which gives aK = bK
when the {ak, bk} are calculated as described in Section 29.3. The computations depend on
whether a binding or a non-binding futility (lower) boundary is to be employed. Table 29.2
displays the design parameters for both situations under the planning assumptions of equally
spaced information levels, culminating in Imax. Note the familiar “curved triangular” shape
of the boundaries as seen in Figure 29.5.

The maximum information Imax needed in the group sequential trial design is 34.48 if a
binding futility boundary is used or 35.58 if the futility boundary is non-binding. Under the
approximation I ≈ d/4, the maximum numbers of failures that may need to be observed,
df = 4 If , are 138 and 143, respectively.

A fixed sample study with no interim monitoring but the same type I error rate α = 0.025
and power 1− β = 0.8 at θ = 0.5 requires information

If =
{Φ−1(0.975) + Φ−1(0.8)}2

0.52
= 31.40.

Under the approximation I ≈ d/4, the total number of failures to be observed is df =
4 If ≈ 126. Clearly this is smaller than the maximum event numbers of 138 or 143 for the
five-stage design. However, the group sequential procedure benefits from the opportunity
to stop before the last stage.

Figure 29.6 shows the expected number of events for the group sequential design with
a binding futility boundary under different values of the hazard ratio. Plotted values for
hazard ratios away from one (and log hazard ratios away from zero) are less accurate since
the approximation I ≈ d/4 is less reliable in these cases, particularly in later stages of the
trial when numbers at risk on the two treatment arms become unequal. Figure 29.6 shows
that the group sequential design with a binding futility boundary has an expected number
of events under H0 of 72.9 and under H1 this becomes 94.5; the maximum expected number
of events, which occurs for log hazard ratio θ = 0.35, is 100.9, still considerably less than
the 126 events for a fixed sample design. With a non-binding boundary the corresponding
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TABLE 29.2
Design parameters for a group sequential procedure assuming equally spaced information
levels, Ik = (k/5) Imax, k = 1, . . . , 5.

Design parameter Binding futility Non-binding futility

boundary boundary

Imax 34.48 35.58

Maximum number

of deaths 138 143

a1, b1 −1.096 3.090 −1.075 3.090

a2, b2 −0.053 2.714 −0.023 2.714

a3, b3 0.722 2.473 0.758 2.473

a4, b4 1.387 2.276 1.429 2.280

a5, b5 2.055 2.055 2.114 2.114

numbers are 74.3, 96.4 and 103.3, assuming for purposes of this calculation that the futility
boundary is in fact obeyed.

We now turn to the task of applying the monitoring boundaries to the reconstructed
dataset summarized in Table 29.1. The boundary values (a1, b1), . . . , (a5, b5) are calculated
using the observed information levels I1, . . . , I5 rather than the equally spaced ones of the
initial design. In doing this, we apply the formulae of Section 29.3 at each interim analysis
in succession. From here on, we shall apply designs with binding futility boundaries, noting
that the exposition would be very similar if we were to use non-binding futility boundaries
instead.

The sequence of standardized log-rank statistics, Z1, . . . , Z5, and the corresponding crit-
ical values (a1, b1), . . . , (a5, b5) are displayed in Table 29.3.

We can see from this table that, had this design been used, the trial would have stopped
for futility at analysis 2, about three years earlier than the original trial, reaching the same
conclusion with only 126 subjects accrued instead of 195. Of course, those last three years
may have produced further valuable information about other aspects of the treatments such
as toxicity or quality of life. With this in mind, investigators might have opted to continue
the trial despite unpromising interim results. It is in anticipation of such eventualities that
a non-binding futility boundary could be chosen since it allows a subsequent positive result
for efficacy to be reported without concern that the type 1 error rate is inflated above the
specified α.
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FIGURE 29.6
Expected number of events on termination of the group sequential log-rank test with a
binding futility boundary and equally spaced information levels.

29.6 Monitoring a hazard ratio with adjustment for strata and
covariates

The Oropharynx Cancer dataset contained information on a number of baseline covariates
for each subject. These included gender, initial condition, T-staging, N-staging and two
indicator variables describing the tumor site. Each patient was treated at one of six partic-
ipating institutions and we shall treat institution as a stratifying variable. We model the
data by means of a stratified proportional hazards regression model (Cox, 1972) in which
the hazard rate for patient i is modeled as

hil(t) = h0l(t) exp{β1I(Patient i on Treatment B) + Σ7
j=2 xijβj}.

The parameter β1 represents the log hazard ratio between treatments after adjustment for
the other covariates and stratification. We take the objective to be to test H0: β1 ≤ 0
against the one-sided alternative β1 > 0.

Standard software for Cox regression will provide the maximum partial likelihood esti-
mate of the parameter vector, β, and its estimated variance matrix. We are interested in
the treatment effect represented by the first component, β1. At analysis k we have

β̂
(k)
1 , vk = V̂ar (β̂

(k)
1 ), Ik = v−1

k and Zk = β̂
(k)
1 /

√
vk.

The standardized statistics Z1, . . . , Z5 have, approximately, the canonical joint distribution
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TABLE 29.3
Summary data for the oropharynx trial and critical values for the error spending design
with binding futility boundary.

Analysis Number Number

k entered of deaths Ik ak bk Zk

1 83 27 5.43 −1.41 3.23 −1.04

2 126 58 12.58 −0.21 2.76 −1.00

3 174 91 21.11 0.78 2.44 −1.21

4 195 129 30.55 1.68 2.16 −0.73

5 195 142 33.28 2.14 2.14 −0.87

of Section 29.2. Thus we may apply the group sequential designs and error spending method
of Section 29.3 to monitor the adjusted log hazard ratio at successive interim analyses. In
fact we can take exactly the same method that we described in Section 29.5 and simply use
the above statistics Zk and information values Ik, k = 1, . . . , 5, in place of those for the
log-rank statistic.

Calculation gives the values (a1, b1), . . . , (a5, b5) shown in Table 29.4 for the error
spending group sequential design, again with a binding futility boundary, to be applied
to Z1, . . . , Z5. Under this model and stopping rule, the study would — just — have stopped
for futility at the second analysis.

29.7 Further work

In this chapter, we have concentrated on the use of an error spending group sequential
design for monitoring a log-rank statistic or a regression coefficient in a Cox regression
model. The methods we have presented form a good introduction to other group sequential
methods for survival data. The ideas have been extended in two directions:

A. To other features of group sequential designs;

B. To other features of survival analysis.

A. Further group sequential methods that can be applied to the collection and analysis of
survival data. We have considered the “curved triangular” testing boundaries that arise
in one-sided hypothesis tests. These are commonly used in superiority trials where it is
hoped to show that a new treatment improves on the current standard; the same forms of
boundary also arise in non-inferiority trials where hypotheses H0: θ ≤ 0 and H1: θ > 0
are replaced by H0: θ ≤ −δ and H1: θ > δ, where δ represents an acceptable “margin of
inferiority.” Other boundary shapes are applicable for testing a null hypothesis against a
two-sided alternative or in tests of equivalence, where it is hoped to demonstrate that the
effect of a new treatment is within a specified tolerance of that of an existing treatment.
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TABLE 29.4
Covariate-adjusted group sequential analysis of the oropharynx data.

Analysis

k Ik ak bk β̂
(k)
1 Zk

1 4.11 −1.75 3.39 −0.79 −1.60

2 10.89 −0.44 2.85 −0.14 −0.45

3 19.23 0.59 2.50 −0.08 −0.33

4 28.10 1.45 2.24 0.04 0.20

5 30.96 2.23 2.23 0.01 0.04

In addition to the positive or negative outcome of a hypothesis test, it is usually required
to give point or interval estimates of the treatment effect at the termination of a trial or to
provide a P-value summarizing the strength of evidence against a null hypothesis. Special
methods are needed to construct such quantities, taking into account the sequential nature
of the design; see Jennison and Turnbull (2000, Ch. 8).

Repeated confidence intervals permit an interval estimate of a treatment effect to be
stated at any stage of the trial (not just the last), with the property that the coverage prob-
ability of all the intervals is simultaneously controlled at a given confidence level, 1− γ say.
Such confidence intervals are wider than näıve, fixed sample size intervals computed at each
stage, but they are free from the “multiple looks” bias of sequential testing. This obviates
the problem of “over-interpretation of interim results”; see Jennison and Turnbull (1989).

B. Further techniques for survival data to which group sequential methods can be applied.
First consider a one-sample problem, where we are interested in the time to an event such as
death or the disease recurrence in a homogeneous population. Sometimes a binary outcome
is defined to indicate whether failure has occurred after an elapsed time, τ say. If not all
subjects are followed for time τ , the simple proportion of those surviving to time τ will be a
biased estimate of the survival rate, while omitting subjects with potential censoring times
less than τ is inefficient. These difficulties are overcome by use of the Kaplan-Meier estimate
(Kaplan and Meier, 1958) of the survival function S(t). Let Ŝk(t) denote the Kaplan-Meier
estimate of the survival probability S(t) at time t based on data available at analysis k.
For a given value of τ , suppose 0 < S(τ) < 1 and there is a positive probability for each
observation to be uncensored and greater than τ , then Jennison and Turnbull (1985) show
that the sequence

Zk =
{Ŝk(τ)− S(τ)}
√
Var{Ŝk(τ)}

, k = 1, . . . ,K, (29.6)

has, asymptotically, the canonical joint distribution of Section 29.2 with θ = S(τ) and

information levels Ik = [Var{Ŝk(τ)}]−1. A consistent estimate of the variance of Ŝk(τ) is
provided by Greenwood’s formula — see, for example, Jennison and Turnbull (1985). Hence,
a group sequential test of the hypothesis H0: S(τ) = p0, where τ and p0 are specified, can
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be based on the standardized statistics

Zk =
{Ŝk(τ)− p0}√{V̂k(τ)}

, k = 1, . . . ,K,

and associated information levels Ik = {V̂k(τ)}−1, where V̂k(τ) denotes a consistent es-

timate of Var{Ŝk(τ)}. Since information depends on the number and times of observed
failures, the error spending approach of Section 29.3 is needed for the construction of such
tests. The Greenwood estimate is straightforward to calculate and is typically available in
the output of standard statistical computer software for estimating survival curves. Alterna-
tively, the “constrained” variance estimator introduced by Thomas and Grunkemeier (1975,
Sec. 4) can be used in place of the Greenwood formula: simulations reported by Thomas
and Grunkemeier and by Barber and Jennison (1999) show this should lead to more accu-
rate attainment of error rates and coverage probabilities for repeated confidence intervals.
Barber and Jennison (1999) go on to propose further methods to achieve error rates and
coverage probabilities more accurately in smaller sample sizes.

Sometimes, interest is in a certain quantile of the survival distribution. For 0 < p < 1,
we define the pth quantile of the survival distribution S(t) to be tp = inf{t : S(t) ≥ p}.
Assuming S(t) to be strictly decreasing in t, a group sequential test of H0: tp = t∗ for
specified t∗ and p is equivalent to a test of H0: S(t

∗) = p and the same Kaplan-Meier
test statistics can be used with τ = t∗ and p0 = p. Jennison and Turnbull (1985) have
investigated repeated confidence intervals for the median survival time.

Analogous methods can also be used in a two-sample comparison. If SA(t) and SB(t)
denote survival functions on treatments A and B in a randomized trial, a test of H0:
SA(τ) = SB(τ), for a given choice of τ , can be based on successive statistics

Zk =
{ŜAk(τ)− ŜBk(τ)}√{ṼAk(τ) + ṼBk(τ)}

, k = 1, . . . ,K,

where ŜAk(τ) and ŜBk(τ) are Kaplan-Meier estimates of SA(τ) and SB(τ), respectively, at

analysis k and ṼAk(τ) and ṼBk(τ) are their estimated variances. The problem of comparing
the pth quantiles of two survival distributions has been addressed by Keaney andWei (1994).

29.8 Concluding remarks

A variety of software packages is now available to implement the methods we have described.
One choice that can compute the error spending boundaries described in Section 29.3 and
that has a dedicated module for planning and analyzing survival trials is East (Cytel, 2012).
Another choice is the gsDesign package in R.

It should be noted that not all sequences of standardized statistics follow the canonical
joint distribution of Section 29.2. As an example, Slud and Wei (1982) have shown that this
property does not hold for some weighted log-rank test statistics when there is staggered
entry. These statistics include those arising in Gehan’s (1965) procedure for modifying the
Wilcoxon test to allow censored data.

This chapter has provided a basic overview of the use of group sequential methods for
survival data. There is a large literature on the subject which we have not attempted to
summarize here; some more references can be found in Jennison and Turnbull (2000, Ch.
13). In particular, there is an emerging literature on the adaptive clinical trial designs for
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survival data. The availability at interim analyses of partial information about patients’
continuing survival causes particular problems in adaptive designs; for one example with
correlated survival endpoints, and a solution to the adaptive design problem, see Jenkins,
Stone and Jennison (2011).
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30.1 Introduction

A matched pairs study design is used in medical research to minimize variability caused by
extraneous variables. Many such studies result from individuals being artificially matched
on a set of known covariates. When individuals in a pair are randomized to receive two
different treatments, then the comparison is done between two subjects that are alike.
Hence, the difference in outcome can be directly attributed to treatment effect. Paired
data can also be obtained from observations with a biological link such as pairs of organs
(eyes, kidneys, knees, etc.) from one person or pairs of twins or siblings. Another type
of paired data arise from pairs of observations with different baseline survival or hazards
for each pair, for example, pairs of patients treated at the different centers. Regardless
of the pairing mechanism, outcomes between individuals might be correlated. Comparison
of outcomes between treatments in such a study must account for this correlation. For
positively correlated outcomes, methods for unpaired data ignoring correlation between
individuals within pairs may underestimate treatment effect.

Besides allowing comparison of like-to-like, a matched study design can provide logisti-
cal advantage in retrospective case-control studies using data from large databases. If the
number of cases are few in these studies, a prespecified number of matched controls can be
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selected for each case. When additional information is needed, it is only necessary to collect
the additional data on the cases and their matched controls instead of on all control sub-
jects in the database. On the other hand, one drawback of a matched study design is that
it might not be possible to find matched controls for cases with uncommon characteristics.
Cases without matched controls will be excluded from the study. For studies with time-to-
event outcomes, another drawback of a matched study design is that the effective sample
size might be reduced if the smaller of the paired times is censored as will be discussed in
Section 30.4.

Methods to analyze paired continuous or categorical data are well established. However,
analysis of paired time-to-event data is complicated by the fact that the event times for
some patients are not observed due to loss to follow-up or subjects not having experienced
the event by the end of the study. Individuals with an unobserved event time are censored
at the last follow-up. The focus of this exposition is to present current inference methods
to analyze paired survival data subject to right-censoring.

Several tests have been proposed specifically for this type of paired data. Many of these
tests assume that individuals within a pair have a common censoring time. Such an assump-
tion is reasonable for pairs with biological link, for example, in a study designed to compare
the effect of two treatments for diabetic retinopathy where a patient’s right and left eyes are
randomly assigned to different treatments (Diabetic Retinopathy Study Research Group,
1976). In this case, loss to follow-up in a patient prevents observation of failure in both eyes.
Here members of the pair have a common censoring time.

This common censoring time assumption might not be reasonable for pairs artificially
matched on a set of covariates. For example, in an observational study evaluating the effect
of chemotherapy versus radiation therapy for breast cancer, comparing patients receiving
chemotherapy to patients receiving radiotherapy matched on age, disease stage, and other
factors minimizes the potential bias caused by imbalance in baseline characteristics. In this
case, loss to follow-up for one member does not automatically imply loss to follow-up for
the other member of the pair. A common censoring time is a strong assumption in this
situation. One argument for common censoring times in artificially matched pair design is
to prevent bias resulting from differential follow-up time between treatment groups. This
assumption can cause significant reduction in effective sample size used for inference as
illustrated in Section 30.4 where we describe tests developed specifically for paired survival
data. Alternatively, paired survival data can be analyzed using regression methods developed
for clustered survival data as described in Section 30.5. In Section 30.6, we will describe
methods to compare survival probabilities at a fixed time point. A real data example will
be used to illustrate methods discussed in the paper.

30.2 Example

Throughout this chapter we will utilize data from a hematopoietic cell transplantation
(HCT) study conducted at the Center for International Blood and Marrow Transplant
Research (CIBMTR). The CIBMTR collects data on essentially all allogeneic HCTs done in
the United States. An estimated 80% of autologous transplants done in the U.S. are reported
to the center. CIBMTR also receives data on allogeneic and autologous stem cell transplants
from participating international centers worldwide. Extensive data on patient risk factors
and outcomes are collected at the time of transplantation, six months post-transplant, and
subsequently every year during patients’ follow-up visits. The data is reported to a Statistical
Center housed at the Medical College of Wisconsin in Milwaukee, WI, USA.
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The data used in this chapter is a subset of a larger study examining the effect of
stem cell source on the outcomes of patients receiving HCT to treat severe aplastic anemia
(SAA) first reported by Eapen et al. (2011). Aplastic anemia is a disorder where the bone
marrow stops making enough red blood cells, white blood cells, and platelets for the body.
People with severe aplastic anemia are at risk for life-threatening infections or bleeding.
For many patients with severe aplastic anemia, a bone marrow transplant is the preferred
standard treatment. Outcomes after unrelated donor bone marrow (BM) transplantation
for SAA patients have improved, with a five-year survival rate now being approximately
65%. However, in recent years the use of peripheral blood stem cells (PBSC) instead of bone
marrow as a graft source has increased and the aforementioned study by Eapen et al. (2011)
attempted to compare the outcomes of patients receiving either BM or PBSC transplants.
Using a full dataset of 296 patients (225 BM recipients and 71 PBSC recipients), Eapen et
al. (2011) shows that transplant using PBSC for severe aplastic anemia results in higher
risk of post-transplant complications and higher risk of mortality after adjusting for age
compared to BM transplant. Therefore, BM is the preferred graft type in unrelated donor
HCT for severe aplastic anemia.

To illustrate the methods presented in this chapter, we select a subset of patients from
this study by finding a BM recipient for each PBSC recipient within 18 months of age to
create matched pairs. The paired dataset consists of 108 individuals receiving HCT (54
BM and 54 PBSC) from unrelated donors matched at human leukocyte antigen -A, -B, -C,
-DRB1 for severe aplastic anemia. We use this dataset to determine the effect of graft source
on overall survival. The analyses presented here are only for illustration of the statistical
methodology. The results from our analyses should not be taken as clinical conclusion.

30.3 Notation

Let (X1i, X2i) be the failure times for pair i where (X1i, X2i), i = 1, . . . , n, are independent
and identically distributed. In right-censored data, Xki is potentially unobservable for some
member k = 1, 2 of pair i = 1, . . . , n. Let (C1i, C2i) be the censoring times for pair i
and assume that (C1i, C2i) are independent of (X1i, X2i). For each subject, one observes
(Tki, γki) where Tki = min (Xki, Cki) is the event time or time to the last follow-up and
γki = I(Xki < Cki) is the indicator whether the event was observed. If a common censoring
time is required, define Ci = min (C1i, C2i) as the censoring time for pair i. Then Tki =
min (Xki, Ci) and γki = I(Xki < Ci).

Methods for paired survival data analysis often rely on the differences between two sur-
vival functions describing survival experience of individuals in each of the two populations.
Let S1(t) and S2(t) be the survival function for the individuals in group 1 and 2, respec-
tively, where Sk(t) = P (Xk > t), k = 1, 2. The Kaplan-Meier estimator can be used to
estimate S1(t) and S2(t). Let t1, . . . , tD be the distinct ordered failure times in the pooled
sample, dkj be the number of events at time tj , and ykj be the number of subjects at risk
in the treatment group k at time tj . The Kaplan-Meier estimators are then given by

Ŝk(t) =
∏
tj≤t

(
1− dkj

ykj

)
, k = 1, 2.

The estimated variances of the Kaplan-Meier estimators are calculated by Greenwood’s
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formula:

Var[Ŝk(t)] = Ŝ2
k(t)

∑
tj≤t

dkj
ykj(ykj − dkj)

, k = 1, 2.

Survival experience can also be compared using the hazard functions h1(t) and h2(t) of
group 1 and 2, respectively, where

hk(t) = limΔt→0
P (t ≤ Xk < t+Δt|Xk ≥ t)

Δt
, k = 1, 2.

30.4 Tests for paired data

Tests developled for paired survival data fall into three broad categories. It should be noted
that while all of them compare the survival experience between the two groups, exact
formulation of the hypothesis of interest varies. First we will consider tests based on ranks in
the pooled sample using scoring schemes designed to accommodate censored data and then
the test statistics are computed using the differences in ranks in the two samples. Another
class of tests relies on within-pair differences in survival times. Lastly, we will consider a class
of tests comparing the weighted Kaplan-Meier estimates between the treatment groups. In
this section, several tests from each of the three categories are discussed in greater detail.

30.4.1 Rank-based tests

In this section, we describe two rank-based tests proposed by O’Brien and Fleming (1987)
and Akritas (1992). Both of these approaches compare the survival times between the
two treatment groups. The O’Brien-Fleming tests assume a common censoring time for
both members of a pair, whereas the Akritas test only requires that the censoring time
distributions are equal between the two treatment groups.

O’Brien and Fleming (1987) developed a class of rank-based tests using the generalized
rank statistics. The first step involves finding appropriate score η for each individual in
the pooled sample. Two score functions considered are the paired Prentice-Wilcoxon score
generalized from Prentice (1978) and the Gehan-Wilcoxon score adapted from Gehan (1965).

The Prentice-Wilcoxon score is defined as follows. Let tj , j = 1, . . . , D, be the ordered
distinct failure times from the pooled sample and yj be the number of subjects still at risk in

the pooled sample at time tj and define sj =
∏j

l=1 yl/(yl + 1), j = 1, . . . , D. When there is
exactly one death at observed failure time tj , the Prentice-Wilcoxon score is defined as η =
(1−2sj) for an individual having an observed death at time tj and η = (1−sj) for individuals
censored between times tj and tj+1. When there are multiple deaths, say mj deaths, at time
tj , arbitrarily order these individuals by assigning distinct times infinitesimally to the left
of tj . The scores are then computed as in the case without ties. Individuals failing at time
tj are then assigned the average of mj scores.

Alternatively, the scores can be computed using the Gehan-Wilcoxon score function.
For each individual, the Gehan-Wilcoxon score is the proportion of 2n observations known
to have survival time smaller than that particular individual’s minus the proportion of
observations known to have survival times larger than that individual.

Let (η1i, η2i) be the scores for the ith pair computed from the pooled sample (using
either the Prentice-Wilcoxon or the Gehan-Wilcoxon score function). The test is based on
the difference in scores within pair members. Define Δi = η1i − η2i. Given the magnitude
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of the score diffences |Δi|, i = 1, . . . , n, and considering only the pairs such that |Δi| > 0,
the test statistic is given by

Zn =

∑n
i=1 Δi√∑n
i=1 Δ

2
i

. (30.1)

The p-value for the proposed test is obtained by comparing Zn in (30.1) to tables of the
standard normal distribution. A test based on Zn computed from the Prentice-Wilcoxon
score is called a “paired Prentice-Wilcoxon” (PPW) test. The test derived from the Gehan-
Wilcoxon score is called a “paired Gehan-Wilcoxon” test.

O’Brien and Fleming (1987) recommend PPW over paired Gehan-Wilcoxon test since
PPW is less sensitive to heavy censoring. Moreover, the Prentice-Wilcoxon score is relatively
insensitive to outlier pairs. In their simulation study, they showed that PPW is almost as
powerful as the two-sample Prentice-Wilcoxon test when the data are uncorrelated and more
powerful when correlation increased. They also demonstrated that PPW is more powerful in
most cases when compared to the generalized signed rank test of Woolson and Lachenbruch
(1980) which will be described in Section 30.4.2.

We now illustrate the paired Prentice-Wilcoxon test using the HCT dataset from
CIBMTR. Survival curves by graft type are shown in Figure 30.1 suggesting that survival
is superior after bone marrow transplantation as compared to peripheral blood transplant
with survival probabilities of 0.766 (Standard Error, SE = 0.059) at one year and 0.719 (SE
= 0.064) at three years compared to 0.689 (SE = 0.065) and 0.587 (SE = 0.073), respec-
tively. A two-sample logrank test ignoring potential correlation between pair members gives
a chi-square statistic of 1.707 with a p-value of 0.191. Table 30.1 summarizes the test results
contrasting survival times between bone marrow transplant versus peripheral blood trans-
plant in severe aplastic anemia patients using the paired Prentice-Wilcoxon test and the
Akritas test. The observed Zn statistic from the PPW is 1.139. Under the null hypothesis,
Zn is asymptotically normal resulting in a two-sided p-value of 0.255.

TABLE 30.1
Results of the O’Brien-Fleming and the Akritas tests.

Test
ne Test Statistic

P-value
Distribution Observed value

Paired Prentice-Wilcoxon 26 N(0, 1) 1.139 0.255

Akritas test 54 t53 1.179 0.244

Note that all observations were used to compute the scores from the pooled sample.
However, due to the assumption of a common censoring time, pairs with the smaller time
being censored will become doubly censored pairs and they do not contribute to the test
statistic Zn. Applying the censoring restriction, 28 of the 54 pairs in this dataset were doubly
censored. The observed test statistic came from the score differences of the 26 remaining
pairs shown under the column heading ne (number of effective pairs) in Table 30.1. Thus
the effective sample size in this example is reduced by more than 50%.

Another rank-based test which is comparable to the paired Prentice-Wilcoxon test was
proposed by Akritas (1992). Akritas test is a paired t-test on the rank transformation
of the survival times. In this test, separate Kaplan-Meier estimates are computed for each
treatment group. Let Ŝ1(t) be the Kaplan-Meier estimate for group 1 and Ŝ2(t) the estimate
for group 2 at time t and S̄(t) = [Ŝ1(t) + Ŝ2(t)]/2. Each of the 2n observations is then
replaced by its rank defined by R(ti) = 2n[1−S̄(ti)] for uncensored observation and censored



620 Handbook of Survival Analysis

FIGURE 30.1
Survival curves post-transplant by graft type.

observations are replaced by R(ti) = 2n[1− 0.5S̄(ti)]. A paired t-test is then performed on
the transformed ranks. As shown in Table 30.1, paired t-test on rank transformation of the
survival times after bone marrow transplant versus peripheral blood transplant gives an
observed t statistic of 1.179 and a two-sided p-value of 0.244.

Theoretical justification for the paired t-test requires that censoring times in both groups
come from a common distribution. This assumption is less stringent than the assumption
of a common censoring time for members of each pair in the O’Brien-Fleming tests. In the
Akritas test, all pairs including doubly censored pairs contribute to the test statistic. In
this example, inference was based on information from 54 pairs compared to the 26 pairs
used in the O’Brien-Fleming tests.

Woolson and O’Gorman (1992) compared the performance of the O’Brien-Fleming
paired Prentice-Wilcoxon, the paired Gehan-Wilcoxon, and the Akritas tests along with
the generalized sign rank test on the survival time or the log survival time of Woolson and
Lachenbruch (1980). Note that the Woolson and Lachenbruch tests are based on within-pair
differences which are more closely related to Dabrowska’s test and will be described in Sec-
tion 30.4.2 below. Their simulation study shows that, among all tests considered, the PPW
and the Akritas tests perform consistently well under various distributions. Furthermore,
the powers of these two tests are approximately equal in all simulation settings. Woolson
and O’Gorman (1992) recommend the PPW and the Akritas tests for general application.

30.4.2 Within-pair comparison

Unlike rank-based tests described in Section 30.4.1 which use differences in ranks computed
from the pooled sample, Woolson and Lachenbruch (1980) and Dabrowska (1990) proposed
a class of tests based on within-pair differences. These tests compare the survival times
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by testing the hypothesis of bivariate symmetry via inference about the distribution of
the paired differences in survival times. That is, the random variable of interest here is
D = X1 −X2. Assuming D has the same distribution as W + θ where W is an absolutely
continuous random variable symmetrically distributed around 0, the test hypothesis is H0 :
θ = 0 vs. Ha : θ > 0. Both of these tests require a common censoring time for pair members
similar to the tests of O’Brien and Fleming (1987),

One of the earliest tests extending general linear rank order statistics to right-censored
data was proposed by Woolson and Lachenbruch (1980). In Woolson-Lachenbruch’s gener-
alized signed rank (GSR) test, the ranking of the observations is done in the following way.
First, for those pairs where γ1i = γ2i = 1, that is, both observations are uncensored, com-
pute Dj = T1j − T2j . Let r denote the number of these uncensored pairs. Then denote the
ordered sequence of the absolute values of D1, . . . , Dr by Z(1), . . . , Z(r) and define Z(0) = 0
and Z(r+1) = ∞. For j = 1, . . . , r, define d(j) = 1 if Z(j) > 0 and d(j) = 0 if Z(j) < 0. Next,
compute the differences Di for pairs where one of the members of the pair is censored. Then,
for j = 0, . . . , r, let

nj be the number of censored absolute differences in [Z(j), Z(j+1)) and
pj be the number of positive censored differences in [Z(j), Z(j+1)).

Compute mj =
∑r

i=j(ni + 1) and Pj =
∏j

i=1
mi

mi+1 , j = 1, . . . , r. The test statistic is
defined as follows:

ZWL =

∑r
j=1(2d(j) − 1)(1− Pj) + 0.5(2p0 − n0) +

∑r
j=1(2pj − nj)(1− 0.5Pj)

[
∑r

j=1(1− Pj)2 +
∑r

j=1 nj(1− 0.5Pj)2 + 0.25n0]1/2
. (30.2)

Under the null hypothesis, ZWL is asymptotically standard normal. Alternatively, the test
statistic ZWL in (30.2) can be computed based on the within-pair difference of the logarithms
of the observed survival times. The first two rows of Table 30.2 show the results from
the Woolson-Lachenbruch generalized signed rank test applied to the HCT dataset. The
observed test statistic comparing the survival times is −1.433 with a two-sided p-value of
0.152. The observed test statistic comparing the log of the survival times is −1.410 with
a two-sided p-value of 0.158. Note that the pairs with both observations censored do not
contribute anything to the test statistic reducing the inference sample size to 26.

A simulation study by Woolson and O’Gorman (1992) shows that the GSR test is more
powerful than the paired Gehan-Wilcoxon, the paired Prentice-Wilcoxon, and the Akritas
tests when comparing the survival times between two groups where the survival times for
each group follow an exponential distribution with a different scale parameter. However,
when outliers are added to the exponential survival times or in comparisons where the
survival times for one group is a location shift from the survival times for the other group
with the same scale parameter, the PPW test and the Akritas perform consistently better
than the GSR test.

Dabrowska (1990) proposes another class of tests based on the distribution of D =
X1 − X2 but applying different scores to observed and censored differences. Let Di =
T1i − T2i, i = 1, . . . , n, and let εi = 1 if Di > 0, εi = −1 if Di < 0, and εi = 0 if Di = 0.
Inferences for this class of tests are based on the distribution of Di. Based on the assump-
tion of common censoring time for members within a pair, γ1i = γ2i = 0 means εi = 0 and
Di = 0. That is, doubly censored pairs do not contribute to the test. Pairs with failure time
for at least one member observed can be divided into four groups as defined below:

B1 = {i : εi = 1, γ1iγ2i = 1} - both failures observed with positive difference,
B2 = {i : εi = −1, γ1iγ2i = 1} - both failures observed with negative difference,
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TABLE 30.2
Results of the Woolson-Lachenbruch and the Dabrowska tests.

Test Test Statistic P-value

Woolson-Lachenbruch test on survival time −1.433 0.152

Woolson-Lachenbruch test on log of survival time −1.410 0.158

Dabrowska sign test −0.775 0.439

Dabrowska signed Wilcoxon test −1.069 0.285

Dabrowska signed normal test −1.069 0.285

B3 = {i : γ1i = 1, γ2i = 0} - one failure observed with positive difference, and
B4 = {i : γ1i = 0, γ2i = 1} - one failure observed with negative difference.

Now let Nj(t) =
∑n

i=1 Nij(t), j = 1, . . . , 4, such with |Di| ≤ t where Nij(t) = I[|Di| ≤ t, i ∈
Bj ]. That is, Nj(t) is the number of pairs whose magnitude of within-pair difference is less
than or equal to t. The test statistic is given by

T =

∫
Kud(N1 −N2) +Kcd(N3 −N4)

where Ku and Kc are scoring processes for fully observed and singly censored pairs, respec-
tively.

Three score functions considered in this chapter are

1. Ku = Kc = 1 which corresponds to the sign test,

2. Ku = 1− F̂ and Kc = 1− F̂ /2 which corresponds to the signed Wilcoxon test, and

3. Ku = Φ−1(1− F̂ /2) and Kc = 2F̂−1φ{Φ−1(1− F̂ /2)} which corresponds to the signed
normal test

where F̂ (t) =
∏

s≤t {1−ΔΛ̂(s)} with Λ̂(s) =
∫ t

0
U−1I(U > 0)d(N1 +N2) where U(t) =∑

I[|Di| ≥ t, εi �= 0] and φ and Φ are the density and the cumulative distribution function,
respectively, of the standard normal distribution. Without censoring, Λ̂(s) is the Nelson-
Aalen estimator of the within-pair difference |X1 −X2| and F̂ (s) is the empirical survival
function.

Under the null hypothesis of bivariate symmetry, n−1/2T converges weakly to a mean-
zero normal distribution with a variance consistently estimated by

σ̂2
T =

2∑
j=1

∫
K2

udNj +

4∑
j=3

∫
K2

c dNj .

Results of Dabrowska tests comparing post-transplant survival between bone marrow and
peripheral blood using the three score functions are given in Table 30.2. In this example, the
signed Wilcoxon test and the signed normal test give the same observed statistics whereas
the signed test is more conservative.

30.4.3 Weighted Kaplan-Meier comparison

As an alternative to rank-based tests, Murray (2001) presents a test based on weighted
Kaplan-Meier statistics for paired survival data. This test is an extension of the two-sample
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Pepe-Fleming test (Pepe and Fleming, 1989) using the integrated difference between the
Kaplan-Meier curves which gives an interpretation to the test statistics. This test allows
the inclusion of singletons which increases its power compared to tests that only use paired
observations such as the O’Brien-Fleming tests, the Akritas test, the Woolson-Lachenbruch
tests, and the Dabrowska tests. Furthermore, because it compares the integrated survival
curves, this test is more robust against crossing hazards than rank-based tests. Inference
for the weighted Kaplan-Meier approach is for the null hypothesis H0 : S1(t) = S2(t) ∀t.

Define n1, n2 the number of observations in group 1 and group 2, respectively. The
weighted difference between the two groups is defined by

τ =

(
n1n2

n1 + n2

)1/2 ∫ ∞

0

ŵ(u)[Ŝ1(u)− Ŝ2(u)]du (30.3)

where ŵ(t) is a predictable weighting process such that

sup
u∈[0,t)

|ŵ(u)− w(u)| P→ 0.

As n → ∞, τ has asymptotic normal distribution with variance

σ2 =

2∑
k=1

π1π2

πk

[∫ ∞

0

{Ak(u)}2hk(u)

P (Tkik ≥ u)
du

]
−θ

∫ ∞

0

∫ ∞

0

A1(u)A2(v)G12(u, v)dvdu (30.4)

where πk is the probability of belonging to group k, Ak(t) =
∫∞
t

w(u)Sk(u)du and
G12(t1, t2) = P (T1i ≥ t1, T2i ≥ t2){h12(t1, t2) − h1|2(t1|t2)h2(t2) − h2|1(t2|t1)h1(t1) +
h1(t1)h2(t2)}/{P (T1i ≥ t1)P (T2i ≥ t2)} where hk(t) is the marginal hazard function of
group k = 1, 2 at time t, h12(t1, t2) is the joint hazard function of group 1 and 2, and
h1|2(t1|t2) is the hazard function of group 1 at time t1 given that other member of the
pair is still alive at time t2. The first term of σ2 in Equation (30.4) is the variance of the
Pepe-Fleming test statistic for independent samples. The second term in (30.4) accounts
for the dependence within pairs. When the outcomes between groups are uncorrelated, this
term reduces to zero.

The variance (30.4) can be estimated using the pooled sample or unpooled sample.
Asymptotic closed forms for the variance estimators are given in Murray (2001). It is rec-
ommended that the pooled sample data be used to estimate the variance σ2 for hypothesis
testing and for confidence interval construction, unpooled sample estimates should be em-
ployed. Note that all observations including singletons in the sample contribute to the vari-
ance estimation but only paired observations are used to estimate the joint and conditional
hazards in G12(·, ·).

Let J(t) = 1 if
∑n1

i1=1 I(T1i1 ≥ t)
∑n2

i2=1 I(T2i2 ≥ t) > 0 and J(t) = 0 otherwise. Possible
weight functions include ŵ1(t) = J(t) and ŵ2(t) = J(t)P (T1i1 ≥ t)P (T2i2 ≥ t)/{π̂1P (T1i1 ≥
t) + π̂2P (T2i2 ≥ t)}. The statistic τ in (30.3) with weight function w1 has an interpretation
of years of life saved on study and τ with weight function w2 has an interpretation as the
difference in mean survival times.

Applying Murray’s test to our dataset using the weight ŵ1(·) suggests that bone marrow
transplant for severe aplastic anemia saves 8 months of life on study compared to transplant
with peripheral blood stem cells. The test statistic using the pooled variance estimate is
0.813 resulting in a two-sided p-value of 0.416. The observed test statistic using weight
ŵ2(·) is 0.944 with a two-sided p-value of 0.345. Note that, the weighted Kaplan-Meier tests
do not assume equal censoring. Therefore, all 54 pairs contribute information to the test
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statistics. Moreover, using this method, observations from the original dataset without a
match could be included in the analysis which would significantly increase the power of the
tests.

30.5 Regression models for paired data

In addition to the tests discussed in Section 30.4, regression models provide an alternative
approach to analyze paired survival data. In this chapter we discuss three regression models
developed for correlated data: the stratified Cox model, the marginal Cox model, and the
shared frailty model. Regression models are more flexible than the inference procedures
described in Section 30.4 as they allow comparison of treatment effect while adjusting for
other covariates that might affect the outcome. They also provide an interpretation for
the treatment effect in terms of the hazard ratio. Since these methods were developed for
correlated (clustered) data in general, they do not require one-to-one pairing nor do they
require that members of the pair receive different treatments.

All three regression models described in this section are extensions of the Cox (1972)
proportional hazards model. Let X be the survival time and C be the censoring time where
X and C are independent. In regression problems, observable data consist of the triplets
(T, γ,Z) where T = min(X,C), γ = I(X < C), and Z is the vector of covariates. Define
the conditional hazard function by

h(t|Z) = limΔt→0
P (t ≤ X < t+Δt|X ≥ t,Z)

Δt
.

The proportional hazards regression model is expressed as

h(t|Z) = h0(t) exp (β
′Z) (30.5)

where h0(t) = h(t|Z = 0) is the baseline hazard. When the only covariate of interest is the
main treatment effect where Z = 0 for treatment group 1 and Z = 1 for treatment group 2,
model (30.5) reduces to h(t|Z) = h0(t) exp (βZ) where h0(t) is the hazard rate at time t for
treatment group 1 and exp(β) is the hazard ratio of treatment 2 compared to treatment 1.
The null hypothesis of interest in this model is H0 : β = 0. Inference for β and regression
diagnostics for the Cox regression model are discussed in Chapter 1 of this handbook. Note
that when applied to paired data, model (30.5) does not account for potential correlation
between paired outcomes.

Table 30.3 summarizes the estimated effect of graft type on mortality after transplant
for severe aplastic anemia using the Cox model, the stratified, the marginal, and the shared
frailty regression models which will be discussed later. For the HCT data, ignoring the
within-pair association, the risk of mortality after receiving peripheral blood transplant is
estimated to be 1.555 times (95% confidence interval 0.797 − 3.304) the risk of mortality
after bone marrow transplant with a p-value of 0.195. In the remainder of this section, we
will describe three approaches that extend the Cox model to account for the correlation in
different ways.

30.5.1 Stratified Cox models

The first extension considered in this section is the stratified Cox model discussed in Chap-
ter 1. In the context of paired data, the stratified Cox model accounts for the association
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TABLE 30.3
Estimated treatment effect from extended Cox regression models.

Model ne HR (95% CI) Chi-square P-value

Cox model 54 1.555 (0.797− 3.034) 1.677 0.195

Marginal 54 1.555 (0.807− 2.998) 1.739 0.187

Stratified 26 1.167 (0.540− 2.522) 0.154 0.695

Gamma frailty 54 1.556 (0.797− 3.035) 1.680 0.195

Positive stable frailty 54 1.555 (0.797− 3.034) 1.677 0.195

between paired outcomes by estimating the within-pair hazard ratio. It assumes a separate
baseline hazard function h0i(t) for each pair i, i = 1, . . . , n. That is,

hi(t|Z) = h0i(t) exp (β
′Z). (30.6)

Note that inference for β in model (30.6), given by Holt and Prentice (1974), use only pairs
where the smaller of the two times is not censored. The effective sample size for inference
in this approach is the same as in the O’Brien-Fleming, the Woolson-Lachenbruch, and
the Dabrowska tests. Furthermore, the stratified tests have good power when the effect
of treatment is in the same direction for all pairs and the large-sample properties of the
estimator for β are only valid when the number of pairs is large.

Results from the stratified Cox model (Table 30.3) suggest the risk of mortality for a
severe aplastic anemia patient receiving peripheral blood transplant is 1.167 times higher
than the risk of mortality after bone marrow transplant with 95% confidence interval for the
hazard ratio of (0.540−2.522). The Wald chi-square statistic of the treatment effect is 0.154
with a p-value 0.695. Note that the hazard ratio given in the stratified model estimates the
within-pair effect and the within-pair correlation is accounted for by the common baseline
hazard h0i for members of pair i.

30.5.2 Marginal Cox models

Another extension of the Cox model is the marginal approach proposed by Lee, Wei, and
Amato (1992). In this approach, the treatment effect is estimated using the Cox model with
the marginal hazard function

h(t|Zki) = h0(t) exp (β
′Zki) (30.7)

for k = 1, 2; i = 1, . . . , n. Model (30.7) is fitted using the generalized estimating equation
(GEE) approach of Liang and Zeger (1986) under the independent working model.

Fitting the marginal Cox model to our data indicates the risk of mortality after periph-
eral blood transplant is 1.555 times higher than the risk of mortality after bone marrow
transplant with a 95% confidence interval of (0.807 − 2.998). The Wald chi-square statis-
tic for the effect of graft type is 1.739 with a p-value of 0.187. Unlike the stratified Cox
model which estimates the within-pair treatment effect, the marginal model estimates the
average treatment effect across all pairs and the within-pair correlation is accounted for
by the robust covariance estimated by the GEE approach. Furthermore, in the marginal
model, all pairs contribute information to the inference of treatment effect. That is 54 pairs
contribute to the inference in the marginal model compared to 26 pairs in the stratified
model. Marginal models for artificially matched pairs may include the matching covariates
in the regression models.
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30.5.3 Shared frailty models

Another regression approach commonly used to analyze paired (clustered) survival data is
the shared frailty model. Shared frailty models assume members of a pair share a common
risk which is constant over time and has multiplicative effect on the baseline hazard function.
The shared frailty induces dependence between members within a pair. Conditional on the
frailty, members within a pair are independent. The shared frailty model is a random effects
model with the conditional hazard function for pair i expressed as

hki(t|Zki,W = wi) = wih0(t) exp (β
′Zki) (30.8)

where W is the frailty random variable. In the shared frailty model, the baseline hazard
for pair i is wih0(t). When the only covariate of interest is the treatment effect where
Z = 0 for treatment group 1 and Z = 1 for treatment group 2, model (30.8) is simplified
to hki(t|Zki,W = wi) = wih0(t) exp (β

′Zki) and β is the conditional treatment effect. The
model in (30.8) further assumes proportional conditional hazards. See Hougaard (2000) for
a comprehensive treatment of the shared frailty models.

Similar to the stratified model, the shared frailty model estimates the within-pair hazard
ratio and it assumes different baseline hazard functions for each pair i. However, unlike the
stratified model where the baseline hazards are arbitrary and are considered fixed, the shared
frailty model assumes that the frailty is a random variable and it has a multiplicative effect
on the hazard functions. Two distributions often assumed for W are the Gamma(θ, θ) (or
simply Gamma(θ)) and the positive stable PS(α).

For W ∼ Gamma(θ), the marginal hazard function is given by

h0(t) exp(β
′Zki)/{1 +H0(t) exp(β

′Zki/θ)} (30.9)

whereH0(t) =
∫ t

0
h0(u)du is the cumulative baseline hazard function at time t. The marginal

hazard function in (30.9) indicates that the marginal hazards are nonproportional in the
gamma frailty model.

Assuming W ∼ PS(α), the marginal hazard function is given by

h0(t) exp(αβ
′Zki)αH0(t)

α−1. (30.10)

As indicated by (30.10), the marginal hazard function in a shared positive stable frailty
preserves proportionality.

Fitting the shared gamma frailty model to the HCT data suggests that the risk of
mortality after peripheral blood transplant is 1.556 times higher than after bone marrow
transplant with a 95% confidence interval of (0.797− 3.035) for the treatment effect β. The
chi-square statistic for the test of treatment effect is 1.680 with a p-value of 0.195. The
gamma frailty paramter θ is estimated to be 5 × 10−5 with a corresponding Kendall’s τ
of 2.5 × 10−5 suggesting that survival times are indepedent between pair members in this
study.

Similar results were found after fitting the shared positive frailty model with the esti-
mated conditional hazard ratio, β, of 1.555, a 95% confidence interval of (0.797− 3.034), a
chi-square statistic of 1.677, and a p-value 0.195. The frailty parameter α is estimated to
be 1 with a corresponding Kendall’s τ of 0, again, reiterating that the paired survival times
are independent.
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30.6 Comparing survival probabilities at a fixed time point

The tests presented in Section 30.4 and regression models of Section 30.5 compare the
entire survival curves. There are instances where the comparison of survival probabilities at
a fixed time point is of interest. In these instances, the emphasis is placed on the effect of
treatment on outcome at that specific time point regardless of the process leading to that
time. Comparison of outcome at a fixed time point is especially important when a treatment
is designed to improve long-term outcome although early mortality might be higher. In this
case the survival curves may cross in the early period.

One example of this situation is the comparison between allogeneic versus autologous
hematopoietic cell transplant. In autologous transplant, a patient’s own hematopoietic cells
are collected prior to chemotherapy. After chemotherapy treatment, these cells are reinfused
into the patient. In allogeneic transplant, hematopoietic cells from a related or unrelated
donor are given to the patients after chemotherapy. Since the hematopoietic cells in allo-
geneic transplant come from another person, these cells launch an attack on the host body
causing complications known as “graft-versus-host disease.” These complications can be
fatal and result in higher mortality in the early post-transplant period. In contrast, au-
tologous transplant recipients are not affected by graft-versus-host disease and therefore
expected to have better early survival. However, the relapse rate after autologous trans-
plant is higher than after allogeneic transplant which leads to higher long-term mortality.
Klein et al. (2007) provides an example comparing survival between autologous transplant
versus allogeneic transplant from a matched sibling donor for leukemia. In their example,
the survival curves appear to cross between 12 and 18 months and level off at two years
after transplant. Tests comparing the entire curves have low power to detect differences in
the treatment effect in situations where early and late differences are in opposite directions.
Comparison at a fixed time point after the curves have flattened out gives a better estimate
of long-term effect on survival.

Su et al. (2011) propose techniques to compare survival probabilities at a fixed point in
time for paired and clustered data. Their approaches extend methods studied by Klein et
al. (2007) to account for potential dependence in paired or clustered outcomes. Both Klein
et al. (2007) and Su et al. (2011) consider tests based on various transformations of the
Kaplan-Meier estimator and a regression approach using the pseudo-values of Andersen et
al. (2003) and Klein and Andersen (2005). Logan et al. (2011) also propose a marginal model
approach for clustered competing risks data using pseudo-values that could be applied to
paired survival data. The null hypothesis under consideration here is H0 : S1(t0) = S2(t0)
for a fixed time t0.

In general terms, the test statistic is defined as

ϕ[Ŝ2(t0)]− ϕ[Ŝ1(t0)]√
V [(ϕ(Ŝ2(t0))− ϕ(Ŝ1(t0))]

(30.11)

where Ŝk(t0) is the Kaplan-Meier estimator for group k = 1, 2 and ϕ(·) is a transformation
of s. The square of the denominator in (30.11) is the variance of ϕ[Ŝ2(t0)]−ϕ[Ŝ1(t0)] which
equals

V [ϕ(Ŝ1(t0))] + V [ϕ(Ŝ2(t0))]− 2Cov[ϕ(Ŝ1(t0)), ϕ(Ŝ2(t0))]. (30.12)

The covariance term in (30.12) accounts for the dependence in paired data. When all obser-
vations come from independent samples, this term becomes zero and the variance in (30.12)
reduces to V [ϕ(Ŝ2(t0))] + V [ϕ(Ŝ1(t0))].

By employing the delta method, one can show that ϕ(Ŝk(t0)) is asymptotically
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normal with mean ϕ(Sk(t0)) and variance estimated by V (Ŝk(t0))[ϕ
′(Ŝk(t0))]

2 where
ϕ′(t) = dϕ(t)/dt. When the observations are paired, using the results of Murray (2001),
Cov(ϕ(Ŝ1(t0)), ϕ(Ŝ2(t0))) can be estimated by

ϕ′(Ŝ1(t0))ϕ
′(Ŝ2(t0))

1

n

∑
u≤t0

∑
v≤t0

Ĝ12(u, v) (30.13)

where

Ĝ12(u, v) =
πuv/n

πuπv/n2

(
quv
πuv

− qu|vqv
πuvπv

− qv|uqu
πuvπu

+
quqv
πuπv

)
and πuv is the number of pairs whose member in group 1 is still at risk at time u and
member in group 2 is still at risk at time v; πu is the number of individuals in the pooled
sample who are still at risk at time u; quv is the number of pairs whose member in group
1 fails at time u and member in group 2 fails at time v; and qv|u is the number of pairs
whose member in group 2 fails at time v while the member in group 1 is still at risk at time
u; qu is the number of individuals in the pooled sample failing at time u. Under the null
hypothesis, the test statistic in (30.11) is asymptotically standard normal.

The five transformations considered by Klein et al. (2007) and Su et al. (2011) include:

1. identity: ϕ(x) = x,

2. log transformation: ϕ(x) = log(x),

3. complementary log-log transformation: ϕ(x) = log[− log(x)],

4. arcsine-square-root transformation: ϕ(x) = arcsin(
√
x), and

5. logit transformation: ϕ(x) = log [x/(1− x)].

Another technique to compare survival at a fixed point in time is a regression analysis
using pseudo-values (Andersen et al., 2003; Klein and Andersen, 2005) . The pseudo-value
at time t for each of the 2n observations is computed as

θ̂ki(t) = 2nŜ(t)− (2n− 1)Ŝ−ki(t) (30.14)

where Ŝ(t) is the Kaplan-Meier estimate at time t using all observations in the pooled
sample and Ŝ−ki(t) is the Kaplan-Meier estimate with observation k in group i removed.

Without censoring, θ̂ki(t) is the indicator whether patient k in group i is alive at time t.
The pseudo-values can be used in generalized linear models to evaluate the treatment

effect as well as to adjust for other covariates. Common link functions used to model survival
data include the logit link g(θ) = log[(θ/(1− θ)] and the complementary log-log link g(θ) =
log(− log(θ)). Let Zki = [Z1

ki, Z
2
ki, . . . , Z

p
ki] be a vector of covariates for patient k in group

i where Z1 is the treatment indicator, i.e., Z1 = 0 for treatment group 1 and Z1 = 1 for
treatment group 2.

The pseudo-values obtained from (30.14) can be fit using a marginal model

g(θki) = β0 +

p∑
j=1

βjZ
j
ki = β′Zki. (30.15)

The parameters β in (30.15) can be estimated using the marginal GEE approach of Liang
and Zeger (1986) as described by Logan et al. (2011). Let μi = [µ1i, µ2i] where µki =

g−1(β′Zki). Let Vi be a 2× 2 working correlation matrix of θ̂i = [θ̂1i, θ̂2i]. The estimating
equation is given by
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U(β) =
n∑

i=1

Ui =

n∑
i=1

(
δμi

δβ

)′
V −1
i (θ̂i − μi).

The maximum likelihood estimator β̂ of β can be found by solving U(β) = 0. Following

Liang and Zeger (1986),
√
n(β̂ − β) is asymptotically normal with mean zero and variance

consistently estimated by
Σ̂ = I−1(β̂){V̂ [U(β)]}I−1(β̂)

where

I(β̂) =
n∑

i=1

(
δμi

δβ

)′
V −1
i

(
δμi

δβ

)
and

V̂ [U(β)] =

n∑
i=1

UiU
′
i .

Note that the GEE approach fits a marginal model and accounts for the within-pair corre-
lation by a robust covariance estimator. Model (30.15) specifies a common intercept term
β0 for all pairs and β1 is the treatment effect across all pairs.

The pseudo-values from (30.14) can also be fit using the following stratified model

g(θki) = β0i +

p∑
j=1

βjZ
j
ki (30.16)

where each pair i has a different intercept term β0i while the members of a pair have a
common intercept. Unlike the marginal model (30.15), here the within-pair correlation is
accounted for by the common intercept term β0i and β1 is the within-pair treatment effect.
The β’s in model (30.16) can be estimated using the GEE approach as described for unpaired
survival data by Klein et al. (2007). However, with a large number of nuisance parameters
β0i, i = 1, . . . , n, the estimates for β′s in (30.16) might not be consistent. More research is
needed to explore this approach further.

We applied the methods discussed in this section to compare survival probability at
three years post transplant for patients receiving bone marrow graft and those receiving
peripheral blood graft. The results are summarized in Table 30.4. As seen in Figure 30.1,
patients receiving BM graft have a three-year survival probability of 0.719 (SE = 0.064),
while this probability is 0.587 (SE = 0.073) for peripheral blood transplant recipients. Com-
parisons of three-year survival between the two treatments using the log, complementary
log-log, and the arcsine-square-root transformation of the Kaplan-Meier estimator lead to
similar conclusions. Pseudo-value regression using marginal model approach with the com-
plementary log-log link shows that the risk of mortality at three years after peripheral blood
transplant is 1.612 times higher than the mortality risk after bone marrow transplant for
severe aplastic anemia with a 95% confidence interval for the relative risk of (0.803−3.235).
However, there is no significant evidence to show that bone marrow transplant results in
superior survival at three years post-transplant.

Klein et al. (2007) note that, since Ŝ(t) is a consistent estimator for the marginal survival
distribution, the pseudo-value approach works better when the censoring distribution is the
same in both groups.
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TABLE 30.4
Comparison of three-year survival.

Method Test statistic Two-sided p-value

Transformation

Log 1.164 0.244

Complemenatry log-log -1.171 0.242

Arcsine-square-root 1.180 0.238

Pseudo-value regression 1.344 0.179

30.7 Discussion

In this chapter, we reviewed a number of approaches to compare paired survival data.
Survival curves can be compared using hypothesis tests developed specifically for paired
data using various rank functions to handle right censoring. Most of the methods presented
in this exposition give comparable results in our example which is consistent with various
simulation studies. It is important to note that inferences for different classes of tests are
based on a slightly different hypothesis. Specifically, the tests of O’Brien-Fleming (1987) and
Akritas (1992) evaluate the within-pair differences in pooled ranks. The tests of Woolson
and Lachenbruch (1980) and Dabrowska (1990) make inference based on the distribution
of the within-pair differences in survival times. These are conditional approaches, whereas
the test proposed by Murray (2001) which compares the integrated Kaplan-Meier curves
and allows us to estimate the number of years life saved is a marginal approach. This test
accounts for the association between paired survival times by adding a covariance term in
the variance estimator. The choice of test for a specific study depends on the question of
interest. Another factor that should be considered when choosing a test is the amount of
censoring in the data and whether it is appropriate to assume a common censoring time for
members of a pair. The O’Brien-Fleming, the Woolson-Lachenbruch, and the Dabrowska
tests require a common censoring time for pair members. As illustrated in our example, this
assumption can significantly reduce the effective sample size used for inference especially
in the case of moderate to heavy censoring. The censoring requirement for the Akritas and
the Murray tests is less stringent, hence may increase the power of the hypothesis testing
procedure. Murray’s weighted Kaplan-Meier test also allows the inclusion of singletons which
can further increase the study power.

When it is necessary to adjust for additional covariates beyond the treatment effect,
extensions of the Cox regression models are available. These models test different hypotheses
and their parameter estimates represent slightly different quantities which may influence
the choice of model to use in a study. The stratified Cox model and the shared frailty model
provide estimates for the within-pair hazard ratios. These are conditional approaches while
the model proposed by Lee et al. (1992) is a marginal approach. The marginal model
estimates the average treatment effect across all pairs. Of these regression models, the
stratified model may be the least efficient when there is moderate to heavy censoring since
pairs with the smaller of the two times being censored do not contribute to the test statistic.

Besides approaches to compare the entire survival curves, we also presented tests avail-
able to compare the survival probabilities at a fixed time point using various transforma-
tions of the Kaplan-Meier estimator. The tests using transformations perform better than
the untransformed test. All transformations produce comparable results. Generalized lin-
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ear models using the pseudo-values is another approach to analyze the effect of treatment
on survival at a fixed time. An advantage of the pseudo-value approach is that it allows
comparison of the survival probabilities at a fixed time point while adjusting for other co-
variates. Depending on the link function used in the regression model, the estimates from
the pseudo-value approach yield the results in terms of the odds ratio or the hazard ratio
to quantify the difference between the treatments at that time point.
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